
ISO/IEC JTC 1/SC 22/WG 23 N 0305 1
Proposed separation of XYY into two descriptions 2
 3
Date 15 February 2011
Contributed by Jim Moore
Original file name
Notes Responds to Action Item #16-12
 4
The text of Action Item #16-12 reads as follows: 5

Look at XYY in the main document and both annexes to try to tease apart two 6
vulnerabilities: one concerning arithmetic over/underflow and one concerning performing 7
bit/shift operations on numeric values. In both, note that unsigned and signed arithmetic 8
present two different challenges. 9

After reading the annexes, I realized that redrafting them will be easy once we settle on the text 10
for the body of the report. So, I’m not including text for annexes at this time. 11
 12
The proposed text for the body of the report follows: 13
 14
6.x Arithmetic Wrap-around Error [FIF] 15
 16
6.x.1 Description of application vulnerability 17
 18
Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past 19
the minimum value representable in its type and, depending upon: 20

• whether the type is signed or unsigned 21
• the specification of the language semantics and/or 22
• implementation choices, 23

"wraps around" to an unexpected value. This vulnerability is related to Logical Wrap-around Error 24
[PIK]. This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 25
of this international technical report. 26
 27
6.x.2 Cross reference [Note to editor: Please verify the applicability of these cross-references.] 28
 29
CWE: 30

128. Wrap-around Error 31
190: Integer Overflow or Wraparound 32

JSF AV Rules: 164 and 15 33
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11 34
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1 35
CERT C guidelines: INT30-C, INT32-C, and INT34-C 36
 37
6.x.3 Mechanism of failure 38
 39
Due to how arithmetic is performed by computers, if a variable’s value is increased past the 40
maximum value representable in its type, the system may fail to provide an overflow indication 41

to the program. One of the most common processor behaviour is to “wrap” to a very large 42
negative value, or set a condition flag for overflow or underflow, or saturate at the largest 43
representable value. 44
 45
Wrap-around often generates an unexpected negative value; this unexpected value may cause a 46
loop to continue for a long time (because the termination condition requires a value greater than 47
some positive value) or an array bounds violation. A wrap-around can sometimes trigger buffer 48
overflows that can be used to execute arbitrary code. 49
 50
It should be noted that the precise consequences of wrap-around differ depending on: 51

• Whether the type is signed or unsigned 52
• Whether the type is a modulus type 53
• Whether the type’s range is violated by exceeding the maximum representable value or 54

falling short of the minimum representable value 55
• The semantics of the language specification 56
• Implementation decisions 57

However, in all cases, the resulting problem is that the value yielded by the computation may be 58
unexpected. 59
 60
6.x.4 Applicable language characteristics 61
 62
This vulnerability description is intended to be applicable to languages with the following 63
characteristics: 64

• Languages that do not trigger an exception condition when a wrap-around error occurs. 65
 66
6.x.4 Avoiding the vulnerability or mitigating its effects 67
 68
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 69

• Determine applicable upper and lower bounds for the range of all variables and use 70
language mechanisms or static analysis to determine that values are confined to the 71
proper range. 72

• Analyze the software using static analysis looking for unexpected consequences of 73
arithmetic operations. 74

 75
6.x.6 Implications for standardization 76
 77
In future standardization activities, the following items should be considered: 78

• Language standards developers should consider providing facilities to specify either an 79
error, a saturated value, or a modulo result when numeric overflow occurs. Ideally, the 80
selection among these alternatives could be made by the programmer. 81

 82
6.y Logical Wrap-around Error [PIK] 83
 84
6.y.1 Description of application vulnerability 85
 86

Using shift operations as a surrogate for multiply or divide may produce an unexpected value 87
when significant bits are lost. This vulnerability is related to Arithmetic Wrap-around Error 88
[FIF]. This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 89
of this international technical report. 90
 91
6.x.2 Cross reference [Note to editor: Please verify the applicability of these items.] 92
 93
CWE: 94

128. Wrap-around Error 95
190: Integer Overflow or Wraparound 96

JSF AV Rules: 164 and 15 97
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11 98
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1 99
CERT C guidelines: INT30-C, INT32-C, and INT34-C 100
 101
6.y.3 Mechanism of failure 102
 103
Coders sometimes use shift operations with the intention of producing results equivalent to 104
multiplying by a power of two or dividing by a power of two. However, errors can result from 105
this practice. For example, if the programmer mistakenly uses logical shifts on signed arithmetic 106
values, the results may test correctly for small values but produce unexpected results when used 107
with large values. The problem, of course, is that the sign bit can be shifted out of the value 108
converting a negative value into a positive one or vice versa. 109
 110
Even when the correct type of shift is coded, there can still be problems with unexpected and 111
undetected numerical underflow or overflow if significant bits are shifted out of the value. 112
 113
Stated most generally, replacing multiply and divide operations with shifting operations requires 114
detailed knowledge of the representation of the values across the varieties of processors on which 115
the code may be used. In addition, it requires detailed analysis of the range of values for which 116
the shift operations will produce valid results and checking (or static analysis) to ensure that the 117
values never go outside of the range. 118
 119
Wrap-around often generates an unexpected negative value; this unexpected value may cause a 120
loop to continue for a long time (because the termination condition requires a value greater than 121
some positive value) or an array bounds violation. A wrap-around can sometimes trigger buffer 122
overflows that can be used to execute arbitrary code. 123
 124
6.y.4 Applicable language characteristics 125
 126
This vulnerability description is intended to be applicable to languages with the following 127
characteristics: 128

• Languages that do not trigger an exception condition when a wrap-around error occurs. 129
• Languages that do not fully specify the distinction between arithmetic and logical shifts. 130

 131
6.y.4 Avoiding the vulnerability or mitigating its effects 132

 133
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 134

• Determine applicable upper and lower bounds for the range of all variables and use 135
language mechanisms or static analysis to determine that values are confined to the 136
proper range. 137

• Analyze the software using static analysis looking for unexpected consequences of shift 138
operations. 139

• Avoid using shift operations as a surrogate for multiplication and division. Most 140
compilers will use the correct operation in the appropriate fashion when it is applicable. 141

 142
6.y.6 Implications for standardization 143
 144
In future standardization activities, the following items should be considered: 145

• Language standards developers should consider providing facilities to specify either an 146
error, a saturated value, or a modulo result when logical overflow occurs. Ideally, the 147
selection among these alternatives could be made by the programmer. 148

 149

	ISO/IEC JTC 1/SC 22/WG 23 N 0305

