
Technical	Report	 ISO/IEC	TR	24772-2:201X(E)	

	

©	ISO/IEC	2016	–	All	rights	reserved	 	 	 1	
	

ISO/IEC	JTC	1/SC	22/WG	23	N0725	
Date:	2017-06-16	

ISO/IEC	TR	24772-2	

Edition	1	

ISO/IEC	JTC	1/SC	22/WG	23	

Secretariat:	ANSI	

Information	Technology	—	Programming	languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	–	Vulnerability	descriptions	for	the	
programming	language	Ada		

	

Élément	introductif	—	Élément	principal	—	Partie	n:	Titre	de	la	partie	

	

Warning	

This	document	is	not	an	ISO	International	Standard.	It	is	distributed	for	review	and	comment.	It	is	subject	to	change	without	
notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	which	they	
are	aware	and	to	provide	supporting	documentation.	

	 	

Document	type:	International	standard	
Document	subtype:	if	applicable	
Document	stage:	(10)	development	stage	
Document	language:	E	

	

Stephen Michell� 2017-6-19 3:10 PM
Deleted: 	N	0000

Joyce L Tokar� 2017-6-14 6:30 AM
Deleted: 2016

Joyce L Tokar� 2017-6-14 6:30 AM
Deleted: 07

Joyce L Tokar� 2017-6-16 2:30 AM
Deleted: 01

2	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

	

Copyright	notice	

This	ISO	document	is	a	working	draft	or	committee	draft	and	is	copyright-protected	by	ISO.	While	the	
reproduction	of	working	drafts	or	committee	drafts	in	any	form	for	use	by	participants	in	the	ISO	standards	
development	process	is	permitted	without	prior	permission	from	ISO,	neither	this	document	nor	any	
extract	from	it	may	be	reproduced,	stored	or	transmitted	in	any	form	for	any	other	purpose	without	prior	
written	permission	from	ISO.	

Requests	for	permission	to	reproduce	this	document	for	the	purpose	of	selling	it	should	be	addressed	as	
shown	below	or	to	ISO’s	member	body	in	the	country	of	the	requester:	

ISO	copyright	office	
Case	postale	56,	CH-1211	Geneva	20	
Tel.	+	41	22	749	01	11	
Fax	+	41	22	749	09	47	
E-mail	copyright@iso.org	
Web	www.iso.org	

Reproduction	for	sales	purposes	may	be	subject	to	royalty	payments	or	a	licensing	agreement.	

Violators	may	be	prosecuted.	

©	ISO/IEC	2016	–	All	rights	reserved	 3	
	

Contents	

Foreword	..	8	

Introduction	..	9	

1.	Scope	..	10	

2.	Normative	references	..	10	

3.	Terms	and	definitions,	symbols	and	conventions	..	10	
3.1	Terms	and	definitions	..	10	

4	Language	concepts	...	13	

5	General	guidance	for	Ada	...	16	
5.1	Ada	Language	Design	...	16	

6	Specific	Guidance	for	Ada	...	17	
6.1	General	...	17	
6.2	Type	System	[IHN]	...	17	
6.2.1	Applicability	to	language	..	17	
6.2.2	Guidance	to	language	users	..	17	
6.3	Bit	Representation	[STR]	...	17	
6.3.1	Applicability	to	language	..	17	
6.3.2	Guidance	to	language	users	..	18	
6.4	Floating-point	Arithmetic	[PLF]	..	18	
6.4.1	Applicability	to	language	..	18	
6.4.2	Guidance	to	language	users	..	18	
6.5	Enumerator	Issues	[CCB]	...	19	
6.5.1	Applicability	to	language	..	19	
6.5.2	Guidance	to	language	users	..	19	
6.6	Conversion	Errors	[FLC]	...	19	
6.6.1	Applicability	to	language	..	19	
6.6.2	Guidance	to	language	users	..	20	
6.7	String	Termination	[CJM]	...	20	
6.8	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	...	20	
6.9	Unchecked	Array	Indexing	[XYZ]	..	20	
6.9.1	Applicability	to	language	..	20	
6.9.2	Guidance	to	language	users	..	20	
6.10	Unchecked	Array	Copying	[XYW]	...	20	
6.11	Pointer	Type	Conversions	[HFC]	...	21	
6.11.1	Applicability	to	language	..	21	
6.11.2	Guidance	to	language	users	..	21	
6.12	Pointer	Arithmetic	[RVG]	...	21	
6.13	Null	Pointer	Dereference	[XYH]	...	21	
6.13.1	Applicability	to	the	language	..	21	
6.13.2	Guidance	to	language	users	..	21	

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 19

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 20

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 20

4	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.14	Dangling	Reference	to	Heap	[XYK]	...	22	
6.14.1	Applicability	to	language	..	22	
6.14.2	Guidance	to	language	users	..	22	
6.15	Arithmetic	Wrap-around	Error	[FIF]	...	22	
6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	..	22	
6.17	Choice	of	Clear	Names	[NAI]	..	22	
6.17.1	Applicability	to	language	..	22	
6.17.2	Guidance	to	language	users	..	23	
6.18	Dead	store	[WXQ]	...	23	
6.18.1	Applicability	to	language	..	23	
6.18.2	Guidance	to	Language	Users	...	23	
6.19	Unused	Variable	[YZS]	...	24	
6.19.1	Applicability	to	language	..	24	
6.19.2	Guidance	to	language	users	..	24	
6.20	Identifier	Name	Reuse	[YOW]	..	24	
6.20.1	Applicability	to	language	..	24	
6.20.2	Guidance	to	language	users	..	24	
6.21	Namespace	Issues	[BJL]	...	24	
6.22	Initialization	of	Variables	[LAV]	...	24	
6.22.1	Applicability	to	language	..	24	
6.22.2	Guidance	to	language	users	..	25	
6.23	Operator	Precedence/Order	of	Evaluation	[JCW]	..	25	
6.23.1	Applicability	to	language	..	25	
6.23.2	Guidance	to	language	users	..	26	
6.24	Side-effects	and	Order	of	Evaluation	[SAM]	...	26	
6.24.1	Applicability	to	language	..	26	
6.24.2	Guidance	to	language	users	..	26	
6.25	Likely	Incorrect	Expression	[KOA]	..	26	
6.25.1	Applicability	to	language	..	26	
6.25.2	Guidance	to	language	users	..	27	
6.26	Dead	and	Deactivated	Code	[XYQ]	...	27	
6.26.1	Applicability	to	language	..	27	
6.26.2	Guidance	to	language	users	..	27	
6.27	Switch	Statements	and	Static	Analysis	[CLL]	..	28	
6.27.1	Applicability	to	language	..	28	
6.27.2	Guidance	to	language	users	..	28	
6.28	Demarcation	of	Control	Flow	[EOJ]	..	28	
6.29	Loop	Control	Variables	[TEX]	...	28	
6.30	Off-by-one	Error	[XZH]	..	29	
6.30.1	Applicability	to	language	..	29	
6.30.2	Guidance	to	language	users	..	29	
6.31	Structured	Programming	[EWD]	..	29	
6.31.1	Applicability	to	language	..	29	
6.31.2	Guidance	to	language	users	..	29	
6.32	Passing	Parameters	and	Return	Values	[CSJ]	..	30	
6.32.1	Applicability	to	language	..	30	
6.32.2	Guidance	to	language	users	..	30	

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 21

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 21

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 21

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 23

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 23

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 23

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 25

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 25

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 25

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 27

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 27

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 28

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 28

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 29

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 29

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 29

©	ISO/IEC	2016	–	All	rights	reserved	 5	
	

6.33	Dangling	References	to	Stack	Frames	[DCM]	..	30	
6.33.1	Applicability	to	language	..	30	
6.33.2	Guidance	to	language	users	..	30	
6.34	Subprogram	Signature	Mismatch	[OTR]	...	31	
6.34.1	Applicability	to	language	..	31	
6.34.2	Guidance	to	language	users	..	31	
6.35	Recursion	[GDL]	...	31	
6.35.1	Applicability	to	language	..	31	
6.35.2	Guidance	to	language	users	..	31	
6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	..	32	
6.36.1	Applicability	to	language	..	32	
6.36.2	Guidance	to	language	users	..	32	
6.37	Fault	Tolerance	and	Failure	Strategies	[REU]	...	32	
6.37.1	Applicability	to	language	..	32	
6.37.2	Guidance	to	language	users	..	32	
6.38	Type-breaking	Reinterpretation	of	Data	[AMV]	...	33	
6.38.1	Applicability	to	language	..	33	
6.38.2	Guidance	to	language	users	..	33	
6.39	Deep	vs.	Shallow	Copying	[YAN]	..	33	
6.39.1	Applicability	to	language	..	33	
6.39.2	Guidance	to	language	users	..	33	
6.40	Memory	Leak	and	Heap	Fragmentation		[XYL]	...	33	
6.40.1	Applicability	to	language	..	33	
6.40.2	Guidance	to	language	users	..	34	
6.41	Templates	and	Generics	[SYM]	..	34	
6.42	Inheritance	[RIP]	...	34	
6.42.1	Applicability	to	language	..	34	
6.42.2	Guidance	to	language	users	..	34	
6.43	Violations	of	the	Liskov	Substitution		Principle	or	the	Contract	Model		[BLP]	35	
6.43.1	Applicability	to	language	..	35	
6.43.2	Guidance	to	Language	Users	...	35	
6.44	Redispatching	[PPH]	..	35	
6.44.1	Applicability	to	language	..	35	
6.44.2	Guidance	to	Language	Users	...	35	
6.45	Polymorphic	variables	[BKK]	..	35	
6.45.1	Applicability	to	language	..	35	
6.45.2	Guidance	to	Language	Users	...	35	
6.46	Extra	Intrinsics	[LRM]	..	35	
6.47	Argument	Passing	to	Library	Functions	[TRJ]	...	35	
6.47.1	Applicability	to	language	..	35	
6.47.2	Guidance	to	language	users	..	35	
6.48	Inter-language	Calling	[DJS]	...	36	
6.48.1	Applicability	to	Language	..	36	
6.48.2	Guidance	to	Language	Users	...	36	
6.49	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	36	
6.50	Library	Signature	[NSQ]	...	36	
6.50.1	Applicability	to	language	..	36	

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 30

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 30

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 31

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 31

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 32

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 32

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 33

6	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.50.2	Guidance	to	language	users	..	36	
6.51	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	37	
6.51.1	Applicability	to	language	..	37	
6.51.2	Guidance	to	language	users	..	37	
6.52	Pre-Processor	Directives	[NMP]	...	37	
6.53	Suppression	of	Language-defined	Run-time	Checking	[MXB]	...	37	
6.53.1	Applicability	to	Language	..	37	
6.53.2	Guidance	to	Language	Users	...	37	
6.54	Provision	of	Inherently	Unsafe	Operations	[SKL]	..	38	
6.54.1	Applicability	to	Language	..	38	
6.54.2	Guidance	to	language	users	..	38	
6.55	Obscure	Language	Features	[BRS]	..	38	
6.55.1	Applicability	to	language	..	38	
6.55.2	Guidance	to	language	users	..	38	
6.56	Unspecified	Behaviour	[BQF]	...	38	
6.56.1	Applicability	to	language	..	38	
6.56.2	Guidance	to	language	users	..	39	
6.57	Undefined	Behaviour	[EWF]	..	39	
6.57.1	Applicability	to	language	..	39	
6.57.2	Guidance	to	language	users	..	40	
6.58	Implementation-Defined	Behaviour	[FAB]	...	40	
6.58.1	Applicability	to	language	..	40	
6.58.2	Guidance	to	language	users	..	41	
6.59	Deprecated	Language	Features	[MEM]	..	41	
6.59.1	Applicability	to	language	..	41	
6.59.2	Guidance	to	language	users	..	41	
6.60	Concurrency	–	Activation	[CGA]	...	41	
6.60.1	Applicability	to	language	..	41	
6.60.2	Guidance	to	language	users	..	41	
6.61	Concurrency	–	Directed	termination	[CGT]	..	42	
6.61.1	Applicability	to	language	..	42	
6.61.2	Guidance	to	language	users	..	42	
6.62	Concurrent	Data	Access	[CGX]	...	42	
6.62.1	Applicability	to	language	..	42	
6.62.2	Guidance	to	language	users	..	42	
6.63	Concurrency	–	Premature	Termination	[CGS]	..	42	
6.63.1	Applicability	to	language	..	42	
6.63.2	Guidance	to	language	users	..	42	
6.64	Protocol	Lock	Errors	[CGM]	..	43	
6.64.1	Applicability	to	language	..	43	
6.64.2	Guidance	to	language	users	..	43	
6.65	Reliance	on	External	Format	String		[SHL]	..	43	
7	Language	specific	vulnerabilities	for	Ada	..	43	
8	Implications	for	standardization	...	43	

Bibliography	...	45	

Index	 47	

©	ISO/IEC	2016	–	All	rights	reserved	 7	
	

	

	

	 	

Joyce L Tokar� 2017-6-7 1:25 PM
Deleted: Foreword 7 ... [1]

Joyce L Tokar� 2017-6-7 1:25 PM
Formatted: Default Paragraph Font,
Font:Not Bold, Check spelling and
grammarJoyce L Tokar� 2017-6-7 1:25 PM
Formatted ... [2]

8	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

Foreword	

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	Commission)	
form	the	specialized	system	for	worldwide	standardization.	National	bodies	that	are	members	of	ISO	or	IEC	
participate	in	the	development	of	International	Standards	through	technical	committees	established	by	the	
respective	organization	to	deal	with	particular	fields	of	technical	activity.	ISO	and	IEC	technical	committees	
collaborate	in	fields	of	mutual	interest.	Other	international	organizations,	governmental	and	non-governmental,	
in	liaison	with	ISO	and	IEC,	also	take	part	in	the	work.	In	the	field	of	information	technology,	ISO	and	IEC	have	
established	a	joint	technical	committee,	ISO/IEC	JTC	1.	

International	Standards	are	drafted	in	accordance	with	the	rules	given	in	the	ISO/IEC	Directives,	Part	2.	

The	main	task	of	the	joint	technical	committee	is	to	prepare	International	Standards.	Draft	International	
Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	for	voting.	Publication	as	an	
International	Standard	requires	approval	by	at	least	75	%	of	the	national	bodies	casting	a	vote.	

In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	a	different	kind	from	that	
which	is	normally	published	as	an	International	Standard	(“state	of	the	art”,	for	example),	it	may	decide	to	publish	
a	Technical	Report.			A	Technical	Report	is	entirely	informative	in	nature	and	shall	be	subject	to	review	every	five	
years	in	the	same	manner	as	an	International	Standard.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	patent	
rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	

ISO/IEC	TR	24772,	was	prepared	by	Joint	Technical	Committee	ISO/IEC	JTC	1,	Information	technology,	
Subcommittee	SC	22,	Programming	languages,	their	environments	and	system	software	interfaces.	

	 	

©	ISO/IEC	2016	–	All	rights	reserved	 9	
	

Introduction	

This	Technical	Report	provides	guidance	for	the	programming	language	Ada	so	that	application	developers	
considering	Ada	or	using	Ada	will	be	better	able	to	avoid	the	programming	constructs	that	lead	to	
vulnerabilities	in	software	written	in	the	Ada	language	and	their	attendant	consequences.		This	guidance	can	
also	be	used	by	developers	to	select	source	code	evaluation	tools	that	can	discover	and	eliminate	some	
constructs	that	could	lead	to	vulnerabilities	in	their	software.	This	Technical	Report	can	also	be	used	in	
comparison	with	companion	technical	reports	and	with	the	language-independent	report,	ISO/IEC	TR	24772-1,	
Information	Technology	–	Programming	Languages—	Guidance	to	avoiding	vulnerabilities	in	programming	
languages,	to	select	a	programming	language	that	provides	the	appropriate	level	of	confidence	that	
anticipated	problems	can	be	avoided.		

This	Technical	Report	is	intended	to	be	used	with	TR	24772-1,	which	discusses	programming	language	
vulnerabilities	in	a	language	independent	fashion.	

It	should	be	noted	that	this	Technical	Report	is	inherently	incomplete.		It	is	not	possible	to	provide	a	complete	
list	of	programming	language	vulnerabilities	because	new	weaknesses	are	discovered	continually.		Any	such	
report	can	only	describe	those	that	have	been	found,	characterized,	and	determined	to	have	sufficient	
probability	and	consequence.	

	 	

10	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

Information	Technology	—	Programming	Languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	through	language	selection	and	
use	–	Vulnerability	descriptions	for	the	programming	language	Ada		

1.	Scope	

This	Technical	Report	specifies	software	programming	language	vulnerabilities	to	be	avoided	in	the	development	
of	systems	where	assured	behaviour	is	required	for	security,	safety,	mission-critical	and	business-critical	software.		
In	general,	this	guidance	is	applicable	to	the	software	developed,	reviewed,	or	maintained	for	any	application.	

Vulnerabilities	described	in	this	technical	report	document	the	way	that	the	vulnerability	described	in	the	
language-independent	document	TR	24772-1	are	manifested	in	Ada.		

2.	Normative	references	

The	following	referenced	documents	are	indispensable	for	the	application	of	this	document.		For	dated	
references,	only	the	edition	cited	applies.		For	undated	references,	the	latest	edition	of	the	referenced	document	
(including	any	amendments)	applies.	

ISO	80000–2:2009,	Quantities	and	units	—	Part	2:	Mathematical	signs	and	symbols	to	be	use	in	the	natural	
sciences	and	technology	
ISO/IEC	2382–1:1993,	Information	technology	—	Vocabulary	—	Part	1:	Fundamental	terms	
ISO/IEC	TR	24772-1,	Information	Technology	–	Programming	Languages—	Guidance	to	avoiding	vulnerabilities	in	
programming	languages	
ISO/IEC	8652:2012,	Information	Technology	–	Programming	Languages—Ada	
ISO/IEC	TR	15942:2000,	Guidance	for	the	Use	of	the	Ada	programming	language	in	high	integrity	systems	
ISO/IEC	TR	24718:2005,	Guide	for	the	use	of	the	Ada	Ravenscar	Profile	in	high	integrity	systems	
IEEE	754-2008,	Binary	Floating	Point	Arithmetic,	IEEE,	2008	
ANSI/IEEE	854-1987,	Radix-Independent	Floating-Point	Arithmetic,	IEEE,	1987	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For	the	purposes	of	this	document,	the	terms	and	definitions	given	in	ISO/IEC	2382–1,	in	TR	24772-1,	and	the	
following	apply.		Other	terms	are	defined	where	they	appear	in	italic	type.	

Abnormal	representation:	A	representation	of	an	object	that	is	incomplete	or	that	does	not	represent	any	valid	
value	of	the	object’s	subtype.	

Access-to-object:		A	pointer	to	an	object.	

Access-to-subprogram:		A	pointer	to	a	subprogram	(function	or	procedure).		

Access	type:		The	type	for	objects	that	designate	(point	to)	objects	or	subprograms;	often	called	a	pointer	type	in	
other	languages.		

©	ISO/IEC	2016	–	All	rights	reserved	 11	
	

Access	value:		A	value	of	an	access	type	that	is	either	null	or	designates	another	object	or	subprogram.	

Allocator:	A	construct	that	allocates	storage	from	the	heap	or	from	a	storage	pool.	

Aspect	specification:	The	mechanism	used	to	specify	assertions	about	the	behaviour	of	subprograms,	types	and	
objects	as	well	as	operational	and	representational	attributes	of	various	kinds	of	entities.	

Atomic:	A	characteristic	of	an	object	that	guarantees	that	every	access	to	an	object	is	an	indivisible	access	to	the	
entity	in	memory	instead	of	possibly	partial,	repeated	manipulation	of	a	local	or	register	copy.	

Attribute:	A	characteristic	of	a	declaration	that	can	be	queried	by	special	syntax	to	return	a	value	corresponding	
to	the	requested	attribute.	

Bit	ordering:	An	implementation	defined	value	that	is	either	High_Order_First	or	Low_Order_First that permits
the specification or query of the way that bits are represented in memory within a single memory unit.	

Bounded	Error:		An	error	that	need	not	be	detected	either	prior	to	or	during	run	time,	but	if	not	detected	falls	
within	a	bounded	range	of	possible	effects.	

Case	statement:		A	statement	that	provides	multiple	paths	of	execution	dependent	upon	the	value	of	the	
selecting	expression,	but	which	will	have	only	one	of	the	alternative	sequences	selected.		

Case	expression:		The	expression	that	provides	multiple	paths	of	execution	dependent	upon	the	value	of	the	
selecting	expression,	but	which	will	have	only	one	of	the	alternative	dependent	expressions	evaluated.		

Case	choices:		The	alternatives	defined	in	the	case	statement	or	case	expression	which	must	be	of	the	same	type	
as	the	type	of	the	selecting	expression	in	the	case	statement	or	case	expression,	and	all	possible	values	of	the	
selecting	expression	must	be	covered	by	the	case	choices.	

Compilation	unit:		The	smallest	Ada	syntactic	construct	that	may	be	submitted	to	the	compiler,	usually	held	in	a	
single	compilation	file.	

Configuration	pragma:		A	directive	to	the	compiler	that	is	used	to	select	partition-wide	or	system-wide	options	
and	that	applies	to	all	compilation	units	appearing	in	the	compilation	or	all	future	compilation	units	compiled	into	
the	same	environment.	

Controlled	type:		A	type	descended	from	the	language-defined	type	Controlled	or	Limited_Controlled	which	is	a	
specialized	type	in	Ada	where	an	implementer	can	tightly	control	the	initialization,	assignment,	and	finalization	of	
objects	of	the	type.		

Dead	store:	An	assignment	to	a	variable	that	is	not	used	in	subsequent	instructions.		

Default	expression:	An	expression	of	the	formal	object	type	that	is	used	to	initialize	the	formal	object	if	an	actual	
object	is	not	provided.	

Discrete	type:		An	integer	type	or	an	enumeration	type.	

Discriminant:		A	parameter	for	a	composite	type	that	is	used	at	elaboration	of	each	object	of	the	type	to	configure	
the	object.	

Endianness:	Byte	ordering.	

Enumeration	Representation	Clause:	A	clause	used	to	specify	the	internal	codes	for	enumeration	literals.	

12	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

Enumeration	type:	A	discrete	type	defined	by	an	enumeration	of	its	values,	which	may	be	named	by	identifiers	or	
character	literals,	including	the	types	Character	and	Boolean.	

Erroneous	execution:		The	unpredictable	result	arising	from	an	error	that	is	not	bounded	by	the	language,	but	
that,	like	a	bounded	error,	need	not	be	detected	by	the	implementation	either	prior	to	or	during	run	time.	

Exception:		A	mechanism	to	detect	an	exceptional	situation	and	to	initiate	processing	dedicated	to	recover	from	
the	exceptional	situation;	exceptions	are	raised	explicitly	by	user	code	or	implicitly	by	language-defined	checks.	

Expanded	name:		A	mechanism	to	disambiguate	the	name	of	an	entity	E	within	a	package (or any other named
enclosing entity) P	by	permitting	the	alternate	name	P.E	instead	of	the	simple	name	E.		

Fixed-point	types:	Real-valued	types	with	a	specified	error	bound	(called	the	'delta'	of	the	type)	that	provide	
arithmetic	operations	carried	out	with	fixed	precision	(rather	than	the	relative	precision	of	floating-point	types).	

Generic	formal	subprogram:	A	parameter	to	a	generic	package	used	to	specify	a	subprogram	or	operator.	

Hiding:	The	process	where	a	declaration	can	be	hidden,	either	from	direct	visibility,	or	from	all	visibility,	within	
certain	parts	of	its	scope.	

Homograph:	A	property	of	two	declarations	such	that	they	have	the	same	name,	and	do	not	overload	each	other	
according	to	the	rules	of	the	language.	

Identifier:	The	simplest	form	of	a	name.	

Idempotent	 behaviour:	 	 The	 property	 of	 an	 operation	 that	 has	 the	 same	 effect	 whether	 applied	 just	 once	 or	
multiple	times.		

Implementation	defined:	A	set	of	possible	effects	of	a	construct	where	the	implementation	may	choose	to	
implement	any	effect	in	the	set	of	effects.	

Modular	type:		An	integer	type	with	values	in	the	range 0.. modulus – 1 with wrap-around	semantics	for	
arithmetic	operations,	bit-wise	"and"	and	"or"	operations,	and,	for	modular	types	defined	in	package	Interfaces,	
arithmetic	and	logical	shift	operations.	

Obsolescent	features:	Language	features	that	have	been	declared	to	be	obsolescent	or	deprecated	and	
documented	in	Annex	J	of	the	Ada	Reference	Manual.	

Operational	and	Representation	Attributes:	The	values	of	certain	implementation-dependent	characteristics	
obtained	by	querying	the	applicable	attributes	and	possibly	specified	by	the	user.		

Overriding	indicators:	An	indicator	that	specifies	the	intent	that	an	operation	does	or	does	not	override	ancestor	
operations	by	the	same	name,	and	used	by	the	compiler	to	verify	that	the	operation	does	(or	does	not)	override	
an	ancestor	operation.	

Partition:		A	part	of	a	program	that	consists	of	a	set	of	library	units	such	that	each	partition	may	execute	in	a	
separate	address	space,	possibly	on	a	separate	computer,	and	can	execute	concurrently	with	and	communicate	
with	other	partitions.	

Pointer:		An	access	object	or	access	value.	

Pragma:		A	directive	to	the	compiler.	

©	ISO/IEC	2016	–	All	rights	reserved	 13	
	

Range	check:	A	run-time	check	that	ensures	the	result	of	an	operation	is	contained	within	the	range	of	allowable	
values	for	a	given	type	or	subtype,	such	as	the	check	done	on	the	operand	of	a	type	conversion.	

Record	Representation	Clauses:	a	mechanism	to	specify	the	layout	of	components	within	records,	that	is,	their	
order,	position,	and	size.	

Scalar	type:	A	set	of	types	that	includes	enumeration	types,	integer	types,	and	real	types.	

Selecting	expression:	The	expression	that	determines	which	choice	is	taken	in	executing	the	case	statement	or	
evaluating	the	case	expression;	it	is	of	discrete	type.	

Static	expressions:	Expressions	with	statically	known	operands	that	are	computed	with	exact	precision	by	the	
compiler.	

Storage	Place	Attributes:	for	a	component	of	a	record,	the	attributes	(integer)	Position,	First_Bit	and	Last_Bit		
used	to	specify	the	component	position	and	size	within	the	record.	

Storage	pool:	A	named	location	in	an	Ada	program	where	all	of	the	objects	of	a	single	access	type	will	be	
allocated.		

Storage	subpool:	A	separately	reclaimable	subdivision	of	a	storage	pool	that	is	identified	by	a	subpool		handle.	

Subtype	declaration:		A	construct	that	allows	programmers	to	declare	a	named	entity	that	defines	a	possibly	
restricted	subset	of	values	of	an	existing	type	or	subtype,	typically	by	imposing	a	constraint,	such	as	specifying	a	
smaller	range	of	values.	

Task:		A	separate	thread	of	control	that	proceeds	independently	and	concurrently	between	the	points	where	it	
interacts	with	other	tasks	from	the	same	program.	

Unused	variable:		A	variable	that	is	declared	but	neither	read	nor	written	to	in	the	program.	

Volatile:	A	characteristic	of	an	object	that	guarantees	that	updates	to	the	object	are	always	seen	in	the	same	
order	by	all	tasks;	all	atomic	objects	are	volatile.	

4	Language	concepts				

Enumeration	type:	The	defining	identifiers	and	defining	character	literals	of	an	enumeration	type	must	be	distinct.	
The	predefined	order	relations	between	values	of	the	enumeration	type	follow	the	order	of	corresponding	
position	numbers.	

Exception:	There	is	a	set	of	predefined	exceptions	in	Ada	in	package Standard: Constraint_Error, Program_Error,
Storage_Error, and Tasking_Error;	one	of	them	is	raised	when	certain	language-defined	checks	fail.	User	code	can	
define	and	raise	exceptions	explicitly.		

Hiding:	Where	hidden	from	all	visibility,	a	declaration	is	not	visible	at	all	(neither	using	a	direct_name	nor	a	
selector_name).	Where	hidden	from	direct	visibility,	only	direct	visibility	is	lost;	visibility	using	an	expanded	name	
is	still	possible.	

Implementation	defined:	Implementations	are	required	to	document	their	behaviour	in	implementation-defined	
situations.		

14	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

Type	conversions:		

Ada	uses	a	strong	type	system	based	on	name	equivalence	rules.	It	distinguishes	types,	which	embody	
statically	checkable	equivalence	rules,	and	subtypes,	which	associate	dynamic	properties	with	types,	for	
example,	index	ranges	for	array	subtypes	or	value	ranges	for	numeric	subtypes.	Subtypes	are	not	types	
and	their	values	are	implicitly	convertible	to	all	other	subtypes	of	the	same	type.	All	subtype	and	type-
conversions	ensure	by	static	or	dynamic	checks	that	the	converted	value	is	within	the	value	range	of	the	
target	type	or	subtype.	If	a	static	check	fails,	then	the	program	is	rejected	by	the	compiler.	If	a	dynamic	
check	fails,	then	an	exception	Constraint_Error	is	raised.		

To	effect	a	transition	of	a	value	from	one	type	to	another,	three	kinds	of	conversions	can	be	applied	in	
Ada:	

a)	Implicit	conversions:	there	are	few	situations	in	Ada	that	allow	for	implicit	conversions.	An	
example	is	the	assignment	of	a	value	of	a	type	to	a	polymorphic	variable	of	an	encompassing	
class.	In	all	cases	where	implicit	conversions	are	permitted,	neither	static	nor	dynamic	type	safety	
or	application	type	semantics	(see	below)	are	endangered	by	the	conversion.	

b)	Explicit	conversions:	various	explicit	conversions	between	related	types	are	allowed	in	Ada.	All	
such	conversions	ensure	by	static	or	dynamic	rules	that	the	converted	value	is	a	valid	value	of	the	
target	type.	Violations	of	subtype	properties	cause	an	exception	to	be	raised	by	the	conversion.	

c)	Unchecked	conversions:	Conversions	that	are	obtained	by	instantiating	the	generic	subprogram	
Unchecked_Conversion	are	unsafe	and	enable	all	vulnerabilities	mentioned	in	Section	6.3	as	the	
result	of	a	breach	in	a	strong	type	system.	Unchecked_Conversion	is	occasionally	needed	to	
interface	with	type-less	data	structures,	for	example,	hardware	registers.	

A	guiding	principle	in	Ada	is	that,	with	the	exception	of	using	instances	of	Unchecked_Conversion,	no	
undefined	semantics	can	arise	from	conversions	and	the	converted	value	is	a	valid	value	of	the	target	
type.		

Operational	and	Representation	Attributes:		Some	attributes	can	be	specified	by	the	user;	for	example:	

• X'Alignment:	allows	the	alignment	of	objects	on	a	storage	unit	boundary	at	an	integral	multiple	of	a	
specified	value.	

• X'Size:	denotes	the	size	in	bits	of	the	representation	of	the	object.		
• X'Component_Size:	denotes	the	size	in	bits	of	components	of	the	array	type	X.		

Pragmatic	compiler	directives	

Pragma Atomic:		Specifies	that	all	reads	and	updates	of	an	object	are	indivisible.		

Pragma Atomic Components:		Specifies	that	all	reads	and	updates	of	an	element	of	an	array	are	indivisible.	

Pragma Convention:		Specifies	that	an	Ada	entity	should	use	the	conventions	of	another	language.		

Pragma Detect_Blocking:		A	configuration	pragma	that	specifies	that	all	potentially	blocking	operations	
within	a	protected	operation	shall	be	detected,	resulting	in	the	Program_Error	exception	being	raised.	

Pragma Discard_Names:		Specifies	that	storage	used	at	run-time	for	the	names	of	certain	entities,	
particularly	exceptions	and	enumeration	literals,	may	be	reduced.	

©	ISO/IEC	2016	–	All	rights	reserved	 15	
	

Pragma Export:		Specifies	an	Ada	entity	to	be	accessed	by	a	foreign	language,	thus	allowing	an	Ada	
subprogram	to	be	called	from	a	foreign	language,	or	an	Ada	object	to	be	accessed	from	a	foreign	language.	

Pragma Import:		Specifies	an	entity	defined	in	a	foreign	language	that	may	be	accessed	from	an	Ada	
program,	thus	allowing	a	foreign-language	subprogram	to	be	called	from	Ada,	or	a	foreign-language	variable	
to	be	accessed	from	Ada.	

Pragma Normalize_Scalars:		A	configuration	pragma	that	specifies	that	an	otherwise	uninitialized	scalar	
object	is	set	to	a	predictable	value,	but	out	of	range	if	possible.	

Pragma Pack:		Specifies	that	storage	minimization	should	be	the	main	criterion	when	selecting	the	
representation	of	a	composite	type.	

Pragma Restrictions:		Specifies	that	certain	language	features	are	not	to	be	used	in	a	given	application.	For	
example,	the	pragma Restrictions (No_Obsolescent_Features)	prohibits	the	use	of	any	deprecated	features.	
This	pragma	is	a	configuration pragma	which	means	that	all	program	units	compiled	into	the	library	must	
obey	the	restriction.	

Pragma Suppress:		Specifies	that	a	run-time	check	need	not	be	performed	because	the	programmer	asserts	
it	will	always	succeed.		

Pragma Unchecked Union:		Specifies	an	interface	correspondence	between	a	given	discriminated	type	and	
some	C	union.	The	pragma	specifies	that	the	associated	type	shall	be	given	a	representation	that	leaves	no	
space	for	its	discriminant(s).

Pragma Volatile:		Applicable	to	a	type,	an	object,	or	a	component,	and	specifies	that	the	associated	objects	
are	volatile,	meaning	that	all	updates	to	the	objects	are	seen	in	the	same	order	by	all	tasks.	

Pragma Volatile_Components:		Applicable	to	an	array	type	or	an	array	object,	and	specifies	that	the	
associated	components	are	volatile,	meaning	that	all	updates	to	the	components	are	seen	in	the	same	order	
by	all	tasks.		

Note:		Each	of	these	pragmas	specifies	that	the	similarly	named	aspect	of	the	type,	object,	or	component	
denoted	by	its	argument	is	True.	

Separate	Compilation:	Ada	requires	that	calls	on	libraries	are	checked	for	invalid	situations	as	if	the	called	routine	
were	part	of	the	current	compilation.	

Storage	Pool:	A	storage	pool	can	be	sized	exactly	to	the	requirements	of	the	application	by	allocating	only	what	is	
needed	for	all	objects	of	a	single	type	without	using	the	centrally	managed	heap.	Exceptions	raised	due	to	
memory	failures	in	a	storage	pool	will	not	adversely	affect	storage	allocation	from	other	storage	pools	or	from	the	
heap.			Storage	pools	for	types	whose	values	are	of	equal	length	do	not	suffer	from	fragmentation.		Storage	pools	
may	be	divided	into	subpools,	to	allow	efficient	reclamation	of	a	portion	of	a	storage	pool.	

The	following	Ada	restrictions	prevent	the	application	from	using	allocators	in	various	contexts:	

pragma Restrictions(No_Allocators):	prevents	the	use	of	all	allocators.	

pragma Restrictions(No_Standard_Allocators_After_Elaboration):	prevents	the	use	of	allocators	after	the	
main	program	has	commenced.	

16	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

pragma Restrictions(No_Local_Allocators):	prevents	the	use	of	allocators	except	within	expressions	that	
are	evaluated	as	part	of	library-unit	elaboration.	

pragma Restrictions(No_Implicit_Heap_Allocations):	prevents	the	implicit	use	of	heap	allocation	by	the	
Ada	implementation,	but	allows	explicit	allocators.

pragma Restrictions(No_Anonymous_Allocators):	prevents	the	use	of	allocators	having	an	anonymous	
type.	

pragma Restrictions(No_Access_Parameter_Allocators):	prevents	the	use	of	allocators	as	the	actual	
parameter	for	an	access	parameter.	

pragma Restrictions(No_Coextensions):	prevents	the	use	of	allocators	as	the	initial	value	for	an	access	
discriminant.	

pragma Default_Storage_Pool(null):	specifies	that	no	allocators	are	permitted	for	access	types	that	do	
not	specify	their	own	Storage_Pool	or	Storage_Size.

pragma Restrictions(No_Unchecked_Deallocations):	prevents	allocated	storage	from	being	deallocated	
and	hence	effectively	enforces	storage	pool	memory	approaches	or	a	completely	static	approach	to	
access	types.	Storage	pools	are	not	affected	by	this	restriction	as	explicit	routines	to	free	memory	for	a	
storage	pool	can	be	created.	

Unsafe	Programming:		In	recognition	of	the	occasional	need	to	step	outside	the	type	system	or	to	perform	“risky”	
operations,	Ada	provides	clearly	identified	language	features	to	do	so.	Examples	include	the	generic	
Unchecked_Conversion	for	unsafe	type-conversions	or	Unchecked_Deallocation	for	the	deallocation	of	heap	
objects	regardless	of	the	existence	of	surviving	references	to	the	object.	If	unsafe	programming	is	employed	in	a	
unit,	then	the	unit	needs	to	specify	the	respective	generic	unit	in	its	context	clause,	thus	identifying	potentially	
unsafe	units.	Similarly,	there	are	ways	to	create	a	potentially	unsafe	global	pointer	to	a	local	object,	using	the	
Unchecked_Access	attribute.		A	restriction	pragma	can	be	used	to	disallow	uses	of	Unchecked_Access.		The	
pragma Suppress allows	an	implementation	to	omit	certain	run-time	checks.	

User-defined	floating-point	types:	Types	declared	by	the	programmer	that	allow	specification	of	digits	of	precision	
and	optionally	a	range	of	values.		

User-defined	scalar	types:	Types	declared	by	the	programmer	for	defining	ordered	sets	of	values	of	various	kinds,	
namely	integer,	enumeration,	floating-point,	and	fixed-point	types.	The	typing	rules	of	the	language	prevent	
intermixing	of	objects	and	values	of	distinct	types.	

5	General	guidance	for	Ada	

5.1	Ada	Language	Design	

Ada	has	been	designed	with	emphasis	on	software	engineering	principles	that	support	the	development	of	high-
integrity	applications.		For	example,	Ada	is	strongly	typed	thereby	preventing	vulnerabilities	associated	with	type	
mismatch.		Similarly,	Ada	includes	boundary	checking	on	arrays	as	part	of	the	standard	language	which	prevents	
buffer	overflow	vulnerabilities.		Most	of	the	language	may	be	used	to	develop	applications	without	known	
vulnerabilities.		Clause		6	provides	guidance	to	mitigate	against	known	vulnerabilities	in	Ada.	

Joyce L Tokar� 2017-6-16 1:14 AM
Deleted: 	

Joyce L Tokar� 2017-1-23 1:46 PM
Formatted: Heading 2

Joyce L Tokar� 2017-1-23 1:47 PM
Deleted: The	following

Joyce L Tokar� 2017-1-23 1:48 PM
Deleted: 	sections

©	ISO/IEC	2016	–	All	rights	reserved	 17	
	

5.2	Top	Avoidance	Mechanisms	

Table		<5.1>	identifies	the	most	relevant	avoidance	mechanisms	to	be	used	to	prevent	vulnerabilities		

6	Specific	Guidance	for	Ada	

6.1	General		

This	clause	contains	specific	advice	for	Ada	about	the	possible	presence	of	vulnerabilities	as	described	in	TR	
24772-1,	and	provides	specific	guidance	on	how	to	avoid	them	in	Ada	code.	This	section	mirrors	TR	24772-1	
clause	6	in	that	the	vulnerability	“Type	System	[IHN]”	is	found	in	clause	6.2	of	TR	24772-1,	and	Ada	specific	
guidance	is	found	in	clause	6.2	in	this	TR.		

6.2	Type	System	[IHN]	

6.2.1	Applicability	to	language	

Implicit	conversions	cause	no	application	vulnerability,	as	long	as	the	resulting	exceptions	are	properly	handled.	

Assignment	between	types	cannot	be	performed	except	by	using	an	explicit	conversion.	

Failure	to	apply	correct	unit	conversion	factors	when	explicitly	converting	among	types	for	different	units	will	
result	in	application	failures	due	to	incorrect	values.	

Failure	to	handle	the	exceptions	raised	by	failed	checks	of	dynamic	subtype	properties	causes	the	execution	of	
the	whole	system,	a	thread,	or	an	inner	nested	scope	to	halt	abruptly.	

Unchecked	conversions	circumvent	the	type	system	and	therefore	can	cause	unspecified	behaviour	(see	6.38	
Type-breaking	Reinterpretation	of	Data	[AMV]).	

6.2.2	Guidance	to	language	users	

• Apply	the	predefined	‘Valid	attribute	for	a	given	subtype	to	any	value	as	needed	to	ascertain	if	the	value	
is	a	valid	value	of	the	subtype.	This	is	especially	useful	when	interfacing	with	type-less	systems	or	after	
Unchecked_Conversion.	

• Consider	restricting	explicit	conversions	to	the	bodies	of	user-provided	conversion	functions	that	are	then	
used	as	the	only	means	to	effect	the	transition	between	unit	systems.	Review	these	bodies	critically	for	
proper	conversion	factors.	

• Handle	exceptions	raised	by	type	and	subtype-conversions.		

• Consider	using	the	restriction	No_Unchecked_Conversion	to	prevent	circumventing	the	type	system.	

6.3	Bit	Representation	[STR]	

6.3.1	Applicability	to	language	
In	general,	the	type	system	of	Ada	protects	against	the	vulnerabilities	outlined	in	Section	6.3	of	TR	24772-1.	The	
vulnerabilities	caused	by	the	inherent	conceptual	complexity	of	bit	level	programming	are	as	described	in	Section	
6.3	of	TR	24772-1.		

Joyce L Tokar� 2017-6-7 1:29 PM
Formatted: Font:+Theme Headings, 13
pt, Bold, No underline, Font color: Auto
Joyce L Tokar� 2017-6-7 1:29 PM
Formatted: Font:+Theme Headings, 13
pt, Bold
Joyce L Tokar� 2017-6-7 1:26 PM
Comment [1]: Add	the	top	ten	here	

Stephen Michell� 2017-6-19 4:33 PM
Formatted: hyper Char, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM
Deleted: 6.38	Type-breaking	Reinterpretation	of	
Data	[AMV]

18	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.3.2	Guidance	to	language	users		

In	order	to	mitigate	the	vulnerabilities	associated	with	the	complexity	of	bit-level	programming	

• Use	record	and	array	types	with	the	appropriate	representation	specifications	added	so	that	the	objects	
are	accessed	by	their	logical	structure	rather	than	their	physical	representation.	These	representation	
specifications	may	address:	order,	position,	and	size	of	data	components	and	fields.		

• Use	pragma Atomic	and	pragma Atomic_Components	to	ensure	that	all	updates	to	objects	and	
components	happen	atomically.	

• Use	pragma Volatile	and	pragma Volatile_Components	to	ensure	that	all	tasks	see	updates	to	the	
associated	objects	or	array	components	in	the	same	order.		

• Query	the	default	object	layout	chosen	by	the	compiler	to	determine	the	expected	behaviour	of	the	final	
representation.	

• Use	the	restriction	No_Unchecked_Conversion	to	prevent	circumventing	the	type	system.	

For	the	traditional	approach	to	bit-level	programming,	Ada	provides	modular	types	and	literal	representations	in	
arbitrary	base	from	2	to	16	to	deal	with	numeric	entities	and	correct	handling	of	the	sign	bit.	The	use	of	pragma
Pack	on	arrays	of	Booleans	provides	a	type-safe	way	of	manipulating	bit	strings	and	eliminates	the	use	of	error-
prone	arithmetic	operations.	

6.4	Floating-point	Arithmetic	[PLF]	

6.4.1	Applicability	to	language	

Ada	specifies	adherence	to	the	IEEE	Floating	Point	Standards	(IEEE-754-2008,	IEEE-854-1987).	

The	vulnerability	in	Ada	is	as	described	in	Section	6.4.2	of	TR	24772-1.	

6.4.2	Guidance	to	language	users	

• Rather	than	using	predefined	types,	such	as	Float	and	Long_Float,	whose	precision	may	vary	according	to	
the	target	system,	declare	floating-point	types	that	specify	the	required	precision	(for	example,	digits 10).	
Additionally,	specifying	ranges	of	a	floating	point	type	enables	constraint	checks	which	prevents	the	
propagation	of	infinities	and	NaNs.	

• Avoid	comparing	floating-point	values	for	equality.	Instead,	use	comparisons	that	account	for	the	
approximate	results	of	computations.	Consult	a	numeric	analyst	when	appropriate.	

• Make	use	of	static	arithmetic	expressions	and	static	constant	declarations	when	possible,	since	static	
expressions	in	Ada	are	computed	at	compile	time	with	exact	precision.	

• Use	Ada's	standardized	numeric	libraries	(for	example,	Generic_Elementary_Functions)	for	common	
mathematical	operations	(trigonometric	operations,	logarithms,	and	others).	

• Use	an	Ada	implementation	that	supports	the	Numerics	Annex	of	the	Ada	language	reference	manual,	
and	employ	the	"strict	mode"	of	that	Annex	in	cases	where	additional	accuracy	requirements	must	be	
met	by	floating-point	arithmetic	and	the	operations	of	predefined	numerics	packages,	as	defined	and	
guaranteed	by	the	Annex.	

• Avoid	direct	manipulation	of	bit	fields	of	floating-point	values,	since	such	operations	are	generally	target-
specific	and	error-prone.	Instead,	make	use	of	Ada's	predefined	floating-point	attributes	(such	as	
'Exponent).		

• In	cases	where	absolute	precision	is	needed,	consider	replacement	of	floating-point	types	and	operations	
with	fixed-point	types	and	operations.	

©	ISO/IEC	2016	–	All	rights	reserved	 19	
	

6.5	Enumerator	Issues	[CCB]	

6.5.1	Applicability	to	language	

Enumeration	representation	specification	may	be	used	to	specify	non-default	representations	of	an	enumeration	
type,	for	example	when	interfacing	with	external	systems.	All	of	the	values	in	the	enumeration	type	must	be	
defined	in	the	enumeration	representation	specification.	The	numeric	values	of	the	representation	must	preserve	
the	original	order.	For	example:	

type IO_Types is (Null_Op, Open, Close, Read, Write, Sync);
for IO_Types use (Null_Op => 0, Open => 1, Close => 2,
 Read => 4, Write => 8, Sync => 16);

An	array	may	be	indexed	by	such	a	type.	Ada	does	not	prescribe	the	implementation	model	for	arrays	indexed	by	
an	enumeration	type	with	non-contiguous	values.	Two	options	exist:	Either	the	array	is	represented	“with	holes”	
and	indexed	by	the	values	of	the	enumeration	type,	or	the	array	is	represented	contiguously	and	indexed	by	the	
position	of	the	enumeration	value	rather	than	the	value	itself.	In	the	former	case,	the	vulnerability	described	in	
6.6	exists	only	if	unsafe	programming	is	applied	to	access	the	array	or	its	components	outside	the	protection	of	
the	type	system.	Within	the	type	system,	the	semantics	are	well	defined	and	safe.	The	vulnerability	of	unexpected	
but	well-defined	program	behaviour	upon	extending	an	enumeration	type	exists	in	Ada.	In	particular,	subranges	
or	others	choices	in	aggregates	and	case	statements	are	susceptible	to	unintentionally	capturing	newly	added	
enumeration	values.		

6.5.2	Guidance	to	language	users		

• For	case	statements	and	aggregates,	do	not	use	the	others	choice.	
• For	case	statements	and	aggregates,	mistrust	subranges	as	choices	after	enumeration	literals	have	been	

added	anywhere	but	the	beginning	or	the	end	of	the	enumeration	type	definition.	

6.6	Conversion	Errors	[FLC]		

6.6.1	Applicability	to	language	

Ada	does	not	permit	implicit	conversions	between	different	numeric	types,	hence	cases	of	implicit	loss	of	data	
due	to	truncation	cannot	occur	as	they	can	in	languages	that	allow	type	coercion	between	types	of	different	sizes.	

Ada	permits	the	definition	of	subtypes	of	existing	types	that	can	impose	a	restricted	range	of	values,	and	implicit	
conversions	can	occur	for	values	of	different	subtypes	belonging	to	the	same	type,	but	such	conversions	still	
involve	range	checks	that	prevent	any	loss	of	data	or	violation	of	the	bounds	of	the	target	subtype.	

In	the	case	of	explicit	conversions,	Ada	language	rules	prevent	numeric	conversion	errors	by	applying	range	
bound	checks,	which	raise	an	exception	if	the	operand	of	the	conversion	exceeds	the	bounds	of	the	target	type	or	
subtype.	

Precision	is	lost	only	on	explicit	conversion	from	a	real	type	to	an	integer	type	or	a	real	type	of	less	precision.		

As	Ada	permits	a	type	distinction	to	be	made	among	numeric	or	composite	values	in	different	unit	systems,	e.g.,	
meters	and	feet,	complex	numbers	or	intervals	of	real	numbers,	explicit	conversions	between	such	types	may	not	
be	consistent	with	application	semantics	for	the	types,	unless	accompanied	with	conversion	factors.		

Joyce L Tokar� 2017-1-23 11:16 AM
Deleted: Numeric	

20	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

On	structured	data,	implicit	conversions	preserve	all	values.	Explicit	value	conversions	omit	components	not	
present	in	the	target	type	where	such	differences	are	allowed	in	conversions.	See	in	particular	(implicit)	upcasts	
and	(explicit)	downcasts	for	OOP	in	subclause	[BKK].	

6.6.2	Guidance	to	language	users	

• Use	Ada's	capabilities	for	user-defined	scalar	types	and	subtypes	to	avoid	accidental	mixing	of	
logically	incompatible	value	sets.	

• Always	respect	the	implied	unit	systems,	when	converting	explicitly	from	one	numeric	type	to	
another.	

• Do	not	suppress	range	checks	on	conversions	involving	scalar	types	and	subtypes	to	prevent	
generation	of	invalid	data.	

• Use	static	analysis	tools	during	program	development	to	verify	that	conversions	cannot	violate	the	
range	of	their	target.	

	

6.7	String	Termination	[CJM]		

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	strings	in	Ada	are	not	delimited	by	a	termination	character.	Ada	programs	that	interface	to	languages	that	use	
null-terminated	strings	and	manipulate	such	strings	directly	should	apply	the	vulnerability	mitigations	
recommended	for	that	language.	

6.8	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
(see	6.9	Unchecked	Array	Indexing	[XYZ]	and	6.10	Unchecked	Array	Copying	[XYW]).		

6.9	Unchecked	Array	Indexing	[XYZ]	

6.9.1	Applicability	to	language	

All	array	indexing	is	checked	automatically	in	Ada,	and	raises	an	exception	when	indexes	are	out	of	bounds.	This	is	
checked	in	all	cases	of	indexing,	including	when	arrays	are	passed	to	subprograms.	

An	explicit	suppression	of	the	checks	can	be	requested	by	use	of	pragma Suppress,	in	which	case	the	vulnerability	
would	apply;	however,	such	suppression	is	easily	detected,	and	generally	reserved	for	tight	time-critical	loops,	
even	in	production	code.	

6.9.2	Guidance	to	language	users	

• Do	not	suppress	the	checks	provided	by	the	language.	
• Use	Ada's	support	for	whole-array	operations,	such	as	for	assignment	and	comparison,	plus	aggregates	

for	whole-array	initialization,	to	reduce	the	use	of	indexing.	
• Write	explicit	bounds	tests	to	prevent	exceptions	for	indexing	out	of	bounds.	

6.10	Unchecked	Array	Copying	[XYW]		

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	Ada	allows	arrays	to	be	copied	by	simple	assignment	(":=").	The	rules	of	the	language	ensure	that	no	overflow	
can	happen;	instead,	the	exception	Constraint_Error	is	raised	if	the	target	of	the	assignment	is	not	able	to	contain	

ploedere� 2017-6-16 2:29 AM
Comment [2]: 	

ploedere� 2017-6-16 2:29 AM
Comment [3]:]	

Joyce L Tokar� 2017-6-16 2:29 AM
Deleted: 6.6.1	Applicability	to	language ... [3]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM
Deleted: 6.9	Unchecked	Array	Indexing	[XYZ]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM
Deleted: 6.10	Unchecked	Array	Copying	[XYW]

©	ISO/IEC	2016	–	All	rights	reserved	 21	
	

the	value	assigned	to	it.	Since	array	copy	is	provided	by	the	language,	Ada	does	not	provide	unsafe	functions	to	
copy	structures	by	address	and	length.	

6.11	Pointer	Type	Conversions	[HFC]		

6.11.1	Applicability	to	language		

The	mechanisms	available	in	Ada	to	alter	the	type	of	a	pointer	value	are	unchecked	type-conversions	and	type-
conversions	involving	pointer	types	derived	from	a	common	root	type.	In	addition,	uses	of	the	unchecked	address	
taking	capabilities	can	create	pointer	types	that	misrepresent	the	true	type	of	the	designated	entity	(see	Section	
13.10	of	the	Ada	language	reference	manual).	

The	vulnerabilities	described	in	TR	24772-1	Section	6.11	exist	in	Ada	only	if	unchecked	type-conversions	or	unsafe	
taking	of	addresses	are	applied	(see	4	Language	concepts)	.	Other	permitted	type-conversions	can	never	
misrepresent	the	type	of	the	designated	entity.	

Checked	type-conversions	that	affect	the	application	semantics	adversely	are	possible.		For	example,	when	a	
pointer	to	a	class-wide	type	is	changed	to	a	leaf	type	a	run-time	check	is	required.	

6.11.2	Guidance	to	language	users	

• Do	not	use	the	features	explicitly	identified	as	unsafe.		
• Use	‘Access	which	is	always	type	safe.	

• 	Consider	using	the	restriction	No_Unchecked_Conversion, No_Unchecked_Access,	and	
No_Use_Of_Attribute(Address)	to	prevent	circumventing	the	type	system.	

6.12	Pointer	Arithmetic	[RVG]		

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	Ada	does	not	allow	pointer	arithmetic.		

6.13	Null	Pointer	Dereference	[XYH]	

6.13.1	Applicability	to	the	language	

In	Ada,	this	vulnerability	is	mitigated	by	compile-time	or	run-time	checks	that	ensure	that	no	null-value	can	be	
dereferenced.	Of	course,	the	Constraint_Error	exception	implicitly	raised	upon	such	dereferencing	needs	to	be	
handled	or	else	the	vulnerability	of	a	failing	system	or	components	prevails.	

6.13.2	Guidance	to	language	users	

• Use	non-null	access	types	where	possible.	
• Write	explicit	checks	for	null	values	to	avoid	exceptions	being	raised.	
• Handle	exceptions	raised	by	attempts	to	dereference	null	values.		

22	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.14	Dangling	Reference	to	Heap	[XYK]	

6.14.1	Applicability	to	language	

Use	of	Unchecked_Deallocation	can	cause	dangling	references	to	the	heap.	The	vulnerabilities	described	in	TR	
24772-1	Section	6.14	exist	in	Ada,	when	this	feature	is	used,	since	Unchecked_Deallocation	may	be	applied	even	
though	there	are	outstanding	references	to	the	deallocated	object.	

Ada	provides	a	model	in	which	whole	collections	of	heap-allocated	objects	can	be	deallocated	safely,	
automatically	and	collectively	when	the	scope	of	the	root	access	type	or	the	scope	of	any	associated	storage	pool	
object	ends.		

For	global	access	types,	unless	storage	pools	are	used,	allocated	objects	can	only	be	deallocated	through	an	
instantiation	of	the	generic	procedure	Unchecked_Deallocation.		

6.14.2	Guidance	to	language	users	

• Use	local	access	types	where	possible.	
• Do	not	use	Unchecked_Deallocation or	consider	applying	the	restriction	No_Unchecked_Deallocation	to	

enforce	this.	
• Use	Controlled	types	and	reference	counting.	
• Consider	the	use	of	storage	pools	and	subpools.	

6.15	Arithmetic	Wrap-around	Error	[FIF]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	wrap-around	arithmetic	in	Ada	is	limited	to	modular	types.	Arithmetic	operations	on	such	types	use	modulo	
arithmetic,	and	thus	no	such	operation	can	create	an	invalid	value	of	the	type.	

For	non-modular	arithmetic,	Ada	raises	the	predefined	exception	Constraint_Error whenever	a	wrap-around	
occurs	but	implementations	are	allowed	to	refrain	from	doing	so	when	a	correct	final	value	is	obtained.	In	Ada	
there	is	no	confusion	between	logical	and	arithmetic	shifts.	

6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	shift	operations	in	Ada	are	limited	to	the	modular	types	declared	in	the	standard	package	Interfaces,	which	are	
not	signed	entities.	

6.17	Choice	of	Clear	Names	[NAI]	

6.17.1	Applicability	to	language	

There	are	two	possible	issues:	the	use	of	the	identical	name	for	different	purposes	(overloading)	and	the	use	of	
similar	names	for	different	purposes.	

This	vulnerability	does	not	address	overloading,	which	is	covered	in	Section	6.20	Identifier	Name	Reuse	[YOW]	of	
TR	24772-1.	

The	risk	of	confusion	by	the	use	of	similar	names	might	occur	through:	

©	ISO/IEC	2016	–	All	rights	reserved	 23	
	

• Mixed	casing.	Ada	treats	upper	and	lower	case	letters	in	names	as	identical.	Confusion	may	arise	through	
an	attempt	to	use	Item	and	ITEM	as	distinct	identifiers	with	different	meanings.	

• Underscores	and	periods.	Ada	permits	single	underscores	in	identifiers	and	they	are	significant.	Thus	
BigDog	and	Big_Dog	are	different	identifiers.	But	multiple	underscores	(which	might	be	confused	with	a	
single	underscore)	are	forbidden,	thus	Big__Dog	is	forbidden.	Leading	and	trailing	underscores	are	also	
forbidden.	Periods	are	not	permitted	in	identifiers	at	all.	

• Singular/plural	forms.	Ada	does	permit	the	use	of	identifiers	which	differ	solely	in	this	manner	such	as	
Item and	Items.	However,	the	user	might	use	the	identifier	Item	for	a	single	object	of	a	type T	and	the	
identifier	Items	for	an	object	denoting	an	array	of	items	that	is	of	a	type array (…) of T.	The	use	of	Item	
where	Items	was	intended	or	vice	versa	will	be	detected	by	the	compiler	because	of	the	type	violation	
and	the	program	rejected	so	no	vulnerability	would	arise.	

• International	character	sets.	Ada	compilers	strictly	conform	to	the	appropriate	International	Standard	for	
character	sets.	

• Identifier	length.	All	characters	in	an	identifier	in	Ada	are	significant.	Thus	Long_IdentifierA	and	
Long_IdentifierB	are	always	different.	An	identifier	cannot	be	split	over	the	end	of	a	line.	The	only	
restriction	on	the	length	of	an	identifier	is	that	enforced	by	the	line	length	and	this	is	guaranteed	by	the	
language	standard	to	be	no	less	than	200.	

Ada	permits	the	use	of	names	such	as	X,	XX,	and	XXX	(which	might	all	be	declared	as	integers)	and	a	
programmer	could	easily,	by	mistake,	write	XX	where	X	(or	XXX)	was	intended.	Ada	does	not	attempt	to	catch	
such	errors.	

The	use	of	the	wrong	name	will	typically	result	in	a	failure	to	compile	so	no	vulnerability	will	arise.	But,	if	the	
wrong	name	has	the	same	type	as	the	intended	name,	then	an	incorrect	executable	program	will	be	generated.	

6.17.2	Guidance	to	language	users		
This	vulnerability	can	be	avoided	or	mitigated	in	Ada	in	the	following	ways:		

• Avoid	the	use	of	similar	names	to	denote	different	objects	of	the	same	type.		
• Adopt	a	project	convention	for	dealing	with	similar	names	
• See	the	Ada	Quality	and	Style	Guide.	

6.18	Dead	store	[WXQ]	

6.18.1	Applicability	to	language	

This	vulnerability	exists	in	Ada	as	described	in	TR	24772-1	Section	6.18,	with	the	exception	that	in	Ada	if	a	variable	
is	read	by	a	different	thread	(task)	than	the	thread	that	wrote	a	value	to	the	variable	it	is	not	a	dead	store.	Simply	
marking	a	variable	as	being	Volatile	is	usually	considered	to	be	too	error-prone	for	inter-thread	(task)	
communication	by	the	Ada	community,	and	Ada	has	numerous	facilities	for	safer	inter	thread	communication.	

Ada	compilers	do	exist	that	detect	and	generate	compiler	warnings	for	dead	stores.	

The	error	in	TR	24772-1	Section	6.18.3	that	the	planned	reader	misspells	the	name	of	the	store	is	possible	but	
highly	unlikely	in	Ada	since	all	objects	must	be	declared	and	typed	and	the	existence	of	two	objects	with	almost	
identical	names	and	compatible	types	(for	assignment)	in	the	same	scope	would	be	readily	detectable.	

6.18.2	Guidance	to	Language	Users	

• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	dead	stores.	

• Use	static	analysis	tools	to	detect	such	problems.	

24	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.19	Unused	Variable	[YZS]	

6.19.1	Applicability	to	language	

This	vulnerability	exists	in	Ada	as	described	in	Section	6.19	of	TR	24772-1,	although	Ada	compilers	do	exist	that	
detect	and	generate	compiler	warnings	for	unused	variables.	

6.19.2	Guidance	to	language	users	

• Do	not	declare	variables	of	the	same	type	with	similar	names.	Use	distinctive	identifiers	and	the	strong	
typing	of	Ada	(for	example	through	declaring	specific	types	such	as	Pig_Counter is range 0 .. 1000;	rather	
than	just	Pig: Integer;)	to	reduce	the	number	of	variables	of	the	same	type.	

• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	unused	variables.	
• Use	static	analysis	tools	to	detectunused	variables.		

6.20	Identifier	Name	Reuse	[YOW]	

6.20.1	Applicability	to	language	
Ada	is	a	language	that	permits	local	scope,	and	names	within	nested	scopes	can	hide	identical	names	declared	in	
an	outer	scope.		As	such	it	is	susceptible	to	the	vulnerability.		For	subprograms	and	other	overloaded	entities	the	
problem	is	reduced	by	the	fact	that	hiding	also	takes	the	signatures	of	the	entities	into	account.		Entities	with	
different	signatures,	therefore,	do	not	hide	each	other.	

Name	collisions	with	keywords	cannot	happen	in	Ada	because	keywords	are	reserved.	

The	mechanism	of	failure	identified	in	TR	24772-1	Section	6.20.3	regarding	the	declaration	of	non-unique	
identifiers	in	the	same	scope	cannot	occur	in	Ada	because	all	characters	in	an	identifier	are	significant.	

6.20.2	Guidance	to	language	users	

• Use	expanded	names	whenever	confusion	may	arise.		

• Use	Ada	compilers	that	generate	compile	time	warnings	for	declarations	in	inner	scopes	that	hide	
declarations	in	outer	scopes.	

• Use	static	analysis	tools	that	detect	the	same	problem.	

6.21	Namespace	Issues	[BJL]	

This	vulnerability	is	not	applicable	to	Ada	because	Ada	does	not	attempt	to	disambiguate	conflicting	names	
imported	from	different	packages.	Instead,	use	of	a	name	with	conflicting	imported	declarations	causes	a	compile	
time	error.	The	programmer	can	disambiguate	the	name	usage	by	using	a	expanded	name	that	identifies	the	
exporting	package.	

6.22	Initialization	of	Variables	[LAV]	

6.22.1	Applicability	to	language	

As	in	many	languages,	it	is	possible	in	Ada	to	make	the	mistake	of	using	the	value	of	an	uninitialized	variable.	
However,	as	described	below,	Ada	prevents	some	of	the	most	harmful	possible	effects	of	using	the	value.	

The	vulnerability	does	not	exist	for	pointer	variables	(or	constants).	Pointer	variables	are	initialized	to	null by	
default,	and	every	dereference	of	a	pointer	that	is	not	null-excluding	is	checked	for	a	null	value.		

©	ISO/IEC	2016	–	All	rights	reserved	 25	
	

The	checks	mandated	by	the	type	system	apply	to	the	use	of	uninitialized	variables	as	well.	Use	of	an	out-of-
bounds	value	in	relevant	contexts	causes	an	exception,	regardless	of	the	origin	of	the	faulty	value.	(See	6.36	
Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	regarding	exception	handling.)	Thus,	the	only	remaining	
vulnerability	is	the	potential	use	of	a	faulty	but	subtype-conformant	value	of	an	uninitialized	variable,	since	it	is	
technically	indistinguishable	from	a	value	legitimately	computed	by	the	application.		

For	scalar	types,	the	Default_Value	aspect	may	be	specified	to	provide	a	default	initial	value	for	otherwise	
uninitialized	objects	of	the	type.	

For	record	types,	default	initializations	may	be	specified	as	part	of	the	type	definition.	For	record	types,	aggregate	
values	may	be	used	to	initialize	an	object	to	ensure	that	all	components	of	the	object	have	been	initialized	with	a	
value.	

For	controlled	types	(those	descended	from	the	language-defined	type	Controlled	or	Limited_Controlled),	the	
user	may	also	specify	an	Initialize	procedure	which	is	invoked	on	all	default-initialized	objects	of	the	type.	

The	pragma Normalize_Scalars	can	be	used	to	ensure	that	scalar	variables	are	always	initialized	by	the	compiler	
in	a	repeatable	fashion.	This	pragma	is	designed	to	initialize	variables	to	an	out-of-range	value	if	there	is	one,	to	
avoid	hiding	errors.	

Lastly,	the	user	can	query	the	validity	of	a	given	value.	The	expression	X’Valid yields	true	if	the	value	of	the	scalar	
variable	X	conforms	to	the	subtype	of	X	and	false	otherwise.	Thus,	the	user	can	protect	against	the	use	of	out-of-
bounds	uninitialized	or	otherwise	corrupted	scalar	values.	

6.22.2	Guidance	to	language	users	

This	vulnerability	can	be	avoided	or	mitigated	in	Ada	in	the	following	ways:	

• If	the	compiler	has	a	mode	that	detects	use	before	initialization,	then	enable	this	mode	and	treat	any	such	
warnings	as	errors.	

• Where	appropriate,	specify	explicit	initializations	or	default	initializations.	
• Use	the	pragma Normalize_Scalars		to	cause	out-of-range	default	initializations	for	scalar	variables.	
• Use	the	‘Valid	attribute	to	identify	out-of-range	scalar	values	caused	by	the	use	of	uninitialized	variables,	

without	incurring	the	raising	of	an	exception.		Note	an	implementation	may	raise	an	exception	for	an	
Unchecked_Conversion	in	this	case.	

Common	advice	that	should	be	avoided	is	to	perform	a	“junk	initialization”	of	variables.	Initializing	a	variable	with	
an	inappropriate	default	value	such	as	zero	can	result	in	hiding	underlying	problems,	because	the	compiler	or	
other	static	analysis	tools	will	then	be	unable	to	detect	that	the	variable	has	been	used	prior	to	receiving	a	
correctly	computed	value.	

6.23	Operator	Precedence/Order	of	Evaluation	[JCW]	

6.23.1	Applicability	to	language	

Since	this	vulnerability	is	about	"incorrect	beliefs"	of	programmers,	there	is	no	way	to	establish	a	limit	to	how	far	
incorrect	beliefs	can	go.	However,	Ada	is	less	susceptible	to	that	vulnerability	than	many	other	languages,	since	

• Ada	only	has	six	levels	of	precedence	and	associativity	is	closer	to	common	expectations.	For	example,	an	
expression	like	A = B or C = D	will	be	parsed	as	expected,	as	(A = B) or (C = D).	

• Mixed	logical	operators	are	not	allowed	without	parentheses,	for	example,	"A or B or C"	is	valid,	as	well	
as	"A and B and C",	but	"A and B or C"	is	not;	the	user	must	write	"(A and B) or C"	or	"A and (B or C)".	

26	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

• Assignment	is	not	an	operator	in	Ada.	

6.23.2	Guidance	to	language	users	

Apply	the	general	mitigation	measures	in	Ada	like	in	any	other	language.	

6.24	Side-effects	and	Order	of	Evaluation	[SAM]	

6.24.1	Applicability	to	language	

There	are	no	operators	in	Ada	with	direct	side	effects	on	their	operands	using	the	language-defined	operations,	
especially	not	the	increment	and	decrement	operation.	Ada	does	not	permit	multiple	assignments	in	a	single	
expression	or	statement.	

There	is	the	possibility	though	to	have	side	effects	through	function	calls	in	expressions	where	the	function	
modifies	globally	visible	variables	or	“in out”	or	“out”	parameters.	Ada	disallows	multiple	uses	of	the	same	
variable	within	a	single	expression	if	one	or	more	of	the	uses	are	as	“in out”	or	“out”	parameters.		Operators	in	
Ada	are	functions	with	only	“in”	parameters,	so,	when	defined	by	the	user,	although	they	cannot	modify	their	
own	operands,	they	may	modify	global	state	and	therefore	have	side	effects.	

Ada	allows	the	implementation	to	choose	the	order	of	evaluation	of	expressions	with	operands	of	the	same	
precedence	level,	the	order	of	association	is	left-to-right.		The	operands	of	a	binary	operation	are	also	evaluated	
in	an	arbitrary	order,	as	happens	for	the	parameters	of	any	function	call.	In	the	case	of	user-defined	operators	
with	side	effects	on	global	state,	this	implementation	dependency	can	cause	unpredictability	of	the	side	effects.		

6.24.2	Guidance	to	language	users	

• Make	use	of	one	or	more	programming	guidelines	which	prohibit	functions	that	modify	global	state,	and	
can	be	enforced	by	static	analysis.		

• Minimize	use	of	“in out”	and	“out”	parameters	for	functions.	
• Keep	expressions	simple.	Complicated	code	is	prone	to	error	and	difficult	to	maintain.	
• Always	use	brackets	to	indicate	order	of	evaluation	of	operators	of	the	same	precedence	level.		

6.25	Likely	Incorrect	Expression	[KOA]	

6.25.1	Applicability	to	language	

An	instance	of	this	vulnerability	consists	of	two	syntactically	similar	constructs	such	that	the	inadvertent	
substitution	of	one	for	the	other	may	result	in	a	program	which	is	accepted	by	the	compiler	but	does	not	reflect	
the	intent	of	the	author.	

The	examples	given	in	TR	24772-1	Section	6.25	are	not	problems	in	Ada	because	of	Ada's	strong	typing	and	
because	an	assignment	is	not	an	expression	in	Ada.	

In	Ada,	a	type-conversion	and	a	qualified	expression	are	syntactically	similar,	differing	only	in	the	presence	or	
absence	of	a	single	character:	

 Type_Name (Expression) -- a type-conversion

vs.	

	Type_Name'(Expression) -- a qualified expression

©	ISO/IEC	2016	–	All	rights	reserved	 27	
	

Typically,	the	inadvertent	substitution	of	one	for	the	other	results	in	either	a	semantically	incorrect	program	
which	is	rejected	by	the	compiler	or	in	a	program	which	behaves	in	the	same	way	as	if	the	intended	construct	had	
been	written.	In	the	case	of	a	constrained	array	subtype,	the	two	constructs	differ	in	their	treatment	of	sliding	
(conversion	of	an	array	value	with	bounds	100	..	103	to	a	subtype	with	bounds	200	..	203	will	succeed;	
qualification	will	fail	a	run-time	check).	

Similarly,	a	timed	entry	call	and	a	conditional	entry	call	with	an	else-part	that	happens	to	begin	with	a	delay	
statement	differ	only	in	the	use	of	"else"	vs.	"or"	(or	even	"then abort"	in	the	case	of	an asynchronous_select	
statement).		

Probably	the	most	common	correctness	problem	resulting	from	the	use	of	one	kind	of	expression	where	a	
syntactically	similar	expression	should	have	been	used	has	to	do	with	the	use	of	short-circuit	vs.	non-short-circuit	
Boolean-valued	operations	(for	example,	"and then"	and	"or else"	vs.	"and"	and	"or"),	as	in	

if (Ptr /= null) and (Ptr.all.Count > 0) then ... end if;

-- should have used "and then" to avoid dereferencing null	

6.25.2	Guidance	to	language	users	

• Compilers	and	other	static	analysis	tools	can	detect	some	cases	(such	as	the	preceding	example).	Use	
these	capabilities.	

• Consider	using	short-circuit	forms	by	default	(errors	resulting	from	the	incorrect	use	of	short-circuit	forms	
are	much	less	common),	thought	this	can	make	it	more	difficult	to	express	the	distinction	between	the	
cases	where	short-circuited	evaluation	is	known	to	be	needed	(either	for	correctness	or	for	performance)	
and	those	where	it	is	not.	

6.26	Dead	and	Deactivated	Code	[XYQ]	

6.26.1	Applicability	to	language	

Ada	allows	the	usual	sources	of	dead	code	(described	in	TR	24772-1	Section	6.26)	that	are	common	to	most	
conventional	programming	languages.	

6.26.2	Guidance	to	language	users	

Use	implementation-specific	mechanisms,	if	provided,			to	support	the	elimination	of	dead	code.	In	some	cases,	
use	pragmas	such	as	Restrictions,	Suppress,	or	Discard_Names		to	inform	the	compiler	that	some	code	whose	
generation	would	normally	be	required	for	certain	constructs	would	be	dead	because	of	properties	of	the	overall	
system,	and	that	therefore	the	code	need	not	be	generated.		For	example:	

package Pkg is
type Enum is (Aaa, Bbb, Ccc);
pragma Discard_Names(Enum);

end Pkg;

If	Pkg.Enum'Image	and	related	attributes	(e.g.,	Value, Wide_Image)	of	the	type	Enum	are	never	used,	and	if	the	
implementation	normally	builds	a	table	of	the	enumeration	literals,	then	the	pragma	allows	the	elimination	of	
the	table.	

28	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.27	Switch	Statements	and	Static	Analysis	[CLL]	

6.27.1	Applicability	to	language	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts)	and	the	use	of	default	cases,	this	
vulnerability	is	not	applicable	to	Ada	as	Ada	ensures	that	a	case	statement	provides	exactly	one	alternative	for	
each	value	of	the	expression's	subtype.		This	restriction	is	enforced	at	compile	time.		The	others clause	may	be	
used	as	the	last	choice	of	a	case	statement	to	capture	any	remaining	values	of	the	case	expression	type	that	are	
not	covered	by	the	preceding	case	choices.		If	the	value	of	the	expression	is	outside	of	the	range	of	this	subtype	
(e.g.,	due	to	an	uninitialized	variable),	then	the	resulting	behaviour	is	well-defined	(Constraint_Error	is	raised).		
Control	does	not	flow	from	one	alternative	to	the	next.	Upon	reaching	the	end	of	an	alternative,	control	is	
transferred	to	the	end	of	the	case	statement.		

The	remaining	vulnerability	is	that	unexpected	values	are	captured	by	the	others clause	or	a	subrange	as	case	
choice.		For	example,	when	the	range	of	the	type	Character	was	extended	from	128	characters	to	the	256	
characters	in	the	Latin-1	character	type,	an	others	clause	for	a	case	statement	with	a	Character	type	case	
expression	originally	written	to	capture	cases	associated	with	the	128	characters	type	now	also	captures	the	128	
additional	cases	introduced	by	the	extension	of	the	type	Character.		Some	of	the	new	characters	may	have	
needed	to	be	covered	by	the	existing	case	choices	or	new	case	choices.		

6.27.2	Guidance	to	language	users	

• For	case	statements	and	aggregates,	avoid	the	use	of	the	others	choice.	
• For	case	statements	and	aggregates,	mistrust	subranges	as	choices	after	enumeration	literals	have	been	

added	anywhere	but	the	beginning	or	the	end	of	the	enumeration	type	definition. 15F

1	

6.28	Demarcation	of	Control	Flow	[EOJ]	

This	vulnerability	is	not	applicable	to	Ada	as	the	Ada	syntax	describes	several	types	of	compound	statements	that	
are	associated	with	control	flow	including	if	statements,	loop	statements,	case	statements,	select	statements,	and	
extended	return	statements.	Each	of	these	forms	of	compound	statements	require	unique	syntax	that	marks	the	
end	of	the	compound	statement.	

6.29	Loop	Control	Variables	[TEX]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	Ada	defines	a	for loop	where	the	number	of	iterations	is	controlled	by	a	loop	control	variable	(called	a	loop	
parameter).	This	value	has	a	constant	view	and	cannot	be	updated	within	the	sequence	of	statements	of	the	body	
of	the	loop.	

																																																													

1	This	case	is	somewhat	specialized	but	is	important,	since	enumerations	are	the	one	case	where	subranges	turn	bad	on	the	user.	

©	ISO/IEC	2016	–	All	rights	reserved	 29	
	

6.30	Off-by-one	Error	[XZH]	

6.30.1	Applicability	to	language	

Confusion between the need for < and <= or > and >= in a test.
A	for loop	in	Ada	does	not	require	the	programmer	to	specify	a	conditional	test	for	loop	termination.	
Instead,	the	starting	and	ending	value	of	the	loop	are	specified	which	eliminates	this	source	of	off-by-one	
errors.	A	while loop	however,	lets	the	programmer	specify	the	loop	termination	expression,	which	could	
be	susceptible	to	an	off-by-one	error.	There	are	also	special	for loop structures	that	iterate	through	an	
entire	array	or	container.		These	avoid	the	need	to	specify	any	bounds	for	the	iteration.	

Confusion as to the index range of an algorithm.
Although	there	are	language	defined	attributes	to	symbolically	reference	the	start	and	end	values	for	a	
loop	iteration,	the	language	does	allow	the	use	of	explicit	values	and	loop	termination	tests.	Off-by-one	
errors	can	result	in	these	circumstances.	

Care	should	be	taken	when	using	the	'Length	attribute	in	the	loop	termination	expression.	The	
expression	should	generally	be	relative	to	the	'First	value.	

The	strong	typing	of	Ada	eliminates	the	potential	for	buffer	overflow	associated	with	this	vulnerability.	If	
the	error	is	not	statically	caught	at	compile	time,	then	a	run-time	check	generates	an	exception	if	an	
attempt	is	made	to	access	an	element	outside	the	bounds	of	an	array.	

Failing to allow for storage of a sentinel value.
Ada	does	not	use	sentinel	values	to	terminate	arrays.	There	is	no	need	to	account	for	the	storage	of	a	
sentinel	value,	therefore	this	particular	vulnerability	concern	does	not	apply	to	Ada.	

6.30.2	Guidance	to	language	users	

• Whenever	possible,	use	a	for loop	instead	of	a	while loop.	
• Whenever	possible,	use	the	form	of	iteration	that	takes	the	name	of	the	array	or	container	and	nothing	

more.			
• When	indices	are	necessary,	use	the	'First,	'Last,	and	'Range	attributes	for	loop	termination,	e.g.		for I in

MyArray'Range loop….		
• If	the	'Length	attribute	must	be	used,	take	extra	care	to	ensure	that	the	index	computation	considers	the	

starting	index	value	for	the	array.	

6.31	Structured	Programming	[EWD]	

6.31.1	Applicability	to	language	

Ada	programs	can	exhibit	many	of	the	vulnerabilities	noted	in	TR	24772-1	Section	6.31:	leaving	a	loop	at	an	
arbitrary	point,	local	jumps	(goto),	and	multiple	exit	points	from	subprograms.	

Ada	however	does	not	suffer	from	non-local	jumps	and	multiple	entries	to	subprograms.	

6.31.2	Guidance	to	language	users	

Minimize	the	use	of	goto,	loop exit	statements,	return	statements	in	procedures	and	more	than	one	return	
statement	in	a	function.		Use	multiple	exit	points	only	if	it	makes	the	code	of	the	exited	construct	significantly	
clearer.	

30	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.32	Passing	Parameters	and	Return	Values	[CSJ]	

6.32.1	Applicability	to	language	

Ada	employs	the	mechanisms	(for	example,	modes	in,	out	and	in out)	that	are	recommended	in	Section	6.32	of	
TR	24772-1.	These	mode	definitions	are	not	optional,	mode	in	being	the	default.	The	remaining	vulnerability	is	
aliasing	when	a	large	object	is	passed	by	reference.	In	addition,	in	Ada,	a	function	result	type	must	be	specified	
and	the	return	value	should	be	assigned	to	the	same	type	variable,	making	it	much	more	obvious	to	the	reader	if	
a	function	result	is	not	being	used.	

6.32.2	Guidance	to	language	users	

• Follow	avoidance	advice	in	TR	24772-1	Section	6.32.	

6.33	Dangling	References	to	Stack	Frames	[DCM]	

6.33.1	Applicability	to	language	

In	Ada,	the	attribute	'Address	yields	a	value	of	some	system-specific	type	that	is	not	equivalent	to	a	pointer.	The	
attribute	'Access	provides	an	access	value	(what	other	languages	call	a	pointer).	Addresses	and	access	values	are	
not	automatically	convertible,	although	a	predefined	set	of	generic	functions	can	be	used	to	convert	one	into	the	
other.	Access	values	are	typed,	that	is	to	say,	they	can	only	designate	objects	of	a	particular	type	or	class	of	types.		

As	in	other	languages,	it	is	possible	to	apply	the	'Address	attribute	to	a	local	variable,	and	to	make	use	of	the	
resulting	value	outside	of	the	lifetime	of	the	variable.	However,	'Address	is	very	rarely	used	in	this	fashion	in	Ada.	
Most	commonly,	programs	use	'Access	to	designate	objects	and	subprograms,	and	the	language	enforces	
accessibility	checks	whenever	code	attempts	to	use	this	attribute	to	provide	access	to	a	local	object	outside	of	its	
scope.	These	accessibility	checks	eliminate	the	possibility	of	dangling	references.	

As	for	all	other	language-defined	checks,	accessibility	checks	can	be	disabled	over	any	portion	of	a	program	by	
using	the	Suppress pragma.	The	attribute	Unchecked_Access	produces	values	that	are	exempt	from	accessibility	
checks.	

6.33.2	Guidance	to	language	users	

• Only	use	the	'Address	attribute	on	static	objects	(for	example,	a	register	address).		
• Do	not	use	'Address	to	provide	indirect	untyped	access	to	an	object.		
• Do	not	convert	between	'Address	and	access	types.		
• Use	access	types	in	all	circumstances	when	indirect	access	is	needed.		
• Do	not	suppress	accessibility	checks.		
• Avoid	use	of	the	attribute	Unchecked_Access.	
• Use	‘Access	attribute	in	preference	to	'Address.	
• Consider	applying	the	restriction	No_Use_Of_Attribute(Address)	to	enforce	that	'Address	is	not	used.	
• Consider	applying	the	restriction	No_Unchecked_Access	to	enforce	that	Unchecked_Access	is	not	used.	

©	ISO/IEC	2016	–	All	rights	reserved	 31	
	

6.34	Subprogram	Signature	Mismatch	[OTR]	

6.34.1	Applicability	to	language	

There	are	two	concerns	identified	with	this	vulnerability.	The	first	is	the	corruption	of	the	execution	stack	due	to	
the	incorrect	number	or	type	of	actual	parameters.	The	second	is	the	corruption	of	the	execution	stack	due	to	
calls	to	externally	compiled	modules.		Ada	does	not	support	variadic	subprograms,	which	eliminates	a	common	
source	for	this	vulnerability.	

In	Ada,	at	compilation	time,	the	parameter	association	is	checked	to	ensure	that	the	type	of	each	actual	
parameter	matches	the	type	of	the	corresponding	formal	parameter.	In	addition,	the	formal	parameter	
specification	may	include	default	expressions	for	a	parameter.	Hence,	the	procedure	may	be	called	with	some	
actual	parameters	missing.	In	this	case,	if	there	is	a	default	expression	for	the	missing	parameter,	then	the	call	will	
be	compiled	without	any	errors.	If	default	expressions	are	not	specified,	then	the	procedure	call	with	insufficient	
actual	parameters	will	be	flagged	as	an	error	at	compilation	time.		

Caution	must	be	used	when	specifying	default	expressions	for	formal	parameters,	as	their	use	may	result	in	
successful	compilation	of	subprogram	calls	with	an	incorrect	signature.	The	execution	stack	will	not	be	corrupted	
in	this	event	but	the	program	may	be	executing	with	unexpected	values.	The	most	appropriate	use	of	default	
expressions	is	when,	without	them,	there	would	end	up	being	an	overloading	of	the	same	name	with	fewer	
parameters	that	performed	essentially	the	same	operation.	When	calling	externally	compiled	modules	that	are	
Ada	program	units,	the	type	matching	and	subprogram	interface	signatures	are	monitored	and	checked	as	part	of	
the	compilation	and	linking	of	the	full	application.	When	calling	externally	compiled	modules	in	other	
programming	languages,	additional	steps	are	needed	to	ensure	that	the	number	and	types	of	the	parameters	for	
these	external	modules	are	correct.		

6.34.2	Guidance	to	language	users	

• Minimize	the	use	of	default	expressions	for	formal	parameters.	
• Manage	interfaces	between	Ada	program	units	and	program	units	in	other	languages	by	using	pragma

Import	to	specify	subprograms	that	are	defined	externally	and	pragma Export	to	specify	subprograms	
that	are	used	externally.	These	pragmas	specify	the	imported	and	exported	aspects	of	the	subprograms,	
this	includes	the	calling	convention.	All	parameters	need	to	be	specified	when	using	pragma Import and	
pragma Export.	

• Use	the	pragma Convention		to	identify	when	an	Ada	entity	should	use	the	calling	conventions	of	a	
different	programming	language	facilitating	the	correct	usage	of	the	execution	stack	when	interfacing	
with	other	programming	languages.		

• Use	the	Valid	attribute	to	check	if	an	object	that	is	part	of	an	interface	with	another	language	has	a	valid	
value	for	its	type.	

6.35	Recursion	[GDL]	

6.35.1	Applicability	to	language	

Ada	permits	recursion.	The	exception	Storage_Error	is	raised	when	the	recurring	execution	results	in	insufficient	
storage.	

6.35.2	Guidance	to	language	users	

• If	recursion	is	used,	then	use	a	Storage_Error	exception	handler	to	handle	insufficient	storage	due	to	
recurring	execution.		

32	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

• Use	the	asynchronous	control	construct	to	time	the	execution	of	a	recurring	call	and	to	terminate	the	call	
if	the	time	limit	is	exceeded.		

• Alternatively,	monitor	the	depth	of	the	recursion	such	as	by	passing	a	recursion	depth	value	that	is	
incremented	for	each	level	of	recursion,	and	use	a	subtype	constraint	or	explicit	comparison	against	a	
maximum	depth	limit	to	trigger	handling	of	the	situation.	

• Consider	applying	the	restriction	No_Recursion	or	No_Reentrancy	to	eliminate	this	vulnerability.	

6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	

6.36.1	Applicability	to	language	

Ada	offers	a	set	of	predefined	exceptions	for	error	conditions	that	may	be	detected	by	checks	that	are	compiled	
into	a	program.	In	addition,	the	programmer	may	define	exceptions	that	are	appropriate	for	their	application.	
These	exceptions	are	handled	using	an	exception	handler.	Exceptions	may	be	handled	in	the	environment	where	
the	exception	occurs	or	may	be	propagated	out	to	an	enclosing	scope.		

6.36.2	Guidance	to	language	users	

• In	addition	to	the	mitigations	defined	in	TR	24772-1,	values	delivered	to	an	Ada	program	from	an	external	
device	may	be	checked	for	validity	prior	to	being	used.	Use	the	result	of	the	Valid	attribute	for	this	
purpose.		

• Consider	using	the	call	Ada.Task_Termination.Set_Dependents_Fallback_Handler	to	install	a	handler	that	
will	be	invoked	whenever	a	task	terminates.	

6.37	Fault	Tolerance	and	Failure	Strategies	[REU]	

6.37.1	Applicability	to	language	

An	Ada	system	that	consists	of	multiple	tasks	is	subject	to	the	same	hazards	as	multithreaded	systems	in	other	
languages.	A	task	that	fails,	for	example,	because	its	execution	violates	a	language-defined	check,	terminates	
quietly,	unless	a	Termination	handler	has	been	established	using	the	Ada.Task_Termination	package.	

Any	other	task	that	attempts	to	communicate	with	a	terminated	task	will	receive	the	exception	Tasking_Error.	
The	undisciplined	use	of	the	abort	statement	or	the	asynchronous	transfer	of	control	feature	may	destroy	the	
functionality	of	a	multitasking	program.	

6.37.2	Guidance	to	language	users	

• Include	exception	handlers	for	every	task,	so	that	their	unexpected	termination	can	be	handled	and	
possibly	communicated	to	the	execution	environment,	or	establish	a	Termination	handler	for	all	tasks.	For	
high-integrity	systems,	exception	handling	is	often	forbidden.	However,	a	top-level	exception	handler	or	
Termination	handler	can	be	used	to	restore	the	overall	system	to	a	coherent	state.	Use	objects	of	
controlled	types	to	ensure	that	resources	are	properly	released	if	a	task	terminates	unexpectedly.	

• Use	the	abort	statement	sparingly,	if	at	all.		
• Define	interrupt	handlers	to	handle	signals	that	come	from	the	hardware	or	the	operating	system.	This	

mechanism	can	also	be	used	to	add	robustness	to	a	concurrent	program.	
• Make	use	of	the	Ada.Task_Termination	package	(defined	in	the	Systems	Programming	Annex	of	the	Ada	

Reference	Manual)	to	monitor	task	termination	and	its	causes.	
• Make	use	of	the	various	pragmas,	restrictions,	and	other	language	features	defined	in	the	High	Integrity	

Systems	Annex	of	the	Ada	Reference	Manual	when	writing	systems	for	high-reliability	applications.	For	
example,	the	pragma Detect_Blocking	can	be	used	to	ensure	detection	of	a	potentially	blocking	
operation	occurring	within	a	protected	operation,	and	to	raise	an	exception	in	that	case.	

Joyce L Tokar� 2017-6-7 1:32 PM
Deleted: W

©	ISO/IEC	2016	–	All	rights	reserved	 33	
	

6.38	Type-breaking	Reinterpretation	of	Data	[AMV]	

6.38.1	Applicability	to	language	

Unchecked_Conversion	can	be	used	to	bypass	the	type-checking	rules,	and	its	use	is	thus	unsafe,	as	is	its	
equivalent	in	any	other	language.	The	same	applies	to	the	use	of	Unchecked_Union,	even	though	the	language	
specifies	various	inference	rules	that	the	compiler	must	use	to	catch	statically	detectable	constraint	violations.	
The	fact	that	Unchecked_Conversion	is	a	generic	function	that	must	be	instantiated	explicitly	(and	given	a	
meaningful	name)	hinders	its	undisciplined	use,	and	places	a	loud	marker	in	the	code	wherever	it	is	used.	Well-
written	Ada	code	will	have	a	small	set	of	instantiations	of	Unchecked_Conversion.	Most	implementations	require	
the	source	and	target	types	to	have	the	same	size	in	bits,	to	prevent	accidental	truncation	or	missing	sign	
extensions.		

Type	reinterpretation	is	a	universal	programming	need,	and	no	usable	programming	language	can	exist	without	
some	mechanism	that	bypasses	the	type	model.	Ada	provides	these	mechanisms	with	some	additional	
safeguards,	and	makes	their	use	purposely	verbose,	to	alert	the	writer	and	the	reader	of	a	program	to	the	
presence	of	an	unchecked	operation.	

6.38.2	Guidance	to	language	users	

• Use Unchecked_Union	only	in	multi-language	programs	that	need	to	communicate	data	between	Ada	
and	C	or	C++.	Otherwise	the	use	of	discriminated	types	prevents	"punning"	between	values	of	two	
distinct	types	that	happen	to	share	storage.	

• Avoid	using	address	clauses	to	obtain	overlays.	If	the	types	of	the	objects	are	the	same,	then	a	renaming	
declaration	is	preferable.	Otherwise,	use	the	pragma Import	to	inhibit	the	initialization	of	one	of	the	
entities	so	that	it	does	not	interfere	with	the	initialization	of	the	other	one.	

• Consider	applying	the	restrictions	No_Use_Of_Pragma(Unchecked_Union),	
No_Use_Of_Aspect(Unchecked_Union),	No_Use_Of_Attribute(Address),and		
No_Unchecked_Conversion	to	ensure	this	vulnerability	cannot	arise.	

6.39	Deep	vs.	Shallow	Copying	[YAN]	

6.39.1	Applicability	to	language	

	

6.39.2	Guidance	to	language	users	

	
6.40	Memory	Leak	and	Heap	Fragmentation		[XYL]	

6.40.1	Applicability	to	language	

For	objects	that	are	allocated	from	the	heap	without	the	use	of	reference	counting,	the	memory	leak	vulnerability	
is	possible	in	Ada.	For	objects	that	must	allocate	from	a	storage	pool,	the	vulnerability	is	present	but	is	restricted	
to	this	single	pool,	which	makes	it	easier	to	detect	memory	leaks	by	verification.	Subpools	may	be	used	to	further	
reduce	the	possibility	for	memory	leaks.		For	objects	of	a	controlled	type	that	uses	referencing	counting	and	that	
are	not	part	of	a	cyclic	reference	structure,	the	vulnerability	does	not	exist.	

Joyce L Tokar� 2017-6-7 12:33 PM
Formatted: Normal

Joyce L Tokar� 2017-6-7 12:33 PM
Deleted: 39

Joyce L Tokar� 2017-6-7 12:33 PM
Deleted: 39

34	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

Ada	ensures	that	objects	designated	by	an	access	type	declared	in	a	nested	scope	are	finalized	when	execution	
leaves	the	nested	scope,	however,	it	is	implementation	defined	whether	storage	is	reclaimed	for	this	case.		
Associating	an	access	type	with	a	storage	pool	can	ensure	that	the	storage	reclamation	takes	place.	

Ada	does	not	mandate	the	use	of	a	garbage	collector,	but	Ada	implementations	are	free	to	provide	such	memory	
reclamation.		For	applications	that	use	and	return	memory	on	an	implementation	that	provides	garbage	
collection,	the	issues	associated	with	garbage	collection	exist	in	Ada.	

6.40.2	Guidance	to	language	users	

• Use	storage	pools	and	subpools	where	possible.	
• Use	controlled	types	and	reference	counting	to	implement	explicit	storage	management	systems	that	

cannot	have	storage	leaks.		
• Declare	access	types	in	a	nested	scope	where	possible.	
• Use	a	completely	static	model	where	all	storage	is	allocated	from	global	memory	and	explicitly	managed	

under	program	control.	

6.41	Templates	and	Generics	[SYM]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	the	Ada	generics	model	is	based	on	imposing	a	contract	on	the	structure	and	operations	of	the	types	that	can	
be	used	for	instantiation.	Also,	explicit	instantiation	of	the	generic	is	required	for	each	particular	type.		

Therefore,	the	compiler	is	able	to	check	the	generic	body	for	programming	errors,	independently	of	actual	
instantiations.	At	each	actual	instantiation,	the	compiler	will	also	check	that	the	instantiated	type	meets	all	the	
requirements	of	the	generic	contract.	

Ada	also	does	not	allow	for	‘special	case’	generics	for	a	particular	type,	therefore	behaviour	is	consistent	for	all	
instantiations.	

6.42	Inheritance	[RIP]	

6.42.1	Applicability	to	language		

The	vulnerability	documented	in	TR	24772-1	Section	6.42	applies	to	Ada.		

Ada	allows	only	a	restricted	form	of	multiple	inheritance,	where	only	one	of	the	multiple	ancestors	(the	parent)	
may	implement	operations.	All	other	ancestors	(interfaces)	can	only	specify	the	operations’	signature.	Therefore,	
Ada	does	not	suffer	from	multiple	inheritance	related	vulnerabilities.	

6.42.2	Guidance	to	language	users		

• Use	the	overriding	indicators	on	potentially	inherited	subprograms	to	ensure	that	the	intended	contract	is	
obeyed,	thus	preventing	the	accidental	redefinition	or	failure	to	redefine	an	operation	of	the	parent.		

• Use	the	mechanisms	of	mitigation	described	in	TR	24772-1.	

Joyce L Tokar� 2017-6-7 12:34 PM
Deleted: 39

Joyce L Tokar� 2017-6-7 12:33 PM
Deleted: 0

Joyce L Tokar� 2017-6-7 12:40 PM
Deleted: 1

Joyce L Tokar� 2017-6-7 12:40 PM
Deleted: 1

Joyce L Tokar� 2017-6-7 12:42 PM
Deleted: 1

Joyce L Tokar� 2017-6-7 12:40 PM
Deleted: 1

©	ISO/IEC	2016	–	All	rights	reserved	 35	
	

6.43	Violations	of	the	Liskov	Substitution		Principle	or	the	Contract	Model		[BLP]	

6.43.1	Applicability	to	language	

6.43.2	Guidance	to	Language	Users		
	
6.44	Redispatching	[PPH]	

6.44.1	Applicability	to	language	

6.44.2	Guidance	to	Language	Users		
	
6.45	Polymorphic	variables	[BKK]	

6.45.1	Applicability	to	language	

6.45.2	Guidance	to	Language	Users		
	
6.46	Extra	Intrinsics	[LRM]	

The	vulnerability	does	not	apply	to	Ada,	because	all	subprograms,	whether	intrinsic	or	not,	belong	to	the	same	
name	space.	This	means	that	all	subprograms	must	be	explicitly	declared,	and	the	same	name	resolution	rules	
apply	to	all	of	them,	whether	they	are	predefined	or	user-defined.	If	two	subprograms	with	the	same	name	and	
signature	are	visible	(that	is	to	say	nameable)	at	the	same	place	in	a	program,	then	a	call	using	that	name	will	be	
rejected	as	ambiguous	by	the	compiler,	and	the	programmer	will	have	to	specify	(for	example,	by	means	of	an	
expanded	name)	which	subprogram	is	meant.	

6.47	Argument	Passing	to	Library	Functions	[TRJ]	

6.47.1	Applicability	to	language	

The	general	vulnerability	that	parameters	might	have	values	precluded	by	preconditions	of	the	called	routine	
applies	to	Ada	as	well.		

However,	to	the	extent	that	the	preclusion	of	values	can	be	expressed	as	part	of	the	type	system	of	Ada,	the	
preconditions	are	checked	by	the	compiler	statically	or	dynamically	and	thus	are	no	longer	vulnerabilities.	For	
example,	any	range	constraint	on	values	of	a	parameter	can	be	expressed	in	Ada	by	means	of	type	or	subtype	
declarations.	Type	violations	are	detected	at	compile	time,	subtype	violations	cause	run-time	exceptions.	In	
addition,	preconditions,	postconditions,	type	invariants,	and	subtype	predicates	can	be	specified	explicitly	to	
express	more	complex	restrictions	to	be	observed	by	callers.	These	are	checked	at	run-time	depending	on	the	
Assertion_Policy	in	effect,	and	can	be	recognized	by	other	static	analysis	tools	as	part	of	program	verification.	

6.47.2	Guidance	to	language	users	

• Exploit	the	type	and	subtype	system	of	Ada	to	express	restrictions	on	the	values	of	parameters	and	
results.	

• Specify	explicit	preconditions	and	postconditions	for	subprograms	wherever	practical.		
• Specify	subtype	predicates	and	type	invariants	for	subtypes	and	private	types	when	appropriate.	

Joyce L Tokar� 2017-6-7 12:43 PM
Deleted: 2

Joyce L Tokar� 2017-6-7 12:51 PM
Deleted: 3

Joyce L Tokar� 2017-6-7 12:51 PM
Deleted: 3

Joyce L Tokar� 2017-6-7 12:51 PM
Deleted: 3

36	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

• Specify	the	exception	raised	or	other	response	to	values	that	do	not	satisfy	the	precondition.	

6.48	Inter-language	Calling	[DJS]	

6.48.1	Applicability	to	Language	

The	vulnerability	applies	to	Ada,	however	Ada	provides	mechanisms	to	interface	with	common	languages,	such	as	
C,	C++,	Fortran	and	COBOL,	so	that	vulnerabilities	associated	with	interfacing	with	these	languages	can	be	
avoided.	

6.48.2	Guidance	to	Language	Users	

• Use	the	inter-language	methods	and	syntax	specified	by	the	Ada	Reference	Manual	when	the	routines	to	
be	called	are	written	in	languages	that	the	ARM	specifies	an	interface	with.	

• Use	interfaces	to	the	C	programming	language	where	the	other	language	system(s)	are	not	covered	by	
the	ARM,	but	the	other	language	systems	have	interfacing	to	C.	

• Make	explicit	checks	on	all	return	values	from	foreign	system	code	artifacts,	for	example	by	using	the	
'Valid	attribute	or	by	performing	explicit	tests	to	ensure	that	values	returned	by	inter-language	calls	
conform	to	the	expected	representation	and	semantics	of	the	Ada	application.	

• Consider	handling	any	exceptions	that	might	be	raised	in	Ada	code	before	returning	to	a	routine	from	a	
foreign	language,	to	prevent	possible	stack	corruption	if	the	foreign	language	cannot	handle	exceptions	
raised	in	Ada	code.	

6.49	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	Ada	supports	neither	dynamic	linking	nor	self-modifying	code.	The	latter	is	possible	only	by	exploiting	other	
vulnerabilities	of	the	language	in	the	most	malicious	ways	and	even	then	it	is	still	very	difficult	to	achieve.	

6.50	Library	Signature	[NSQ]	

6.50.1	Applicability	to	language	

Ada	provides	mechanisms	to	explicitly	interface	to	modules	written	in	other	languages.	Pragmas	Import, Export
and	Convention	permit	the	name	of	the	external	unit	and	the	interfacing	convention	to	be	specified.		

Even	with	the	use	of	pragma Import,	pragma Export	and	pragma Convention	the	vulnerabilities	stated	in	Section	
6.50	are	possible.	Names	and	number	of	parameters	change	under	maintenance;	calling	conventions	change	as	
compilers	are	updated	or	replaced,	and	languages	for	which	Ada	does	not	specify	a	calling	convention	may	be	
used.	

6.50.2	Guidance	to	language	users	

• The	mitigation	mechanisms	of	TR	24772-1	Section	6.50.5	are	applicable.	

Joyce L Tokar� 2017-6-7 12:53 PM
Deleted: 4

Joyce L Tokar� 2017-6-7 12:54 PM
Deleted: 4

Joyce L Tokar� 2017-6-7 12:54 PM
Deleted: 4

Joyce L Tokar� 2017-6-7 12:55 PM
Deleted: 5

Joyce L Tokar� 2017-6-7 12:57 PM
Deleted: 46

Joyce L Tokar� 2017-6-7 12:57 PM
Deleted: 46

Joyce L Tokar� 2017-6-7 12:57 PM
Deleted: 46

Joyce L Tokar� 2017-6-7 12:57 PM
Deleted: 46

Joyce L Tokar� 2017-6-7 12:57 PM
Deleted: 46

©	ISO/IEC	2016	–	All	rights	reserved	 37	
	

6.51	Unanticipated	Exceptions	from	Library	Routines	[HJW]	

6.51.1	Applicability	to	language	

Ada	programs	are	capable	of	handling	exceptions	at	any	level	in	the	program,	as	long	as	any	exception	naming	
and	delivery	mechanisms	are	compatible	between	the	Ada	program	and	the	library	components.	In	such	cases	the	
normal	Ada	exception	handling	processes	will	apply,	and	either	the	calling	unit	or	some	subprogram	or	task	in	its	
call	chain	will	catch	the	exception	and	take	appropriate	programmed	action.	If	no	action	is	taken	to	handle	the	
exception,	the	task	or	program	where	the	exception	occurred	will	terminate.	

If	the	library	convention	is	to	report	error	codes	and	not	by	exceptions,	then	,	if	the	library	components	
themselves	are	written	in	Ada,	then	Ada's	exception	handling	mechanisms	let	all	called	units	trap	any	exceptions	
that	are	generated	and	return	error	conditions	instead.	If	such	exception	handling	mechanisms	are	not	put	in	
place,	then	exceptions	can	be	unexpectedly	delivered	to	a	caller.	

If	the	interface	between	the	Ada	units	and	the	library	routine	being	called	does	not	adequately	address	the	issue	
of	naming,	generation	and	delivery	of	exceptions	across	the	interface,	then	the	vulnerabilities	as	expressed	in	TR	
24772-1	Section	6.51	apply.		

6.51.2	Guidance	to	language	users	

• Ensure	that	the	interfaces	with	libraries	written	in	other	languages	are	compatible	in	the	naming	and	
generation	of	exceptions.	

• Put	appropriate	exception	handlers	in	all	routines	that	call	library	routines,	including	the	catch-all	
exception	handler	when others =>.	

• Put	appropriate	exception	handlers	in	all	routines	that	are	called	by	library	routines,	including	the	catch-
all	exception	handler	when others =>.	

• Document	any	exceptions	that	may	be	raised	by	any	Ada	units	being	used	as	library	routines.		

6.52	Pre-Processor	Directives	[NMP]	

This	vulnerability	is	not	applicable	to	Ada	as	Ada	does	not	have	a	pre-processor.	

6.53	Suppression	of	Language-defined	Run-time	Checking	[MXB]	

6.53.1	Applicability	to	Language	

The	vulnerability	exists	in	Ada	since	pragma Suppress	permits	explicit	suppression	of	language-defined	checks	on	
a	unit-by-unit	basis	or	on	partitions	or	programs	as	a	whole.	(The	language-defined	default,	however,	is	to	
perform	the	runtime	checks	that	prevent	the	runtime	vulnerabilities.)	Pragma Suppress	can	suppress	all	
language-defined	checks	or	12	individual	categories	of	checks	(see	Section	11.5	of	the	Ada	language	reference	
manual).	

6.53.2	Guidance	to	Language	Users	

• Do	not	suppress	language	defined	checks.	

• If	language-defined	checks	must	be	suppressed,	use	static	analysis	to	prove	that	the	code	is	correct	for	all	
combinations	of	inputs.	

• If	language-defined	checks	must	be	suppressed,	use	explicit	checks	at	appropriate	places	in	the	code	to	
ensure	that	errors	are	detected	before	any	processing	that	relies	on	the	correct	values.	

Joyce L Tokar� 2017-6-7 12:59 PM
Deleted: 47

Joyce L Tokar� 2017-6-7 12:59 PM
Deleted: 47

Joyce L Tokar� 2017-6-7 12:59 PM
Deleted: 47

Joyce L Tokar� 2017-6-7 12:59 PM
Deleted: 47

Joyce L Tokar� 2017-6-7 1:01 PM
Deleted: 48

Joyce L Tokar� 2017-6-7 1:02 PM
Deleted: 49

Joyce L Tokar� 2017-6-7 1:03 PM
Deleted: 49

Joyce L Tokar� 2017-6-7 1:03 PM
Deleted: 49

38	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.54	Provision	of	Inherently	Unsafe	Operations	[SKL]	

6.54.1	Applicability	to	Language	

In	recognition	of	the	occasional	need	to	step	outside	the	type	system	or	to	perform	“risky”	operations,	Ada	
provides	clearly	identified	language	features	to	do	so.	Examples	include	the	generic	Unchecked_Conversion	for	
unsafe	type-conversions	or	Unchecked_Deallocation	for	the	deallocation	of	heap	objects	regardless	of	the	
existence	of	surviving	references	to	the	object.	If	unsafe	programming	is	employed	in	a	unit,	then	the	unit	needs	
to	specify	the	respective	generic	unit	in	its	context	clause,	thus	identifying	potentially	unsafe	units.	Similarly,	there	
are	ways	to	create	a	potentially	unsafe	global	pointer	to	a	local	object,	using	the	Unchecked_Access	attribute.	

6.54.2	Guidance	to	language	users	

• Avoid	the	use	of	unsafe	programming	practices.	
• Use	the	Restrictions	pragma	to	prevent	the	inadvertent	use	of	unsafe	language	constructs.	
• Carefully	scrutinize	any	code	that	refers	to	a	program	unit	explicitly	designated	to	provide	unchecked	

operations.	

6.55	Obscure	Language	Features	[BRS]	

6.55.1	Applicability	to	language	

Ada	is	a	rich	language	and	provides	facilities	for	a	wide	range	of	application	areas.	Because	some	areas	are	
specialized,	it	is	likely	that	a	programmer	not	versed	in	a	special	area	might	misuse	features	for	that	area.		For	
example,	the	use	of	tasking	features	for	concurrent	programming	requires	knowledge	of	this	domain.	Similarly,	
the	use	of	exceptions	and	exception	propagation	and	handling	requires	a	deeper	understanding	of	control	flow	
issues	than	some	programmers	possess.	

6.55.2	Guidance	to	language	users	

• Use	the	pragma Restrictions		to	prevent	the	use	of	obscure	features	of	the	language.		

• Similarly,	avoid	features	in	a	Specialized	Needs	Annex	of	the	Ada	language	reference	manual	unless	the	
application	area	concerned	is	well-understood.	

• The	restriction No_Dependence prevents	the	use	of	specified	pre-defined	or	user-defined	libraries.	

6.56	Unspecified	Behaviour	[BQF]	

6.56.1	Applicability	to	language	

In	Ada,	there	are	two	main	categories	of	unspecified	behaviour,	one	having	to	do	with	unspecified	aspects	of	
normal	run-time	behaviour,	and	one	having	to	do	with	bounded	errors,	errors	that	need	not	be	detected	at	run-
time	but	for	which	there	is	a	limited	number	of	possible	run-time	effects	(though	always	including	the	possibility	
of	raising	Program_Error exception).	

For	the	normal	behaviour	category,	there	are	several	distinct	aspects	of	run-time	behaviour	that	might	be	
unspecified,	including:	

• Order	in	which	certain	actions	are	performed	at	run-time;	
• Number	of	times	a	given	element	operation	is	performed	within	an	operation	invoked	on	a	composite	or	

container	object;	

Joyce L Tokar� 2017-6-7 1:04 PM
Deleted: 0

Joyce L Tokar� 2017-6-7 1:04 PM
Deleted: 0

Joyce L Tokar� 2017-6-7 1:04 PM
Deleted: 0

Joyce L Tokar� 2017-6-7 1:06 PM
Deleted: 1

Joyce L Tokar� 2017-6-7 1:06 PM
Deleted: 1

Joyce L Tokar� 2017-6-7 1:06 PM
Deleted: 1

Joyce L Tokar� 2017-6-7 1:08 PM
Deleted: 2

Joyce L Tokar� 2017-6-7 1:08 PM
Deleted: 2

©	ISO/IEC	2016	–	All	rights	reserved	 39	
	

• Results	of	certain	operations	within	a	language-defined	generic	package	if	the	actual	associated	with	a	
particular	formal	subprogram	does	not	meet	stated	expectations	(such	as	“<”	providing	a	strict	weak	
ordering	relationship);	

• Whether	distinct	instantiations	of	a	generic	or	distinct	invocations	of	an	operation	produce	distinct	values	
for	tags	or	access-to-subprogram	values.	

The	index	entry	in	the	Ada	language	reference	manual	for	unspecified	provides	the	full	list.	Similarly,	the	index	
entry	for	bounded	error	provides	the	full	list	of	references	to	places	in	the	Ada	language	reference	manual	where	
a	bounded	error	is	described.	

Failure	can	occur	due	to	unspecified	behaviour	when	the	programmer	did	not	fully	account	for	the	possible	
outcomes,	and	the	program	is	executed	in	a	context	where	the	actual	outcome	was	not	one	of	those	handled,	
resulting	in	the	program	producing	an	unintended	result.	

6.56.2	Guidance	to	language	users		

As	in	any	language,	the	vulnerability	can	be	reduced	in	Ada	by	avoiding	situations	that	have	unspecified	
behaviour,	or	by	fully	accounting	for	the	possible	outcomes.	

Particular	instances	of	this	vulnerability	can	be	avoided	or	mitigated	in	Ada	in	the	following	ways:	

• For	situation	where	order	of	evaluation	or	number	of	evaluations	is	unspecified,	use	only	operations	with	
no	side-effects,	or	idempotent	behaviour,	to	avoid	the	vulnerability;	

• For	situations	involving	generic	formal	subprograms,	ensure	that	the	actual	subprogram	satisfies	all	of	the	
stated	expectations;	

• For	situations	involving	unspecified	values,	avoid	depending	on	equality	between	potentially	distinct	
values;	

• For	situations	involving	bounded	errors,	avoid	the	problem	completely,	by	ensuring	in	other	ways	that	all	
requirements	for	correct	operation	are	satisfied	before	invoking	an	operation	that	might	result	in	a	
bounded	error.	See	6.22	Initialization	of	Variables	[LAV]	for	a	discussion	of	uninitialized	variables	in	Ada,	a	
common	cause	of	a	bounded	error.	

6.57	Undefined	Behaviour	[EWF]	

6.57.1	Applicability	to	language	

In	Ada,	undefined	behaviour	is	called	erroneous	execution,	and	can	arise	from	certain	errors	that	are	not	required	
to	be	detected	by	the	implementation,	and	whose	effects	are	not	in	general	predictable.	

There	are	various	kinds	of	errors	that	can	lead	to	erroneous	execution,	including:	

• Changing	a	discriminant	of	a	record	(by	assigning	to	the	record	as	a	whole)	while	there	remain	active	
references	to	subcomponents	of	the	record	that	depend	on	the	discriminant;	

• Referring	via	an	access	value,	task	id,	or	tag,	to	an	object,	task,	or	type	that	no	longer	exists	at	the	time	of	
the	reference;	

• Referring	to	an	object	whose	assignment	was	disrupted	by	an	abort	statement,	prior	to	invoking	a	new	
assignment	to	the	object;	

• Sharing	an	object	between	multiple	tasks	without	adequate	synchronization;	
• Suppressing	a	language-defined	check	that	is	in	fact	violated	at	run-time;	
• Specifying	the	address	or	alignment	of	an	object	in	an	inappropriate	way;	
• Using	Unchecked_Conversion,	Address_To_Access_Conversions,	or	calling	an	imported	subprogram	to	

create	a	value,	or	reference	to	a	value,	that	has	an	abnormal	representation.	

Joyce L Tokar� 2017-6-7 1:08 PM
Deleted: 52

Joyce L Tokar� 2017-6-7 1:10 PM
Deleted: 3

Joyce L Tokar� 2017-6-7 1:10 PM
Deleted: 3

40	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

The	full	list	is	given	in	the	index	of	the	Ada	language	reference	manual	under	erroneous	execution.	

Any	occurrence	of	erroneous	execution	represents	a	failure	situation,	as	the	results	are	unpredictable,	and	may	
involve	overwriting	of	memory,	jumping	to	unintended	locations	within	memory,	and	other	uncontrolled	events.	

6.57.2	Guidance	to	language	users	

The	common	errors	that	result	in	erroneous	execution	can	be	avoided	in	the	following	ways:	

• Ensure	that	all	data	shared	between	tasks	are	either	private		within	a	protected	object	or	marked	Atomic;	
• Upon	any	use	of	Unchecked_Deallocation,	carefully	check	to	be	sure	that	there	are	no	remaining	

references	to	the	object;	
• Use pragma Suppress	sparingly,	and	only	after	the	code	has	undergone	extensive	verification.		

The	other	errors	that	can	lead	to	erroneous	execution	are	less	common,	but	clearly	in	any	given	Ada	application,	
care	must	be	taken	when	using	features	such	as:	

• abort;		
• Unchecked_Conversion;		
• Address_To_Access_Conversions;		
• The	results	of	imported	subprograms;		
• Discriminant-changing	assignments	to	global	variables.	

The	mitigations	described	in	TR	24772-1	Section	6.57.5	are	applicable	here.	

6.58	Implementation-Defined	Behaviour	[FAB]	

6.58.1	Applicability	to	language	

There	are	a	number	of	situations	in	Ada	where	the	language	semantics	are	implementation	defined,	to	allow	the	
implementation	to	choose	an	efficient	mechanism,	or	to	match	the	capabilities	of	the	target	environment.	Each	of	
these	situations	is	identified	in	Annex	M	of	the	Ada	language	reference	manual,	and	implementations	are	
required	to	provide	documentation	associated	with	each	item	in	Annex	M	to	provide	the	programmer	with	
guidance	on	the	implementation	choices.	

A	failure	can	occur	in	an	Ada	application	due	to	implementation-defined	behaviour	if	the	programmer	presumed	
the	implementation	made	one	choice,	when	in	fact	it	made	a	different	choice	that	affected	the	results	of	the	
execution.	In	many	cases,	a	compile-time	message	or	a	run-time	exception	will	indicate	the	presence	of	such	a	
problem.	For	example,	the	range	of	integers	supported	by	a	given	compiler	is	implementation	defined.	However,	
if	the	programmer	specifies	a	range	for	an	integer	type	that	exceeds	that	supported	by	the	implementation,	then	
a	compile-time	error	will	be	indicated,	and	if	at	run	time	a	computation	exceeds	the	base	range	of	an	integer	type,	
then	a	Constraint_Error	is	raised.	

Failure	due	to	implementation-defined	behaviour	is	generally	due	to	the	programmer	presuming	a	particular	
effect	that	is	not	matched	by	the	choice	made	by	the	implementation.	As	indicated	above,	many	such	failures	are	
indicated	by	compile-time	error	messages	or	run-time	exceptions.	However,	there	are	cases	where	the	
implementation-defined	behaviour	might	be	silently	misconstrued,	such	as	if	the	implementation	presumes	
Ada.Exceptions.Exception_Information	returns	a	string	with	a	particular	format,	when	in	fact	the	implementation	
does	not	use	the	expected	format.	If	a	program	is	attempting	to	extract	information	from	Exception_Information		
for	the	purposes	of	logging	propagated	exceptions,	then	the	log	might	end	up	with	misleading	or	useless	
information	if	there	is	a	mismatch	between	the	programmer’s	expectation	and	the	actual	implementation-
defined	format.	

Joyce L Tokar� 2017-6-7 1:10 PM
Deleted: 53

Joyce L Tokar� 2017-6-7 1:10 PM
Deleted: 55

Joyce L Tokar� 2017-6-7 1:12 PM
Deleted: 4

Joyce L Tokar� 2017-6-7 1:12 PM
Deleted: 4

©	ISO/IEC	2016	–	All	rights	reserved	 41	
	

Many	implementation-defined	limits	have	associated	constants	declared	in	language-defined	packages,	generally	
package System.	In	particular,	the	maximum	range	of	integers	is	given	by	System.Min_Int .. System.Max_Int,	and	
other	limits	are	indicated	by	constants	such	as	System.Max_Binary_Modulus,	System.Memory_Size,	
System.Max_Mantissa,	and	similar.	Other	implementation-defined	limits	are	implicit	in	normal	‘First	and	‘Last	
attributes	of	language-defined	(sub)	types,	such	as	System.Priority’First	and	System.Priority’Last.	Furthermore,	
the	implementation-defined	representation	aspects	of	types	and	subtypes	can	be	queried	by	language-defined	
attributes.	Thus,	code	can	be	parameterized	to	adjust	to	implementation-defined	properties	without	modifying	
the	code.	

6.58.2	Guidance	to	language	users		

• 	Be	aware	of	the	contents	of	Annex	M	of	the	Ada	language	reference	manual	and	avoid	implementation-
defined	behaviour	whenever	possible.		

• Make	use	of	the	constants	and	subtype	attributes	provided	in	package	System	and	elsewhere	to	avoid	
exceeding	implementation-defined	limits.		

• Minimize	use	of	any	predefined	numeric	types,	as	the	ranges	and	precisions	of	these	are	all	
implementation	defined.	Instead,	declare	your	own	numeric	types	to	match	your	particular	application	
needs.	

• When	there	are	implementation-defined	formats	for	strings,	such	as	Exception_Information,	localize	any	
necessary	processing	in	packages	with	implementation-specific	variants.		

6.59	Deprecated	Language	Features	[MEM]	

6.59.1	Applicability	to	language		
If	obsolescent	language	features	are	used,	then	the	mechanism	of	failure	for	the	vulnerability	is	as	described	in	
Section	6.59.3	of	TR	24772-1.	

6.59.2	Guidance	to	language	users		

• Use	pragma Restrictions (No_Obsolescent_Features)	to	prevent	the	use	of	any	obsolescent	features.	
• Refer	to	Annex	J	of	the	Ada	language	reference	manual	to	determine	whether	a	feature	is	obsolescent.	

6.60	Concurrency	–	Activation	[CGA]	
	
6.60.1	Applicability	to	language	

Ada	is	open	to	this	vulnerability	but	provides	features	for	its	mitigation.	A	task	failing	during	activation	will	always	
raise	an	exception	in	the	activating	task	(e.g.,	Tasking_Error).		The	activating	task	does	not	continue	executing	
until	all	its	dependent	tasks	have	completed	activation.		A	task	can	always	check	that	another	task	is	executable	
(i.e.,	not	terminated).	

6.60.2	Guidance	to	language	users	

• Always	have	a	handler	to	catch	activation	failures.	
• If	possible	declare	all	tasks	statically	at	the	library	level.	

Joyce L Tokar� 2017-6-7 1:12 PM
Deleted: 4

Joyce L Tokar� 2017-6-7 1:14 PM
Deleted: 5

Joyce L Tokar� 2017-6-7 1:14 PM
Deleted: 5

Joyce L Tokar� 2017-6-7 1:14 PM
Deleted: 5

Joyce L Tokar� 2017-6-7 1:14 PM
Deleted: 5

Joyce L Tokar� 2017-6-7 1:16 PM
Deleted: 56

Joyce L Tokar� 2017-6-7 1:16 PM
Deleted: 56

Joyce L Tokar� 2017-6-7 1:16 PM
Deleted: 56

42	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

6.61	Concurrency	–	Directed	termination	[CGT]	
	
6.61.1	Applicability	to	language	

Ada	defines	abort-deferred	regions	in	which	task	termination	will	not	occur.	On	a	single	processor,	abort	is	
defined	to	be	immediate	if	the	task	in	not	is	such	a	region.	On	multiprocessors	abort	may	not	be	immediate	but	
will	be	before	any	synchronization	(dispatching)	point.	

6.61.2	Guidance	to	language	users	

• Use	the	‘Terminated	and	‘Callable	attributes	to	check	that	a	task	has	terminated.	
• Minimize	the	size	of	any	abort-deferred	region.	
• Remove	any	possibility	of	unbounded	loops	in	abort-deferred	regions.	
• Where	possible	do	not	use	forced	termination	(abort),	or	apply	the	restriction	No_Abort_Statements	to	

eliminate	the	use	of	this	construct.	

6.62	Concurrent	Data	Access	[CGX]	
	
6.62.1	Applicability	to	language	

Ada	does	allow	tasks	to	access	unprotected	shared	variables.	However	the	standard	means	of	programming	data	
that	is	shared	between	tasks	is	to	use	a	protected	object	that	enforces	serial	access.	Atomic	updates	on	some	
simple	types	are	supported	(if	supported	by	the	hardware).	

6.62.2	Guidance	to	language	users	

• When	possible,	use	protected	objects	for	shared	data.	
• Statically	determine	that	no	unprotected	data	is	used	directly	by	more	than	one	task.	
• When	shared	variables	are	used,	employ	model	checking	or	equivalent	methodologies	to	prove	the	

absence	of	race	conditions.	

6.63	Concurrency	–	Premature	Termination	[CGS]	

6.63.1	Applicability	to	language	

An	Ada	task	can	terminate	silently,	however	in	general	the	tasking	model	is	robust	and	a	number	of	features	are	
available	to	mitigate	against	this	vulnerability	–	see	guidance	below.	

6.63.2	Guidance	to	language	users	

• If	possible,	do	not	use	the	abort	feature,	or	apply	the	restriction	No_Abort_Statements	to	eliminate	the	
use	of	this	construct.	

• All	tasks	should	contain	an	exception	handler	at	the	outer	level	to	prevent	silent	termination	due	to	
unhandled	exceptions.	

• Make	use	of	package	Ada.Task_Termination	to	force	a	handler	to	be	executed	when	a	task	terminates.	
• Use	attributes	‘Terminated	and	‘Callable	to	confirm	that	a	task	has	not	terminated	(although	care	is	

needed	here	as	a	task	could	terminate	immediately	after	this	call	is	made).	

Joyce L Tokar� 2017-6-7 1:17 PM
Deleted: 57

Joyce L Tokar� 2017-6-7 1:18 PM
Deleted: 57

Joyce L Tokar� 2017-6-7 1:18 PM
Deleted: 57

Joyce L Tokar� 2017-6-7 1:19 PM
Deleted: 58

Joyce L Tokar� 2017-6-7 1:19 PM
Deleted: 58

Joyce L Tokar� 2017-6-7 1:19 PM
Deleted: 58

Joyce L Tokar� 2017-6-7 1:21 PM
Deleted: 59

Joyce L Tokar� 2017-6-7 1:21 PM
Deleted: 59

Joyce L Tokar� 2017-6-7 1:21 PM
Deleted: 59

©	ISO/IEC	2016	–	All	rights	reserved	 43	
	

• Place	all	data	that	would	be	vulnerable	to	premature	task	termination	in	an	abort-deferred	region	(e.g.,	a	
protected	object).	

• Make	used	of	timed	task	communication	that	will	time-out	if	the	called	task	does	not	respond.	

6.64	Protocol	Lock	Errors	[CGM]	
	
6.64.1	Applicability	to	language	

Ada	is	open	to	the	errors	identified	in	this	vulnerability	but	supports	a	number	of	features	that	aid	mitigation	–	
see	guidance	below.	

6.64.2	Guidance	to	language	users	

• Make	use	of	loosely	coupled,	non-blocking	communication	using	protected	objects;	on	a	single	processor		
using	a	scheduling	regime	based	on	ceiling	protocols,	this	is	guaranteed	to	be	deadlock	free	(if	the	tasks	
and	protected	objects	are	assigned	the	correct	priorities	–	a	static	property	that	can	be	checked	offline).	

• For	multicore,	consider	assigning	all	interacting	tasks	to	the	same	CPU	then	treat	each	such	group	as	a	separate	
independent	entity.	

• Minimize	the	use	of	dynamic	priorities	and	dynamic	ceiling	priorities	(so	that	the	static	values	can	be	
verified).	

• Where	possible	stay	within	the	constraints	defined	by	the	Ravenscar	profile	[17].	
• If	synchronous	communication	(rendezvous)	is	employed,	use	model	checking	or	equivalent	to	prove	that	

the	program	is	free	from	deadlocks	etc.	
• Always	handle	exceptions	that	can	arrive	from	rendezvous	or	protected	objects	(unless	they	can	be	

proved	to	not	be	raised).	
• Guard	against	protocol	failures	by	using	timed	communication,	watchdog	timers	(programmed	using	

Ada’s	timed	events)	and	time-stamped	data	(using	the	Ada’s	clock	facilities).	

Do	not	use	unprotected	shared	data	for	synchronization	between	tasks.	

6.65	Reliance	on	External	Format	String		[SHL]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	Ada	does	not	allow	undefined	string	lengths	(see	6.7	String	Termination	[CJM]).	

7	Language	specific	vulnerabilities	for	Ada	
	
8	Implications	for	standardization	

Future	standardization	efforts	should	consider	the	following	items	to	address	vulnerability	issues	identified	earlier	
in	this	Annex:	

• Pragma Restrictions	could	be	extended	to	statically	constrain	dubious	uses	of	control	structures	(see	6.31	
Structured	Programming	[EWD]).	

• When	appropriate,	language-defined	checks	should	be	added	to	reduce	the	possibility	of	multiple	
outcomes	from	a	single	construct,	such	as	by	disallowing	side-effects	in	cases	where	the	order	of	
evaluation	could	affect	the	result,	similar	to	those	specified	for	use	of	“in out”	or	“out”	parameters	of	
functions	(see	6.24	Side-effects	and	Order	of	Evaluation	[SAM]	and	6.56	Unspecified	Behaviour	[BQF]).	

Joyce L Tokar� 2017-6-7 1:22 PM
Deleted: 0

Joyce L Tokar� 2017-6-7 1:22 PM
Deleted: 0

Joyce L Tokar� 2017-6-7 1:22 PM
Deleted: 0

Joyce L Tokar� 2017-6-7 1:24 PM
Deleted: 1

Joyce L Tokar� 2017-6-7 1:34 PM
Deleted: Uncontrolled	Format	String

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.31	Structured	Programming	[EWD]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.562	Unspecified	Behaviour	[BQF]

44	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

• When	appropriate,	language-defined	checks	should	be	added	to	reduce	the	possibility	of	erroneous	
execution,	such	as	by	disallowing	unsynchronized	access	to	shared	variables	(see	6.57	Undefined	
Behaviour	[EWF]).	

• Language	standards	should	specify	relatively	tight	boundaries	on	implementation-defined	behaviour	
whenever	possible,	and	the	standard	should	highlight	what	levels	represent	a	portable	minimum	
capability	on	which	programmers	may	rely.	For	languages	like	Ada	that	allow	user	declaration	of	numeric	
types,	the	number	of	predefined	numeric	types	should	be	minimized	(for	example,	strongly	discourage	or	
disallow	declarations	of	Byte_Integer,	Very_Long_Integer,	and	similar,	in	package Standard)	(see	6.58	
Implementation-Defined	Behaviour	[FAB]).	

• Ada	could	define	a	pragma Restrictions	identifier	No_Hiding	that	forbids	the	use	of	a	declaration	that	
result	in	a	local	homograph	(see	6.20	Identifier	Name	Reuse	[YOW]).	

• Ada	could	add	the	ability	to	declare	in	the	specification	of	a	function	that	it	is	pure,	that	is,	it	has	no	side	
effects	(see	6.24	Side-effects	and	Order	of	Evaluation	[SAM]).	

• Pragma Restrictions	could	be	extended	to	restrict	the	use	of	'Address attribute	to	library	level	static	
objects	(see	6.33	Dangling	References	to	Stack	Frames	[DCM]).	

• Future	standardization	of	Ada	should	consider	implementing	a	language-provided	reference	counting	
storage	management	mechanism	for	dynamic	objects	(see	6.39	Deep	vs.	Shallow	Copying	[YAN]	

6.39.1	Applicability	to	language	

	

6.39.2	Guidance	to	language	users	

	

• 6.40	Memory	Leak	and	Heap	Fragmentation		[XYL]).	
• Ada	could	provide	mechanisms	to	prevent	further	extensions	of	a	type	hierarchy	(see	6.42	Inheritance	

[RIP]).	
• Ada	standardization	committees	can	work	with	other	programming	language	standardization	committees	

to	define	library	interfaces	that	include	more	than	a	program	calling	interface.	In	particular,	mechanisms	
to	qualify	and	quantify	ranges	of	behaviour,	such	as	preconditions,	postconditions	and	type	invariants,	
would	be	helpful	(see	6.50	Library	Signature	[NSQ]).	

	 	

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.573	Undefined	Behaviour	[EWF]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.584	Implementation-Defined	Behaviour	
[FAB]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.20	Identifier	Name	Reuse	[YOW]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue

Stephen Michell� 2017-6-19 4:33 PM
Deleted: 6.24	Side-effects	and	Order	of	Evaluation	
[SAM]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.33	Dangling	References	to	Stack	Frames	
[DCM]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Joyce L Tokar� 2017-6-7 12:33 PM
Formatted: Normal
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.4039	Memory	Leak	and	Heap	
Fragmentation	[XYL]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.421	Inheritance	[RIP]

Stephen Michell� 2017-6-19 4:33 PM
Formatted: Underline, Font color: Blue
Stephen Michell� 2017-6-19 4:33 PM

Deleted: 6.5046	Library	Signature	[NSQ]

©	ISO/IEC	2016	–	All	rights	reserved	 45	
	

	

Bibliography	

[1]	 ISO/IEC	Directives,	Part	2,	Rules	for	the	structure	and	drafting	of	International	Standards,	2004	

[2]	 ISO/IEC	TR	10000-1,	Information	technology	—	Framework	and	taxonomy	of	International	Standardized	
Profiles	—	Part	1:	General	principles	and	documentation	framework	

[3]	 ISO	10241	(all	parts),	International	terminology	standards	

	[7]	 ISO/IEC/IEEE	60559:2011,	Information	technology	–	Microprocessor	Systems	–	Floating-Point	arithmetic	

	[9]	 ISO/IEC	8652:1995,	Information	technology	—	Programming	languages	—	Ada	

	[11]	 R.	Seacord,	The	CERT	C	Secure	Coding	Standard.	Boston,MA:	Addison-Westley,	2008.	

	[14]	 ISO/IEC	TR	15942:2000,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
	 Ada	programming	language	in	high	integrity	systems	

	[17]	 ISO/IEC	TR	24718:	2005,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
Ada	Ravenscar	Profile	in	high	integrity	systems	

	[19]	 ISO/IEC	15291:1999,	Information	technology	—	Programming	languages	—	Ada	Semantic	Interface	
Specification	(ASIS)	

[20]	 Software	Considerations	in	Airborne	Systems	and	Equipment	Certification.	Issued	in	the	USA	by	the	
Requirements	and	Technical	Concepts	for	Aviation	(document	RTCA	SC167/DO-178B)	and	in	Europe	by	the	
European	Organization	for	Civil	Aviation	Electronics	(EUROCAE	document	ED-12B).December	1992.	

[21]	 IEC	61508:	Parts	1-7,	Functional	safety:	safety-related	systems.	1998.	(Part	3	is	concerned	with	software).	

[22]	 ISO/IEC	15408:	1999	Information	technology.	Security	techniques.	Evaluation	criteria	for	IT	security.	

[23]	 Barnes,	John,	High	Integrity	Software	-	the	SPARK	Approach	to	Safety	and	Security.	Addison-Wesley.	2002.	

[24]		 Barnes,	John,	Lecture	Notes	on	Computer	Science	8338,	“Ada	2012	Rationale:	The	Language—The	
Standard	Libraries,”	Springer,	2013.			

	[25]	 Steve	Christy,	Vulnerability	Type	Distributions	in	CVE,	V1.0,	2006/10/04	

	[29]	 Lions,	J.	L.	ARIANE	5	Flight	501	Failure	Report.	Paris,	France:	European	Space	Agency	(ESA)	&	National	
Center	for	Space	Study	(CNES)	Inquiry	Board,	July	1996.	

	[33]	 The	Common	Weakness	Enumeration	(CWE)	Initiative,	MITRE	Corporation,	(http://cwe.mitre.org/)	

[34]	 Goldberg,	David,	What	Every	Computer	Scientist	Should	Know	About	Floating-Point	Arithmetic,	ACM	
Computing	Surveys,	vol	23,	issue	1	(March	1991),	ISSN	0360-0300,	pp	5-48.	

[35]	 IEEE	Standards	Committee	754.	IEEE	Standard	for	Binary	Floating-Point	Arithmetic,	ANSI/IEEE	Standard	
754-2008.	Institute	of	Electrical	and	Electronics	Engineers,	New	York,	2008.	

46	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

[36]	 Robert	W.	Sebesta,	Concepts	of	Programming	Languages,	8th	edition,	ISBN-13:	978-0-321-49362-0,	ISBN-
10:	0-321-49362-1,	Pearson	Education,	Boston,	MA,	2008	

[37]	 Bo	Einarsson,	ed.	Accuracy	and	Reliability	in	Scientific	Computing,	SIAM,	July	2005	
http://www.nsc.liu.se/wg25/book	

[38]	 GAO	Report,	Patriot	Missile	Defense:	Software	Problem	Led	to	System	Failure	at	Dhahran,	Saudi	Arabia,	B-
247094,	Feb.	4,	1992,	http://archive.gao.gov/t2pbat6/145960.pdf	

[39]	 Robert	Skeel,	Roundoff	Error	Cripples	Patriot	Missile,	SIAM	News,	Volume	25,	Number	4,	July	1992,	page	
11,	http://www.siam.org/siamnews/general/patriot.htm	

	[41]	 Holzmann,	Garard	J.,	Computer,	vol.	39,	no.	6,	pp	95-97,	Jun.,	2006,	The	Power	of	10:	Rules	for	Developing	
Safety-Critical	Code	

[42]	 P.	V.	Bhansali,	A	systematic	approach	to	identifying	a	safe	subset	for	safety-critical	software,	ACM	SIGSOFT	
Software	Engineering	Notes,	v.28	n.4,	July	2003	

[43]	 Ada	Quality	and	Style	Guide,	Guidelines	for	Professional	Programmers.		Available	from:	
https://en.wikibooks.org/wiki/Ada_Style_Guide.	

[44]	 Ghassan,	A.,	&	Alkadi,	I.	(2003).	Application	of	a	Revised	DIT	Metric	to	Redesign	an	OO	Design.	Journal	of	
Object	Technology	,	127-134.	

[45]	 Subramanian,	S.,	Tsai,	W.-T.,	&	Rayadurgam,	S.	(1998).	Design	Constraint	Violation	Detection	in	Safety-
Critical	Systems.	The	3rd	IEEE	International	Symposium	on	High-Assurance	Systems	Engineering	,	109	-	
116.	

[46]	 Lundqvist,	K	and	Asplund,	L.,	“A	Formal	Model	of	a	Run-Time	Kernel	for	Ravenscar”,	The	6th	International	
Conference	on	Real-Time	Computing	Systems	and	Applications	–	RTCSA	1999	

	 	

Joyce L Tokar� 2017-1-23 2:07 PM
Deleted: 95	

Joyce L Tokar� 2017-1-23 2:08 PM
Deleted: SPC-91061-CMC,	version	02.01.01.	
Herndon,	Virginia:	Software	Productivity	Consortium,	
1992

Joyce L Tokar� 2017-1-23 2:07 PM
Deleted: http://www.adaic.org/docs/95style/95sty
le.pdf

©	ISO/IEC	2016	–	All	rights	reserved	 47	
	

Index	

	

		
Abnormal	representation,	9	
abort,	25,	31,	37,	38,	39,	40	
Access	object,	9	
Access	type,	9	
Access	value,	10	
Access-to-subprogram,	9	
Allocator,	10	
AMV	–	Type-breaking	Reinterpretation	of	Data,	31	
Aspect	specification,	10	
Atomic,	10,	12,	17,	38,	40	
Attribute,	10	

‘Access,	20,	29	
‘Callable,	40	
‘Terminated,	40	
‘Valid,	16,	24	
’Valid,	24	
'Access,	29	
'Address,	29,	42	
'Alignment,	13	
'Component_Size,	13	
'Exponent,	17	
'First,	28,	39	
'Image,	26	
'Last,	28,	39	
'Length,	28	
'Range,	28	
'Size,	13	
'Unchecked_Access,	15,	29,	36	
'Valid,	34	

		
Bit	ordering,	10	
BJL	–	Namespace	Issues,	23	
Bounded	Error,	10	
BQF	–	Unspecified	Behaviour,	36	
BRS	–	Obscure	Language	Features,	36	
		
Case	choices,	10	
Case	expression,	10	
Case	statement,	10,	18,	27	
CCB	–	Enumerator	Issues,	17	
CGA	–	Concurrency	–	Activation,	39	
CGM	–	Protocol	Lock	Errors,	41	
CGS	–	Concurrency	–	Premature	Termination,	40	
CGT	–	Concurrency	–	Directed	termination,	39	
CGX	–	Concurrent	Data	Access,	40	
CJM	–	String	Termination,	19	
CLL	–	Switch	Statements	and	Static	Analysis,	26	

Compilation	unit,	10	
Configuration	pragma,	10,	14	
Controlled	type,	10	
CSJ	–	Passing	Parameters	and	Return	Values,	28	
		
DCM	–	Dangling	References	to	Stack	Frames,	29	
Dead	store,	10	
Default	expression,	10	
Discrete	type,	10	
Discriminant,	10,	38	
DJS	–	Inter-language	Calling,	34	
		
Endianness,	10	
Enumeration	Representation	Clause,	10	
Enumeration	type,	11,	12	
EOJ	–	Demarcation	of	Control	Flow,	27	
Erroneous	execution,	11	
EWD	–	Structured	Programming,	28	
EWF	–	Undefined	Behaviour,	37	
Exception,	11,	12,	13,	14,	16,	18,	19,	23,	24,	28,	30,	

31,	33,	34,	35,	36,	38,	39,	40,	41	
Constraint_Error,	12,	13,	19,	21,	26,	38	
Program_Error,	12,	13,	36	
Storage_Error,	12,	30	
Tasking_Error,	12,	31,	39	

Exception	Information,	38	
Expanded	name,	11	
Explicit	conversions,	13,	16	
		
FAB	–	Implementation-Defined	Behaviour,	38	
FIF	–	Arithmetic	Wrap-around	Error,	21	
Fixed-point	types,	11	
FLC	–	Numeric	Conversion	Errors,	18	
		
GDL	–	Recursion,	30	
Generic	formal	subprogram,	11	
		
HCB	–	Buffer	Boundary	Violation	(Buffer	Overflow),	

19	
HFC	–	Pointer	Type	Conversions,	19	
Hiding,	11,	12,	42	

hidden	from	all	visibility,	12	
hidden	from	direct	visibility,	12	

HJW	–	Unanticipated	Exceptions	from	Library	
Routines,	34	

Homograph,	11	
		
Idempotent	behaviour,	11	
Identifier,	11	

48	 ©	ISO/IEC	2016	–	All	rights	reserved	
	

Identifier	length,	21	
IHN–Type	System,	16	
Implementation	defined,	11,	12	
Implicit	conversions,	13,	16	
International	character	sets,	21	
		
JCW	–	Operator	Precedence/Order	of	Evaluation,	24	
Junk	initialization,	24	
		
KOA	–	Likely	Incorrect	Expression,	25	
		
Language	concepts,	12,	19,	20,	21,	26,	27,	32,	34,	41	
Language	Vulnerabilities	

Argument	Passing	to	Library	Functions	[TRJ],	33	
Arithmetic	Wrap-around	Error	[FIF],	21	
Bit	Representation	[STR],	16	
Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB],	19	
Choice	of	Clear	Names	[NAI],	21	
Concurrency	–	Activation	[CGA],	39	
Concurrency	–	Directed	termination	[CGT],	39	
Concurrency	–	Premature	Termination	[CGS],	40	
Concurrent	Data	Access	[CGX],	40	
Dangling	Reference	to	Heap	[XYK],	20	
Dangling	References	to	Stack	Frames	[DCM],	29	
Dead	and	Deactivated	Code	[XYQ],	26	
Dead	store	[WXQ],	22	
Demarcation	of	Control	Flow	[EOJ],	27	
Deprecated	Language	Features	[MEM],	39	
Dynamically-linked	Code	and	Self-modifying	Code	

[NYY],	34	
Enumerator	Issues	[CCB],	17	
Extra	Intrinsics	[LRM],	33	
Fault	Tolerance	and	Failure	Strategies	[REU],	31	
Floating-point	Arithmetic	[PLF],	17	
Identifier	Name	Reuse	[YOW],	23	
Ignored	Error	Status	and	Unhandled	Exceptions	[OYB],	

30	
Implementation-Defined	Behaviour	[FAB],	38	
Inheritance	[RIP],	33	
Initialization	of	Variables	[LAV],	23	
Inter-language	Calling	[DJS],	34	
Library	Signature	[NSQ],	34	
Likely	Incorrect	Expression	[KOA],	25	
Loop	Control	Variables	[TEX],	27	
Memory	Leak	[XYL],	32	
Namespace	Issues	[BJL],	23	
Numeric	Conversion	Errors	[FLC],	18	
Obscure	Language	Features	[BRS],	36	
Off-by-one	Error	[XZH],	27	
Operator	Precedence/Order	of	Evaluation	[JCW],	24	
Passing	Parameters	and	Return	Values	[CSJ],	28	
Pointer	Arithmetic	[RVG],	20	

Pointer	Type	Conversions	[HFC],	19	
Protocol	Lock	Errors	[CGM],	41	
Provision	of	Inherently	Unsafe	Operations	[SKL],	35	
Recursion	[GDL],	30	
Side-effects	and	Order	of	Evaluation	[SAM],	24	
String	Termination	[CJM],	19	
Structured	Programming	[EWD],	28	
Subprogram	Signature	Mismatch	[OTR],	29	
Suppression	of	Language-defined	Run-time	Checking	

[MXB],	35	
Switch	Statements	and	Static	Analysis	[CLL],	26	
Templates	and	Generics	[SYM],	32	
Type	System	[IHN],	16	
Type-breaking	Reinterpretation	of	Data	[AMV],	31	
Unanticipated	Exceptions	from	Library	Routines	[HJW],	

34	
Unchecked	Array	Indexing	[XYZ],	19	
Uncontrolled	Fromat	String	[SHL],	41	
Undefined	Behaviour	[EWF],	37	
Unspecified	Behaviour	[BQF],	36	
Unused	Variable	[YZS],	22	
Using	Shift	Operations	for	Multiplication	and	Division	

[PIK],	21	
Language	Vulnerability	

Unchecked	Array	Copying	[XYW],	19	
LAV	–	Initialization	of	Variables,	23	
LRM	–	Extra	Intrinsics,	33	
		
MEM	–	Deprecated	Language	Features,	39	
Mixed	casing,	21	
Modular	type,	11	
MXB	–	Suppression	of	Language-defined	Run-time	

Checking,	35	
		
NAI	–	Choice	of	Clear	Names,	21	
NSQ	–	Library	Signature,	34	
NYY	–	Dynamically-linked	Code	and	Self-modifying	

Code,	34	
		
Obsolescent	features,	11	
Operational	and	Representation	Attributes,	11,	13	
OTR	–	Subprogram	Signature	Mismatch,	29	
Overriding	indicators,	11	
OYB	–	Ignored	Error	Status	and	Unhandled	

Exceptions,	30	
		
Partition,	11	
PIK	–	Using	Shift	Operations	for	Multiplication	and	

Division,	21	
PLF	–	Floating-point	Arithmetic,	17	
Pointer,	11,	23	
Polymorphic	Variable,	13	

Joyce L Tokar� 2017-6-7 1:32 PM
Deleted: W

©	ISO/IEC	2016	–	All	rights	reserved	 49	
	

Postconditions,	33,	42	
Pragma,	11,	35	

Configuration	pragma,	10	
pragma	Atomic,	13,	17	
pragma	Atomic_Components,	13,	17	
pragma	Convention,	13,	30,	34	
pragma	Default_Storage_Pool,	15	
pragma	Detect_Blocking,	13	
pragma	Discard_Names,	13	
pragma	Export,	14,	30,	34	
pragma	Import,	14,	30,	32,	34	
pragma	Normalize_Scalars,	14,	24	
pragma	Pack,	14	
pragma	Restrictions,	14,	15,	36,	39,	41,	42	
pragma	Suppress,	14,	15,	19,	35,	38	
pragma	Unchecked	Union,	14	
pragma	Volatile,	14,	17	
pragma	Volatile_Components,	14,	17	

Preconditions,	33,	42	
Program	verification,	33	
		
Range	check,	12	
Record	Representation	Clauses,	12	
REU	–	Termination	Strategy,	31	
REU	–	Fault	Tolerance	and	Failure	Strategies,	31	
RIP	–	Inheritance,	33	
RVG	–	Pointer	Arithmetic,	20	
		
SAM	–	Side-effects	and	Order	of	Evaluation,	24	
Scalar	type,	12	
Separate	Compilation,	14	
SHL	–	Uncontrolled	Format	String,	41	
Singular/plural	forms,	21	
SKL	–	Provision	of	Inherently	Unsafe	Operations,	35	
Static	expressions,	12	
Storage	Place	Attributes,	12	

Storage	pool,	10,	12,	14,	15,	32	
Storage	subpool,	12,	14,	32	
STR	–	Bit	Representation,	16	
Subtype	declaration,	12	
SYM	–	Templates	and	Generics,	32	
Symbols	and	conventions,	9	
		
Task,	12,	31,	40	
Terms	and	definitions,	9	
TEX	–	Loop	Control	Variables,	27	
TRJ	–	Argument	Passing	to	Library	Functions,	33	
Type	conversion,	12,	13,	20	
Type	invariants,	33,	42	
		
Unchecked	conversions,	13,	16	
Unchecked_Conversion,	13,	15,	16,	31,	35,	37,	38	
Underscores	and	periods,	21	
Unsafe	Programming,	15,	18,	19,	20,	21,	26,	27,	32,	

34,	36,	41	
Unused	variable,	12	
User-defined	floating-point	types,	15	
User-defined	scalar	types,	15	
		
Volatile,	12,	17,	22	
		
WXQ	–	Dead	store,	22	
		
XYK	–	Dangling	Reference	to	Heap,	20	
XYL	–	Memory	Leak,	32	
XYQ	–	Dead	and	Deactivated	Code,	26	
XYW	–	Unchecked	Array	Copying,	19	
XYZ	–	Unchecked	Array	Indexing,	19	
XZH	–	Off-by-one	Error,	27	
		
YOW	–	Identifier	Name	Reuse,	23	
YZS		–	Unused	Variable,	22	

	

Joyce L Tokar� 2017-6-7 1:32 PM
Deleted: W

