ISO/IEC JTC 1/SC 22/WG 23 N 0379
Submitted New Work Item Proposal and Preliminary Working Draft for Code Signing

Date 12 December 2011

Contributed by SC 22 Secretariat

Original file name [SO-IECJTC1-SC22 N4698 Information technology--Programming 1.pdf

Notes This is the New Work Item Proposal and attached preliminary working draft being

balloted in SC22.

o iIsonec Jtc 1/sc22 N 4698

ISO/IEC JTC 1/SC 22
Programming languages, their environments and system software interfaces
Secretariat: ANSI

Document type: Text for NP ballot

Title: Information technology--Programming languages, their environments and system software
interfaces--Code signing for source code

Status: Please vote using the Balloting Portal.

Date of document: 2011-11-30

Source: SC 22/WG 23
Expected action: VOTE
Action due date: 2012-03-01

Email of secretary: mpeacock@ansi.org

Committee URL.: http://isotc.iso.org/livelink/livelink/openljtc1sc22

mailto:mpeacock@ansi.org500000 m
538 663.500000 l

http://isotc.iso.org/livelink/livelink/open/jtc1sc22

Form G3 Page 1 of 6

WG 23 Document: NO377

G3 New Work Item Proposal
March 2007
[Form downloaded from the JTC 1 Templates web site, 5 November 2011]

PROPOSAL FOR A NEW WORK ITEM

[Date of presentation of proposal: Proposer:

[YYYY-MM-DD] ISO/IEC JTC 1/SC 22/WG 23
Secretariat: ISO/IEC JTC 1 N [XXXX]
ANSI (United States) ISO/IEC JTC 1/SC 22 N [XXX]

A proposal for a new work item shall be submitted to the secretariat of the ISO/IEC joint technical
committee concerned with a copy to the ISO Central Secretariat.

Presentation of the proposal - to be completed by the proposer.

Title Information technology--Programming languages, their environments and system software
linterfaces--Code signing for source code

Scope This International Standard uses a language and environment neutral description to define the
application program interfaces (APIs) and supporting data structures necessary to support the signing of
code and executables. It is intended to be used by both application developers and systems
fimplementers.

The following areas are outside the scope of this specification:

o Graphics interfaces

o Object or binary code portability

o System configuration and resource availability
Purpose and justification - The extended supply chains used in modern software development make it
very difficult to ascertain the origin of source code and to ensure that no intentional or unintentional
modifications were made to the code. Code signing applies the existing technology of digital signatures
S0 that receivers' of source code can be assured that the received code is identical to the code signed by
the originator of the code. Traceability to the originator cannot guarantee that the code is correct, but it
can guarantee that the code being used is the same as the code that was tested by its developer.

Programme of work

If the proposed new work item is approved, which of the following document(s) is (are) expected to be
developed?

| x__asingle International Standard

| more than one International Standard (expected number:)

| amulti-part International Standard consisting of parts

| an amendment or amendments to the following International Standard(s)ccoovreeerinieesieennn
| atechnical report , type

file://C:\Documents and Settings\mpeacock\Local Settings\Temporary Internet Files\OL... 11/30/2011

Form G3 Page 2 of 6

And which standard development track is recommended for the approved new work item?

| X___a. Default Timeframe
b. Accelerated Timeframe
c. Extended Timeframe

IRelevant documents to be considered

e ISO/IEC 14750:1999 Information technology--Open distributed processing--Interface definition
language: This document will be considered as the source of a notation for describing the APIs.

e ITU-T Recommendation X.509 (2008), Information technology--Open systems interconnection--
The directory: Authentication framework

o Open literature concerning code signing and digital signature technology

e The programming language standards of JTC 1/SC 22 and the IT security standards of JTC 1/SC
27

Co-operation and liaison

o Liaison with ISO/IEC JTC 1/SC 27 (IT Security Techniques), will be pursued with the hope of
applying available specifications and expertise from the IT security standards.

o Liaison with ISO/IEC JTC 1/SC 7/WG 21 (Software Asset Management), will be pursued with
the hope of applying technology for "software asset tags".

Preparatory work offered with target date(s)

A preliminary working draft is circulated with this New Work Item Proposal

Signature:

\Will the service of a maintenance agency or registration authority be required?No................
- If yes, have you identified a potential candidate?

- 1T yes, INdICate NAMEcccvviieiececccce e

Are there any known requirements for coding?No.................
-1f yes, please specify on a separate page

[Does the proposed standard concern known patented items?No.............
- If yes, please provide full information in an annex

Are there any known accessibility requirements and/or dependencies (see:
http://www.jtclaccess.org)?....... NO.....coveee.

-1 yes, please specify on a separate page

Are there any known requirements for cultural and linguistic adaptability?........ [\ [o JO

-1 yes, please specify on a separate page

Comments and recommendations of the JTC 1 or SC XXSecretariat - attach a separate page as an

file://C:\Documents and Settings\mpeacock\Local Settings\Temporary Internet Files\OL... 11/30/2011

Form G3 Page 3 of 6

annex, if necessary

Comments with respect to the proposal in general, and recommendations thereon:
It is proposed to assign this new item to JTC 1/SC 22/WG 23

Voting on the proposal - Each P-member of the ISO/IEC joint technical committee has an obligation to
vote within the time limits laid down (normally three months after the date of circulation).

Date of circulation: Closing date for voting: Signature of Secretary:
[YYYY-MM-DD] [YYYY-MM-DD]

[NEW WORK ITEM PROPOSAL

PROJECT ACCEPTANCE

CRITERIA
Criterion Validity |[Explanation
A. Business Requirement
A.1 Market Requirement Essential _x__ Security and safety of software is an
[Desirable lincreasingly important problem. The ability to
Supportive assure that the code has not been altered
supports accountability for security in supply
chains.

[B. Related Work
[B.1 Completion/Maintenance of [Yes
current standards

INo x
[B.2 Commitment to other Yes
organisation

INo x

[B.3 Other Source of standards Yes

INo x
C. Technical Status
C.1 Mature Technology Yes X The underlying technology is mature. The
application of the technology in this context is
INo not yet mature.
C.2 Prospective Technology Yes X See above.
No
C.3 Models/Tools Yes
INo x
ID. Conformity Assessment and
Interoperability
D.1 Conformity Assessment Yes

file://C:\Documents and Settings\mpeacock\Local Settings\Temporary Internet Files\OL... 11/30/2011

Form G3 Page 4 of 6

INo x
[D.2 Interoperability Yes
No x
|[E. Adaptability to Culture,
Language, Human Functioning
and Context of Use
[E.1 Cultural and Linguistic Yes \We believe that the existing technology for
Adaptability digital signatures already supports cultural and
INo x linguistic adaptability.
E.2 Adaptability to Human Yes
Functioning and Context of Use
INo x
[F. Other Justification

Notes to Proforma

A. Business Relevance. That which identifies market place relevance in terms of what problem is
being solved and or need being addressed.

A.1 Market Requirement. When submitting a NP, the proposer shall identify the nature of the Market
Requirement, assessing the extent to which it is essential, desirable or merely supportive of some other
project.

A.2 Technical Regulation. If a Regulatory requirement is deemed to exist - e.g. for an area of public
concern e.g. Information Security, Data protection, potentially leading to regulatory/public interest
action based on the use of this voluntary international standard - the proposer shall identify this here.

B. Related Work. Aspects of the relationship of this NP to other areas of standardisation work shall be
identified in this section.

B.1 Competition/Maintenance. If this NP is concerned with completing or maintaining existing
standards, those concerned shall be identified here.

B.2 External Commitment. Groups, bodies, or for a external to JTC 1 to which a commitment has been
made by JTC for Co-operation and or collaboration on this NP shall be identified here.

B.3 External Std/Specification. If other activities creating standards or specifications in this topic area
are known to exist or be planned, and which might be available to JTC 1 as PAS, they shall be identified
here.

C. Technical Status. The proposer shall indicate here an assessment of the extent to which the
proposed standard is supported by current technology.

C.1 Mature Technology. Indicate here the extent to which the technology is reasonably stable and ripe
for standardisation.

C.2 Prospective Technology. If the NP is anticipatory in nature based on expected or forecasted need,
this shall be indicated here.

file://C:\Documents and Settings\mpeacock\Local Settings\Temporary Internet Files\OL... 11/30/2011

Form G3 Page 5 of 6

C.3 Models/Tools. If the NP relates to the creation of supportive reference models or tools, this shall be
indicated here.

D. Conformity Assessment and Interoperability Any other aspects of background information
justifying this NP shall be indicated here.

D.1 Indicate here if Conformity Assessment is relevant to your project. If so, indicate how it is
addressed in your project plan.

D.2 Indicate here if Interoperability is relevant to your project. If so, indicate how it is addressed in your
project plan

E. Adaptability to Culture, Language, Human Functioning and Context of Use

NOTE: The following criteria do not mandate any feature for adaptability to culture, language, human
functioning or context of use. The following criteria require that if any features are provided for
adapting to culture, language, human functioning or context of use by the new Work Item proposal, then
the proposer is required to identify these features.

E.1 Cultural and Linguistic Adaptability. Indicate here if cultural and natural language adaptability is
applicable to your project. If so, indicate how it is addressed in your project plan.

ISO/IEC TR 19764 (Guidelines, methodology, and reference criteria for cultural and linguistic
adaptability in information technology products) now defines it in a simplified way:

- "ability for a product, while keeping its portability and interoperability properties, to:

- be internationalized, that is, be adapted to the special characteristics of natural languages and the
commonly accepted rules for their se, or of cultures in a given geographical region;

- take into account the usual needs of any category of users, with the exception of specific needs related
to physical constraints

Examples of characteristics of natural languages are: national characters and associated elements (such
as hyphens, dashes, and punctuation marks), writing systems, correct transformation of characters, dates
and measures, sorting and searching rules, coding of national entities (such as country and currency
codes), presentation of telephone numbers and keyboard layouts. Related terms are localization,
jurisdiction and multilingualism.

E.2 Adaptability to Human Functioning and Context of Use. Indicate here whether the proposed
standard takes into account diverse human functioning and diverse contexts of use. If so, indicate how it
is addressed in your project plan.

NOTE:

1. Human functioning is defined by the World Health Organization at
http://www3.who.int/icf/beginners/ba.pdf as: << In ICF (International Classification of Functioning,
Disability and Health), the term functioning refers to all body functions, activities and participation. >>
2. Content of use is defined in 1ISO 9241-11:1998 (Ergonomic requirements for office work with visual
display terminals (VDTs) Part 11: Guidance on usability) as: << Users, tasks, equipment (hardware,
software and materials), and the physical and societal environments in which a product is used.>>

3. Guidance for Standard Developers to address the needs of older persons and persons with
disabilities).

file://C:\Documents and Settings\mpeacock\Local Settings\Temporary Internet Files\OL... 11/30/2011

Form G3 Page 6 of 6

F. Other Justification Any other aspects of background information justifying this NP shall be
indicated here.

file://C:\Documents and Settings\mpeacock\Local Settings\Temporary Internet Files\OL... 11/30/2011

ISO/IEC)JTC1/SC22/WG 23 N 0359

Revised preliminary working draft, “Code Signing for Source Code”

Date 9 September 2011

Contributed Larry Wagoner

by

Original file Prelim_WD_code_signing_090811.doc
name

Notes Replaces N0357

The following is a preliminary working draft related to a New Work Item Proposal which
has not yet been approved. It is offered as an illustration of what the proposed project
might produce.

10

11

12

13

14

Strawman INTERNATIONAL STANDARD
ISO/IEC xxxXX

Information technology—Programming
languages, their environments and system
software interfaces—Code signing for source
code

14
15
16
17
18
19
20

21
22

23
24
25
26
27

28
29

30

31

32

33

34
35

36
37

38

39

40

41

42

1. Scope
This document uses a language and environment neutral description to define the application
program interfaces (APIs) and supporting data structures necessary to support the signing of
code and executables. It is intended to be used by both applications developers and systems
implementers.
The following areas are outside the scope of this specification:

* Graphics interfaces

* Object or binary code portability
* System configuration and resource availability

2. Normative References
The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)

applies.

ISO/IEC 14750:1999, Information technology -- Open Distributed Processing -- Interface
Definition Language

3. Terms and Definitions
For the purposes of this document, the following terms and definitions apply.
[TBD]

4. Conformance

An implementation of code signing conforms to this International Standard if it provides the
interfaces specified in Clause 6.

Clause 5 is informative, providing an overview of the concepts of code signing. Annex A, also
informative, provides a possible scenario of usage for the interfaces specified in Clause 6.

5. Concepts
Code signing is the process of digitally signing scripts and executable objects that verifies the
author or origin and guarantees that the signed code has not been tampered with or corrupted

since it was signed by use of a cryptographic hash.

Code signing provides several valuable functions,

43

44
45

46

47

48

49

50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78

J code signing can provide security when deploying,

. code signing can provide a digital signature mechanism to verify the identity of the
author or build system,

. code signing can provide multi signatures, allowing an audit trail of the signed object,
. code signing will provide a checksum to verify that the object has not been modified,
J code signing can provide versioning information, and

. code signing can store other meta data about an object.

Code Signing identifies to customers the responsible party for the code and confirms that it has
not been modified since the signature was applied. In traditional software sales where a buyer
can physically touch a package containing software, the buyer can confirm the source of the
application and its integrity by examining the packaging. However, most software is now
procured via the Internet. This is not limited to complete applications as code snippets, plug-
ins, add-ins, libraries, methods, drivers, etc. are all downloaded over the Internet. Verification
of the source of the software is extremely important since the security and integrity of the
receiving systems can be compromised by faulty or malicious code. In addition to protecting
the security and integrity of the software, code signing provides authentication of the author,
publisher or distributor of the code, and protects the brand and the intellectual property of the
developer of the software by making applications uniquely identifiable and more difficult to
falsify or alter.

When software (code) is associated with a publisher's unique signature, distributing software
on the Internet is no longer an anonymous activity. Digital signatures ensure accountability, just
as a manufacturer's brand name ensures accountability with packaged software. Distributions
on the Internet lack this accountability and code signing provides a means to offer
accountability. Accountability can be a strong deterrent to the distribution of harmful code.
Even though software may be acquired or distributed from an untrusted site or a site that is
unfamiliar, the fact that it is written and signed by someone known and trusted allows the
software to be used with confidence.

Multiple signatures for one piece of code would be needed in some cases in order to create a
digital trail through the origins of the code. Consider a signed piece of code. Someone should
be able to modify a portion of the code, even if just one line or even one character, without
assuming responsibility for the remainder of the code. A recipient of the code should be able to
identify the responsible party for each portion of the code. For instance, a very trustworthy
company A produces a driver. Company B modifies company A’s driver for a particular use.
Company B is not as trusted or has an unknown reputation. The recipient should be able to
determine exactly what part of the code originated with company A and what was added or
altered by company B so as to be able to concentrate their evaluation on the sections of code

79
80

81
82
83
84

85

86

87
88
89

90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

that company B either added or altered. This necessitates a means to keep track of the
modifications made from one signature to the next.

An alternative scenario is software offered by company B that contains software from company
A. Company B does not alter company A’s software, but incorporates it into a package or suite
of software. It would be useful to a customer to be able to identify the origin of each portion of
the software.

6. Structures and APIs

6.1 General

The structures and APIs described below are intended to be language and platform
independent. A particular language implementation will need to specify, for instance, an
appropriate convention for specifying options and determine how error reporting will be done.

The structures and APIs are described with a syntax independent of any particular programming
language, using the Interface Description Language (IDL) provided by ISO/IEC 14750:1999.

Note: the APIs are expressed using camel case (e.g. isIntTrue instead of underscores
is_int_true). Particular language implementations may prefer to implement the APIs using
underscores. Either is acceptable as long as the implementation is consistent within the
language implementation.

6.2 Structures

Additional descriptions of the fields used in these structures are available at ITU-T
Recommendation X.509.

struct algorithmldentifierStruct {

unsigned short algorithm; // used to identify the cryptographic
// algorithm
string parameters; // optional parameters associated with the
// algorithm
}
struct certStruct { // structure for an X.509 certificate
unsigned short version; // certificate format version
unsigned long serialNumber; // unique identifier generated by the
// certificate issuer
algorithmldentifierStruct algorithmID; // the algorithm used by the issuer to sign
// the certificate
string issuerName; // a representation of its issuer's identity in

// the form of a Distinguished Name

117 string int validNotBeforeDate; // the start of the time period in which a

118 // certificate is intended to be used

119 string int validNotAfterDate; // the end of the time period in which a
120 // certificate is intended to be used

121 string subjectName; // a representation of its subject's identity
122 // in the form of a Distinguished Name
123 unsigned short publicKeyAlgorithm; // the public key algorithm to be used with
124 // the subjectPublicKey

125 string subjectPublicKey; // the public key component of its

126 // associated subject

127 string issuerUniqueldentifier; // optional issuer unique identifier

128 string subjectUniqueldentifier; // optional subject unique identifier

129 string extensions; // optional extensions

130 algorithmldentifierStruct certificateSignatureAlgorithm; // specifies the algorithm
131 // used by the issuer to sign the certificate
132 string certificateSignature; // signature of the certificate

133}

134

135 struct keyStruct { // structure for a X.509 private key

136 string privateKey;

137}

138

139 6.3 certCreate

140 Notional Syntax

141 boolean certCreate (string certificateFile, string certificateDirPath)

142 Description

143 CertCreate creates in the directory certificateDirPath the file certificateFile that contains
144 a certificate that complies with ITU-T X.509.

145 Returns

146 CertCreate returns TRUE if the certificate was successfully created and FALSE otherwise.
147 Errors

148 If the certificateFile cannot be created, CertCreate will report an error.

149 If certificateDirPath is an invalid path, CertCreate will report an error.

150

151

152

153
154
155

156

157
158
159
160
161
162
163
164
165
166

167

168
169

170

171
172

173
174
175

176

177

178

6.4 certSignCode

Notional Syntax

boolean certSignCode (certStruct myCertificate, keyStruct myPrivateKey, string

sourceFilename, string sourceDirPath, boolean overwriteCurrentSignature, enum hashType
signatureAlgorithm, string signFilename, string signDirPath)

Description

CertSignCode generates a digital signature (encrypted hash) of the source code file
sourceFilename in directory sourceDirPath using public certificate myCertificate and
private key myPrivateKey. The default hashing algorithm for signing shall be SHA-1.
Alternative hashing functions that are specified in ISO/IEC 10118:2004 could be used
instead and would be indicated through the enumerated type signatureAlgorithm. The
digital signature and publisher’s certificate are stored in the directory signDirPath in the
file signFilename. By convention, the signature filename signFilename should be of the
form “filename.ds”. If signFilename already exists in the directory signDirPath, then
overwrite must be set to TRUE or certSignCode will return an error that the file could not
be created since it already exists.

Returns

CertSignCode returns TRUE if the digital sighature was successfully created and FALSE
otherwise.

Errors

If signFilename exists and overwrite is FALSE, certSignCode will report that the signature
operation could not be completed since signFilename already exists.

If myCertificate or myPrivateKey are in an unknown format or do not contain proper
keys, certSignCode will report that the signature operation could not be completed since
a key could not be read or used.

6.5 certSignWrap

Notional Syntax

179
180
181
182

183

184
185
186
187
188
189
190
191
192
193

194

195
196

197
198
199
200
201
202
203
204
205
206

207

208

209

boolean certSignWrap (certStruct myCertificate, keyStruct myPrivateKey, string

originalSourceFilename, string originalSourceDirPath, string modifiedSourceFilename, string
modifiedSourceDirPath, enum hashType signatureAlgorithm, string signFilename, string
signDirPath)

Description

Incorporates changes to the previously signed file originalSourceFilename in directory
originalSourceDirPath in such a way that the changes can be unwrapped at a later date
in order to revert to a previously signed version. CertSignWrap generates a digital
signature (encrypted hash) of the source code file modifiedSourceFilename in directory
modifiedSourceDirPath using public certificate myCertificate and private key
myPrivateKey. The default hashing algorithm for signing shall be SHA-1. Alternative
hashing functions that are specified in ISO/IEC 10118:2004 could be used instead and
would be indicated through the enumerated type signatureAlgorithm. The digital
signature, publisher’s certificate and changes between the current version and the
previous version are added to the file signFilename in directory signDirPath.

Returns

CertSignWrap returns TRUE if the signature was successfully created and FALSE
otherwise.

Errors

If a signature for originalSourceFilename does not exist, certSignWrap will report that
the signature wrapping could not be completed because a signature does not exist and
that a signature file would need to be created before the operation could be completed.

If there are no differences between the contents of originalSourceFilename and
modifiedSourceFilename, certWrap will report that the signature operation could not be
completed since there have not been any changes to the source code file.

If the hash of originalSourceFilename does not match the encrypted hash stored within
originalFile.ds, certSignWrap will report that the originalFile differs from the file which
was signed and that the signature operation could not be completed.

6.6 certHash

Notional Syntax

210
211

212

213

214

215

216

217

218

219

220

221

222

223

224

225
226

227

228
229

230

231
232

233

234
235

boolean certHash (string sourceFilename, string sourceDirPath, enum hashType
signatureAlgorithm)

Description

CertHash generates a digital finger print (hash) of the source code contained in file
sourceFilename in directory sourceDirPath. The default hashing algorithm for signing
shall be SHA-1. Alternative hashing functions that are specified in ISO/IEC 10118:2004
could be used instead and would be indicated through the enumerated type
signatureAlgorithm.

Returns

CertHash returns TRUE if the hash was successfully generated and FALSE otherwise.

Errors

TBD

6.7 certDecryptSignature

Notional Syntax

boolean certdecryptsignature (certStruct myCertificate, keyStruct myPrivateKey, string
signFilename, string signDirPath)

Description

CertDecryptSignature decrypts the digital signature of the source code file contained in
signFilename using myCertificate and myPrivateKey.

Returns

CertDecryptSignature returns TRUE if the digital signature was successfully decrypted
and FALSE otherwise.

Errors

If the signature file signFilename does not exist, certDecryptSignature will report that
the signature could not be verified because the signature file is missing.

236
237
238

239

240

241

242
243

244

245

246

247

248

249

250

251

252

253

254
255

256
257

258

259

260

261

262
263

If the signature file exists yet does not contain the properly formatted signature and
public key components, certDecryptSignature will report that the signature file is
corrupt.

6.8 certVerifySignature

Notional Syntax

boolean certVerifySignature (certStruct myCertificate, keyStruct myPrivateKey, string
signFilename, string signDirPath)

Description

CertVerifySlgnature verifies the latest digital signature of the source code file
signFilename in directory signDirPath is valid and returns either an indication that the
“signature is valid” or “signature is not valid”. This accomplishes in one step what
certHash() and certDecryptSignature() do in multiple steps. Note that the hashing
algorithm is inferred by the length of the signed hash and thus need not be specified by
the user.

Returns

CertVerifySignature returns TRUE if the signature is valid and FALSE otherwise.

Errors

If the signature file does not exist, certVerifySignature will report that the signature file
is missing.

If the signature file exists but does not contain the properly formatted signature and
public key components, certVerifySignature will report that the signature file is corrupt.

6.9 certUnwrap

Notional Syntax

boolean certUnwrap (string signatureFile, string signatureFileDirPath, string
sourceFilename, string sourceDirPath, string newSignatureFile, string newSignatureDirPath,
string newSourceFilename, string newSourceDirPath)

264

265
266
267
268
269
270
271
272
273

274
275

276

277

278

279

280

281

282
283

284

285

Description

CertUnwrap reverts a previously signed file to the last previously signed version.
CertUnwrap will remove the most recent signature for sourceFilename in sourceDirPath
from the file signatureFile in directory signatureFileDirPath and the most recent set of
changes in order to revert to the next most recent signature and file. If
newsSignatureFile and newSignatureFileDirPath are non-NULL, certUnwrap places
modified the signature file in newSignatureFile inside directory newSignatureDirPath
instead of modifying the contents of signatureFile. If sourceFilename and
sourceDirPath non-Null, then the unwrapped file contents are placed in sourceFilename
in sourceDirPath.

After the operation is complete, the user should run certverifysignature to ensure the
files they are viewing is the previous version of source code and has a valid signature.

Returns

CertUnwrap returns TRUE if the unwrapping was successful and FALSE otherwise.
Errors

If the signature file does not contain a valid signature or is missing any components such
as certificates or file differences, cerUnwrap will report that the unwrap operation could

not be completed.

If only one of newSignatureFile and newSignatureFileDirPath is NULL, an error is
generated.

If only one of sourceFilename and sourceDirPath is NULL, an error is generated.

285

286

287

288
289

290
2901

292
293

294
295
296
297
298

299
300
301
302
303

304
305
306
307
308

309
310
311

Annex A
(Informative)

A possible method of operation

This annex describes one possible way of using the interfaces specified in Clause 6 of this
International Standard.

1. Publisher obtains a Code Signing Digital ID (Software Publishing Certificate) from a
global certificate authority

(how one obtains a Code Signing Digital ID may be out of scope and might be better left to other
standards bodies such as the World Wide Web Consortium (W3C))

A software publisher's request for certification is sent to the Certification Authority (CA).
It is expected that the CAs will have Web sites that walk the applicant through the
application process. Applicants will be able to look at the entire policy and practices
statements of the CA. The utilities that an applicant needs to generate signatures
should also be available.

Digital IDs can be either issued to a company or an individual. In either case, the global
certificate authority must validate the identification of the company and applicant.
Validation for applicants would be in the form of a federally issued identification for
applicants and a Dun & Bradstreet number. Tables 1 and 2, respectively, contain the
criteria for a commercial and individual code signer.

Proof of identification of an applicant must be made. Simply trusting the applicant’s ID
via a web site is insufficient. Additional verification of the applicant’s ID should be
commensurate with the application process for a federally issued ID, such as a passport.
Sending in a federally issued ID, such as a passport, to the CA would be sufficient for
proof of identification.

The applicant must generate a key pair using either hardware or software encryption
technology. The public key is sent to the CA during the application process. Due to the
identity requirements, the private key must be sent by mail or courier to the applicant.

Identification | Applicants must submit their name, address, and other
material along with a copy of their federally issued id
that proves their identity as corporate representatives.
Proof of identify requires either personal presence or
registered credentials.

Agreement | Applicants must agree to not distribute software that
they know, or should have known, contains viruses or
would otherwise harm a user's computer or code.

Dun & Applicants must achieve a level of financial standing as
Bradstreet indicated by a D-U-N-S number (which indicates a
Rating company's financial stability) and any additional

information provided by this service. This rating
identifies the applicant as a corporation that is still in
business. (Other financial rating services are being
investigated.) Corporations that do not have a D-U-N-S
number at the time of application (usually because of
recent incorporation) can apply for one and expect a
response in less than two weeks.

312 Table 1: Criteria for Commercial Code Publishing Certificate

313

Identification Applicants must submit their name, address, and other
material along with a copy of their federally issued id
that proves their identity as citizens of the country where
they reside. Information provided will be checked
against an independent authority to validate their
credentials.

Agreement | Applicants must agree that they cannot and will not
distribute software that they know, or should have
known contains viruses or would otherwise maliciously
harm the user's computer or code.

314 Table 2: Criteria for Individual Code Publishing Certificate

315

316 2. Publisher develops code or modifies previously signed code

317

318 3. Calculate a hash of the code and create a new file containing the encrypted hash, the

319 publisher's certificate and the code

320
321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337
338

339

340
341

342

A one-way hash of the code is produced using certsigncode, thereby signing the code.
The hash and publisher’s certificate are inserted stored in a separate file.

In order to be able to verify the integrity of previously signed code, it must be possible
to identify the responsible party for each section of code. When new code modifies or
in some way encapsulates previously signed code, the original code must be able to be
identified so that its signature can be checked. Therefore, iterative changes to code
must be able to be reversed to identify previously signed versions.

The digitally signed file is transmitted to the recipient

The recipient produces a one-way hash of the code

Using the publisher's public key contained within the publisher's Digital ID and the
digital signature algorithm, the recipient browser decrypts the signed hash with the
sender’s public key

The recipient compares the two hashes

If the signed hash matches the recipient's hash, the signature is valid and the document
is intact and hasn't been altered since it was signed.

Software that has multiple signhings must be able to be “unwrapped” in order to recreate
previously signed versions. lterative changes to code can be reversed to identify
previously signed versions through the use of certunwrap.

342

343
344

345
346

347
348

349

350
351

352
353

354
355
356

357
358

359
360
361
362
363
364
365

366
367

368

Bibliography

Code-Signing Best Practices, http://msdn.microsoft.com/en-
us/windows/hardware/gg487309.aspxJuly 25, 2007

Code Signing Certificate FAQ, http://www.verisign.com/code-signing/information-
center/certificates-fag/index.html, 2011

Code Signing for Developers - An Authenticode How-To, Tech-Pro.net, http://www.tech-
pro.net/code-signing-for-developers.html, 2011.

Oliver Goldman, Code Signing in Adobe AIR, Dr. Dobb’s, September 1, 2008.

How Code Signing Works, https://www.verisign.com/code-signing/information-center/how-
code-signing-works/index.html, 2011.

Introduction to Code Signing, http://msdn.microsoft.com/en-us/library/ms537361(VS.85).aspx,
June 21, 2011.

ISO/IEC 14750 (1999): Information technology -- Open Distributed Processing -- Interface
Definition Language,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25486.

ITU-T Recommendation X.509 (2008): Information Technology - Open Systems Interconnection
- The Directory: Authentication Framework, http://www.itu.int/rec/T-REC-X.509/en.

Steve Mansfield-Devine, A Matter of Trust, Network Security, Vol 2009, Issue 6, June 2009.

Regina Gehne, Chris Jesshope, Jenny Zhang, Technology Integrated Learning Environment: A
Web-based Distance Learning System, Al-ED'95, 7th World Conference on Artificial Intelligence
in Education, 2001.

Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine, Survivable Key
Compromise in Software Update Systems, The 17th ACM Conference on Computer and
Communications Security, 2010.

Deb Shinder, Code Signing: Is it a Security Feature?, WindowSecurity.com,
http://www.windowsecurity.com/articles/Code-Signing.html?printversion ,June 9, 2005.

