ISO/IEC JTC 1/SC 22/WG23 N0685

Date: 21 January 2017

6.37 Fault Tolerance and Failure Strategies [REU]

6.37.1 Description of application vulnerability

Check that the current writeup works \nowl.

Al - to Erhard to rework this vulnerability to focus not on fault tolerance itself, but on vulnerabilities

caused by it,,

Jn spite of the best intentions, system components may fail, either from internally poorly written

software or external forces such as power outages/variations, radiation or inadmissible user input.

Reasons for failures are plentiful and varied, stemming from both hard- and software. Hence the

mechanisms of primary failure can be described only in very general terms:

* omission failures: a service is asked for but never rendered. The client might wait forever or
be notified about the failure (termination) of the service.

e commission failures: a service initiates unexpected actions, e. g., communication that is

unexpected by the receiver. The service might wait forever, causing omission failures for

subsequent calls by clients. The receiver might be hindered to do its legitimate actions in

time. At a minimum, resources are consumed that are possibly needed by others.

* timing failures: a service is not rendered before an imposed deadline. System responses will
be (too) late, causing corresponding damages to the real world affected by the system.

* Value failures: a service delivers incorrect or tainted results. The client continues

computations with these corrupted values, causing a spread of consequential application

errors.

Faults are the points in execution where a failure manifests by processing going wrong. If unnoticed

or unhandled, they turn into failures at the boundaries of enclosing control units or components.

Failures of services are faults to their clients and, if not handled, lead to a failure of the client and

consequently to faults and failures in its clients, possibly until the entire system fails.

Detection and handling of faults constitutes the fault tolerance code of the system. The mechanisms

of fault tolerance are manifold, corresponding to the nature of the failure and the needs of the

application, and range from recovery with subsequent normal continuation of the system (“full fault

tolerance”) or restricted continuation (“graceful degradation”, “fail soft”) to termination of the

system (“fail stop”, “fail safe”, “fail-secure”), possibly combined with a subsequent restart.

As such, fault tolerance is itself a potential source of vulnerabilities, particularly when inappropriate

or incomplete strategies are implemented. Fault-handling code is difficult to design and program,

since it needs to execute in an already damaged environment. Handler code is also difficult to test,

since it is executed only when primary failures have occurred. These failures, e.g. radiation damage,

may be impossible to recreate with sufficient coverage in a testing environment. Moreover, it is not

Stephen Michell 2017-1-21 10:12 PM
Formatted: Right

Stephen Michell 2017-1-21 8:49 PM

Comment [1]: Failure strategy is both an
application vulnerability and a programming
language vulnerability. The programming language

pieces, exception handling, concurrency issues, etc.
are fairly well covered. The design of fault tolerance
strategies is probably for section 7.

Microsoft 2017-1-21 7:51 PM

Formatted: Font color: Red

Microsoft 2017-1-21 7:51 PM
Stephen Michell 2017-1-21 8:49 PM
Deleted: .

Microsoft 2017-1-21 7:51 PM
Formatted: Font color: Red
Microsoft 2017-1-21 7:51 PM
Deleted: .

Microsoft 2017-1-21 6:11 PM
Moved (insertion) [1]
Microsoft 2017-1-21 6:11 PM
Deleted: .

Microsoft 2017-1-21 6:11 PM
Deleted: s

Microsoft 2017-1-21 6:11 PM
Deleted: encounter a
Microsoft 2017-1-21 6:11 PM
Deleted: ure

Microsoft 2017-1-21 7:03 PM

Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:
1.27cm

easy to determine the right kind of fault tolerance for a given fault. For security, termination of the

malfunctioning system may be the best action; for safety, termination may be more catastrophic
than any other fault tolerance mechanism.

Arising vulnerabilities are, for example:

* The faultis not recognized and the system malfunctions or terminates as a consequence «

* The faultis recognized but the damage already done is incompletely repaired, with the same
consequences as in the first bullet

* Avalue fault is recognized too late, allowing the incorrect value to be used in the

computations of other, thus corrupted, values (which, if not repaired, can cause
vulnerabilities such as buffer overflows)
* The fault tolerance processing takes too long to meet timing demands

* Recovery is prevented by the cause of a permanent fault, e.g., a programming error, leading

to an infinite series of recovery attempts

* The fault tolerance mechanism causes itself new faults

For vulnerabilities caused by termination issues associated with multiple threads, multiple processors |

or interrupts also see Error! Reference source not found. Error! Reference source not found. and

Error! Reference source not found.Error! Reference source not found., Situations that cause an

application to terminate unexpectedly or that cause an application to not terminate because of other

vulnerabilities are covered in those vulnerabilities. The vulnerability at hand discusses the overall

fault treatment strategy applicable to single-threaded or multi-threaded programs.

Triggering known fault detection mechanisms can be used to initiate or aggravate Denial-of-Service

attacks. Knowledge of a lack of fault detection, particularly of value faults, can be used to initiate

system intrusions through mechanisms explained elsewhere in this Tr.

————— drop from here ...

Microsoft 2017-1-21 6:35 PM

Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:

Microsoft 2017-1-21 6:12 PM

Deleted: floods, or other natural disasters. The
reaction to a fault can affect the performance of a
system and in particular, the safety and security of
the system and its users. . [@NiD)
Microsoft 201 6:11 PM

Moved up [1]: . In spite of the best intentions,
systems may encounter a failure, either from
internally poorly written software or external forces
such as power outages/variations, floods, or other
natural disasters. The reaction to a fault can affect
the performance of a system and in particular, the

safety and security of the system and its users. .

Stephen Michell 2017-1-21 10:14 PM

Deleted: Error! Reference source not found.

Stephen Michell 2017-1-21 10:14 PM

Deleted: 6.61 Concurrency — Directed termination
[CGT]

Stephen Michell 2017-1-21 10:14 PM

Deleted: 6.63 Concurrency — Premature
Termination [CGS]

§ Stephen Michell 2017-1-21 10:14 PM

Deleted: Error! Reference source not found.

Microsoft 2017-1-21 8:02 PM

Formatted: Font color: Red

Microsoft 2017-1-21 6:55 PM

Deleted: When the software unexpectedly fails to
render a requested service or terminates in an
unspecified way, safety or security may be
compromised. In safety-related systems the results
can be catastrophic: for other systems the result
can mean failure of the complete system. Failures
need not necessarily cause the termination of the
failing service; delivering an incorrectly computed
result is a failure that, when not discovered, can
have even more catastrophic consequences than a

termination of the failing service. . ([@nrB)
>/

Microsoft 2017-1-21 6:50 PM
Moved (insertion) [3]
N Microsoft 2017-1-21 6:50 PM

Moved up [3]: termination issues associated
with multiple threads, multiple processors or
interrupts also see Error! Reference source not
found. 6.61 Concurrency — Directed termination
[CGT] and 6.63 Concurrency — Premature
Termination [CGS]Error! Reference source not
found.. Situations that cause an application to
terminate unexpectedly or that cause an application
to not terminate because of other vulnerabilities
are covered in those vulnerabilities. The
vulnerability at hand discusses the overall fault
treatment strategy applicable to single-threaded or
multi-threaded programs.

Microsoft 2017-1-21 6:59 PM

Delete: B

Microsoft 2017-1-21 7:00 PM

Moved down [4]: Numerous checks on values
can and should be made (value range, plausibility
within history, reversal checks, checksums,
structural checks, etc.) to establish the validity of
computed results or input received. Similarly,

crucial timing failures should be detected by 4]

Whatever the failure or termination process, the termination of an application should not result in
damage to system elements that rely upon it. Thus, it should perform “last wishes” to minimize the
effects of the failure on enclosing components (e .g., release software locks) and the real world (e. g.

close valves).

The reaction to a detected fault in a system can depend on the criticality of the portion in which the

fault originates. When a program consists of several tasks, each task may be critical, or not. |f a task
ploedere 2016-8-15 7:01 PM

is critical, it may or may not be restartable by the rest of the program as a fault handling measure, A F tted: Font:Not Itali
ormatted: Font:Not Italic

task that detects a fault within itself but must leave the fault handling to a higher authority, should

ploedere 2016-8-15 7:01 PM

be able to halt leaving its resources available for use by the rest of the program, halt clearing away its Formatted: Font:Not Italic
resources, or halt the entire program. The latency of task termination and whether tasks can ignore ploedere 2016-8-15 7:01 PM
termination signals should be clearly specified. Formatted: Font:Not Italic
ploedere 2016-8-15 7:01 PM
--—- ... to here -=----mmeo Formatted: Font:Not Italic)

(CEEETm—
6.37.2 Cross reference Deleted: .

JSF AV Rule: 24

MISRA C 2012:4.1

MISRA C++ 2008: 0-3-2, 15-5-2, 15-5-3, and 18-0-3
CERT C guidelines: ERR04-C, ERRO6-C and ENV32-C
Ada Quality and Style Guide: 5.8 and 7.5

6.37.3 Mechanism of failure

Reasons for failures are plentiful and varied, stemming from both hard- and software. Hence the
mechanisms of failure from fault tolerance or the lack thereof can be described only in very general

terms:

° Fault tolerance code, in particular fault checking code, may interfere with the timeliness of <«

ploedere 2016-8-15 6:11 PM

Formatted: List Paragraph, Bulleted +

° Aninappropriate fault tolerance mechanism or strategy may lead to failures in fault Level: 1 + Aligned at: 0.63 cm + Indent at: |
1.27 cm

the components to meet their deadlines

detection and other secondary failures

* Considerable latency and processor use can arise from finalization and garbage collection i
caused by the termination of a task. Thus, termination must be designed carefully to avoid Mlcrosof 20171'21 VI
-=— Moved (insertion) [5]
causing timing failures of other tasks. The termination of tasks can be maliciously used to
prevent on-time performance of other active tasks.

* Having inconsistent approaches to detecting and handling a fault or a lack of overall design <+

for the fault tolerance code can potentially be a vulnerability, as faults might escape the pililicic:olt 201'1'21 il
-_— Formatted: List Paragraph, Bulleted +

necessary attention. Level: 1 + Aligned at: 0.63 cm + Indent at:

Microsoft 2017-1-21 7:36 PM
Deleted: .

° |If faults are not detected in time and repaired completely, the following failures arise: «

- omission failures: a service is asked for but never rendered. The client might wait

forever or be notified too late about the failure (termination) of the service.

ploedere 2016-8-15 6:11 PM

. . o) o ~ Formatted: List Paragraph, Bulleted +
- commission failures: a service initiates unexpected actions, e. g., communication | Level: 1 + Aligned at: 0.63 cm + Indent at: |

that is unexpected by the receiver. The service might wait forever, causing omission N Microsoft 2017-1-21 7:33 PM
Formatted: List Paragraph, Bulleted +
Level: 2 + Aligned at: 1.9 cm + Indent at:
2.54 cm

failures for subsequent calls by clients, or the actions might interfere with the regular

processing going on in the meantime

to meet deadlines

- If not t,

and implementation vulnerabilities caused by
corrupted values as discussed elsewhere in this TR.,

6.37.4 Applicable language characteristics

This vulnerability description is intended to be applicable to all languages.

6.37.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

* Decide on a strategy for fault handling. Consistency in fault handling should be the same
with respect to critically similar parts.

* Use a multi-tiered approach of fault prevention, fault detection and fault reaction.

* Unambiguously describe the failure modes of each possibly failing task as fail-stop, fail-safe,
fail-secure, or fail-soft as explained in 6.37.1.

® Check early for any faults, particularly value faults

* Numerous checks on values can and should be made (value range, plausibility within history,

reversal checks, checksums, structural checks, etc.) to establish the validity of computed

results or input received.

* Timing failures should be detected by “Watch-dog timers” and similar mechanisms that can

be used to stop rogue tasks,

* System-defined components that assist in uniformity of fault handling should be used when

available For one example, designing a "runtime constraint handler" (as described in Annex

K of 9899:2012 [4]) permits the application to intercept various erroneous situations and

Microsoft 2017-1-21 7:18 PM
Microsoft 2017-1-21 7:18 PM

Microsoft 2017-1-21 6:28 PM

Deleted: <#>Faults are the points in execution,
where a failure manifests by processing going
wrong. If unnoticed or unhandled, they turn into
failures at the boundaries of enclosing control
units or components. Failures of services are
faults to their clients and, if not handled, lead to
a failure of the client and consequently to faults
and failures in its clients, possibly until the entire
system fails. Detection and handling of faults
constitutes the fault tolerance code of the
system. As such, it is itself a potential source of
failures. Fault-handling code is particularly
difficult to design and program, since it ne@[5])

Microsoft 2017-1-21 6:28 PM

Moved up [2]: Faults are the points in exe T [6])

Microsoft 2017-1-21 6:28 PM

Moved (insertion) [2]

Microsoft 2017-1-21 7:36 PM
Moved up [5]: Considerable latency an@ 7]

Formatted: Font:Not Italic

Microsoft 2017-1-21 7:35 PM
Formatted 8

Formatted: Font:Not Italic

Microsoft 2017-1-21 7:35 PM

Formatted: Font:Not Italic

Microsoft 2017-1-21 7:35 PM

Formatted: Font:Not Italic

Microsoft 2017-1-21 7:35 PM

Formatted: Font:Not Italic
Microsoft 2017-1-21 7:35 PM
Formatted: Font:Not Italic

Deleted: The reaction to a fault in a systent ... [9]

Deleted: .

Deleted: 3
Microsoft 2017-1-21 7:38 PM
Formatted: Normal
Microsoft 2017-1-21 7:00 PM
Moved (insertion) [4]
Microsoft 2017-1-21 7:39 PM

Deleted: Similarly, crucial t
Microsoft 2017-1-21 7:38 PM

Deleted: . (@i D)
Microsoft 2017-1-21 7:38 PM
Formatted

P Microsoft 2017-1-21 7:40 PM

Deleted:
Microsoft 2017-1-21 7:41 PM
Deleted:

perform one consistent response, such as flushing a previous transaction and re-starting at
the next one. << is this example appropriate ?>>

Microsoft 2017-1-21 8:03 PM

° . B B «“ B ” P <
Prior to any abnormal termination of a component, perform “last wishes” to minimize the " [Formatted: Font color: Red

effects of the failure on enclosing components (e .g., release software locks held locally) and B \iicrosoft 2017-1-21 8:03 PM

the real world (e. g. close valves opened by the component). . | Formatted: Font color: Red
| Microsoft 2017-1-21 7:43 PM
Formatted: Font:
may Microsoft 2017-1-21 7:43 PM
o Halt, and keep its resources available for other tasks (perhaps permitting restarting . Formatted: List Paragraph
of the faulting task). AR Microsoft 2017-1-21 7:47 PM
. Deleted: When there are multiple tasks,
o Halt, and release its resources (perhaps to allow other tasks to use the resources so

I Microsoft 2017-1-21 7:48 PM
Deleted: should be specified

¢ Specify a fault-handling policy whereby a task

freed, or to allow a recreation of the task).

Halt, and signal the rest of the program to likewise halt.

Microsoft 2017-1-21 8:04 PM

Formatted: Font color: Red

i.e. incorporate in

“last wishes” above?; | Formatted: Indent: Left: 1.9 cm, No
| bullets or numbering
6.37.6 Implications for standardization B Microsoft 2017-1-21 8:04 PM

Formatted: Font color: Red

In future standardization activities, the following items should be considered:

* Languages should consider providing a means to perform fault handling. Terminology and
the means should be coordinated with other languages.

