
ISO/IEC JTC 1/SC 22/WG 23 N 0319 1

Proposed rewrite of NZN 2

 3

Date 2011-03-23

Contributed by Bob Karlin

Original file name Returning errors and error conditions.doc

Notes Closes Action Item 16-08

 4

 5

6.36 Returning Error Status [NZN] 6

 7

6.36.1 Description of application vulnerability 8
 9

Programming languages provide multiple mechanisms for the reporting of errors. Whether 10

these errors are programmatic or generated by the operating environment, improper or 11

ineffective error returning can mask other vulnerabilities, and corrupt data and process flow. 12

 13

6.36.2 Cross reference 14

 15

6.36.3 Mechanism of failure 16
 17

Some languages provide mechanisms to return error by raising exceptions, creating and raising 18

error objects, or setting of environmental variables of semaphores. If none of these 19

mechanisms exist, the subroutines can return error status, or set global variables to indicate 20

that an error occurred. Failure mechanisms include: 21

 22

 not properly transmitting error conditions to the calling routines 23

 ignoring error conditions that occur 24

 improperly documenting error return code or variables 25

 not providing enough status information to determine the nature of the error 26

 27

6.36.4 Applicable language characteristics 28

 29
This vulnerability is endemic to all languages, to one extent or another. Those languages that do not 30
provide a language defined method of returning errors are more vulnerable to improper documentation 31
and insufficient status information. 32
 33

6.36.5 Avoiding the vulnerability or mitigating its effects 34
 35
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 36
 37

 Always return status, in some form or another 38

 Always check status from any subroutine or subprogram 39

 When creating error statuses, be consistent throughout the project, and provide enough detail 40
to determine what caused the error 41

 When a language provided error mechanism does not allow the granularity or environmental 42
detail to properly debug the error, create global or status arrays to return that data 43

 44

6.36.6 Implications for standardization 45

 46
In future standardization activities, the following items should be considered: 47
 • Providing language features to return error status 48
 • Providing language features that allow extended environmental data that is relevant to the 49
error, such as data in error, data base record number, data items that may be affected, etc. 50
 51
 52

6.nn Exception Conditions 53

 54

6.nn.1 Description of application vulnerability [???] 55
 56
Most software environments provide a method for detecting conditions that do not correspond to those 57
expected. These may be environment related, such as hardware failures, or unexpected communication 58
results, data related, such as a non-numeric item input to a numeric calculation, or software related, 59
such as unexpected numeric overflows, or improper index calculations. Many other vulnerabilities are 60
detectable within the software environment. Ignoring this detection, or providing a generic error 61
handling routine may lead to corrupt code, and may provide a vehicle for malicious attack. 62
 63

6.nn.2 Cross reference 64
 65

6.nn.3 Mechanism of failure 66

 67

Exception conditions can provoke failure in a number of ways: 68

 69

 Unhandled exceptions may end up being ignored, thereby corrupting data or process 70

flow. 71

 Unhandled exceptions may be considered fatal by the operating environment, thereby 72

terminating execution without finalizing the process, leaving open or corrupt databases, 73

other processes blocked while waiting for results, or resources left in a locked state. 74

 Generically handled exceptions may not capture appropriate environmental and 75

program state to allow the error to be properly investigated 76

 Generically handled exceptions may not free local resources properly 77

 Generically handled exceptions may not be able to correct a specific correctable error 78

and return to processing 79

 Some error handling mechanisms may allow inappropriate returns from an error 80

handling routine. 81

 82

6.nn.4 Applicable language characteristics 83
 84
Different programming languages handle error conditions in a number of manners. The main error 85
handling methodologies are: 86
 87

 Try-Catch uses a block structure to "catch" errors that occur with the block. 88

 Error-Condition sets a predefined error condition code that can be checked with a conditional 89
expression 90

 Error-Status sets a user defined variable to a predefined code that specifies the error 91

 Error-Object creates an object that defines the error, along with environmental conditions 92

 Declaratives are routines that will be executed when particular error conditions occur. 93
 94

6.nn.5 Avoiding the vulnerability or mitigating its effects 95
 96
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 97
 98
 • Check error status and error conditions when possible. 99
 • Check errors with the smallest possible granularity. Whenever possible keep the block that is 100
tested to the smallest number of operations. 101
 • Always close and release any open resources during error processing when the error is 102
uncorrectable 103
 • When an error is uncorrectable, propagate the error upwards when possible, after cleaning 104
up open resources. 105
 • Never disable error handling without extreme provocation. 106
 • When multiple error handling methodologies are provided, try to standardize on a single 107
methodology for the project. 108
 109

6.nn.6 Implications for standardization 110
In future standardization activities, the following items should be considered: 111
 • A standardized set of mechanisms for detecting and treating error conditions should be 112
developed so that all languages to the extent possible could use them. This does not mean that all 113
languages should use the same mechanisms as there should be a variety, but each of the mechanisms 114
should be standardized. 115
 116
 117

