
ISO	
 IEC	
 JTC	
 1	
 SC	
 22	
 WG	
 23	
 N0616	

9	
 January	
 2016	

	

Review	
 of	
 JSF	
 AV	
 Rules.	

	

1. AV Rule 76 A copy constructor and an assignment operator
shall be declared for classes that contain pointers to data items
or nontrivial destructors.

Doesn’t seem to fit
any category
cleanly, so either a
category needs to be
expanded to include
it or a new category
created.
EP: this the deep-
copy issue. Now
[YAN]

2. AV Rule 77 A copy constructor shall copy all data members
and bases that affect the class invariant (a data element
representing a cache, for example, would not need to be copied).

Add to 6.43
Inheritance, or could
add to a new
inconsistency
category.
EP: this the deep-
copy issue. Now
[YAN]

3. AV Rule 78 All base classes with a virtual function shall define
a virtual destructor.

Add to 6.15
Dangling Reference
to Heap, 6.17 Using
Shift Operations for
Multiplication and
Division
EP: why on earth
6.17? Also, I see no
connections to 6.15;
need to read up.
Now in [BKK}

4. AV Rule 79 All resources acquired by a class shall be released
by the class’s destructor.

Add to 6.15
Dangling Reference
to Heap, 6.17 Using
Shift Operations for
Multiplication and
Division
EP: not 6.17;
This is a rather
obvious rule;
belongs to memory
leaks [XYL] 6.40

5. AV Rule 80 The default copy and assignment operators will be
used for classes when those operators offer reasonable

Style issue; maybe a
shallow-copy rule.

semantics. Now in [YAN]
6. AV Rule 81 The assignment operator shall handle self-

assignment correctly

AV Rule 81
Self-assignment must be handled appropriately by the
assignment operator. Example A illustrates a potential
problem, whereas Example B illustrates an acceptable
approach.
Example A: Although it is not necessary to check for
self-assignment in all cases, the following example
illustrates a context where it would be appropriate.

Base &operator= (const Base &rhs)
{
release_handle (my_handle); // Error: the resource
referenced by myHandle is
my_handle = rhs.myHandle; // erroneously released in
the self-assignment case.
return *this;
}

Example B: One means of handling self-assignment is to
check for self-assignment before further processing
continues as illustrated below.

Base &operator= (const Base& rhs)
{
if (this != &rhs) // Check for self assignment before
continuing.
{
release_handle(my_handle); // Release resource.
my_handle = rhs.my_handle; // Assign members (only
one member in class).
}
else
{
}
return *this;

 }

Could be a new
category.

1. 6.12 AV Rule 82 An assignment operator shall return a reference
to *this.

X
EP: rather
C++/Java-specific,
in that assignments
do not have results
in all languages

1. 6.43 AV Rule 89 A base class shall not be both virtual and non-
virtual in the same hierarchy.

X
EP: a multi-
inheritance style rule
maybe covered in
the new [BLP]

2. 6.43 AV Rule 90 Heavily used interfaces should be minimal, X

general and abstract. EP: Style and
maintenance issue

3. 6.43 AV Rule 91 Public inheritance will be used to implement “is-
a” relationships.

X
now covered in
[BLP]

4. 6.43 AV Rule 92 A subtype (publicly derived classes) will
conform to the following guidelines with respect to all classes
involved in the polymorphic assignment of different subclass
instances to the same variable or parameter during the
execution of the system:
• Preconditions of derived methods must be at least as weak
as the preconditions of the methods they override.
• Postconditions of derived methods must be at least as
strong as the postconditions of the methods they override.
In other words, subclass methods must expect less and
deliver more than the base class methods they override. This
rule implies that subtypes will conform to the Liskov
Substitution Principle.

X
now covered in
[BLP]

5. 6.43 AV Rule 93 “has-a” or “is-implemented-in-terms-of”
relationships will be modeled through membership or non-
public inheritance.

X
now covered in
[BLP]

6. 6.43 AV Rule 94 An inherited nonvirtual function shall not be
redefined in a derived class.

X
EP:same issues as
view conversion. By
appling a different
base-class op to a
reference,
consistency of the
objects can be
killed.
Roughly covered in
[BKK]

7. 6.43 AV Rule 95 An inherited default parameter shall never be
redefined.

X
EP:as 94 for picking
the default value of
a parameter (from
the base, rather than
the object type
method); language
bug? Ada has it, too.

8. 6.43 AV Rule 96 Arrays shall not be treated polymorphically. X
EP: very C++-
specific; bug in
language to allow
polymorphic
component types

9. 6.43,
6.53

AV Rule 97 Arrays shall not be used in interfaces. Instead,
the Array class should be used.

X
EP: very C++
specific; this is the
index-check issue

	

