
ISO/IEC JTC1/SC22/WG9 N397, 5 October 2001

Initial Working Draft of Revised ISO/IEC 13813

INTERNATIONAL STANDARD ISO/IEC 13813:2001(E)

Information technology —
Programming languages —
Generic packages of real and complex array declarations
for Ada

PROJECT: JTC1.22.10.02

SOURCE: ISO/IEC JTC1/SC22/WG9

DATE: October 1, 2001

STATUS: IS published; revisions pending

EDITOR: Donald W. Sando
The Boeing Company
P.O. Box 3707, MS 4A-25
Seattle WA 98124-2207
USA
email: donald.w.sando@boeing.com

This version of the International Standard is almost, but not quite, identical to the
version printed by ISO. The textual content is the same. It is marked as a draft
and has different page dimensions. Because the text has been prepared to format
properly in the A4 format required by ISO, some page breaks may occur in awkward
places in this version.

DRAFT

ISO/IEC 13813:2001(E) c© ISO/IEC

Contents Page

Foreword . iv

Introduction . v

1 Scope . 1

2 Normative references . 1

3 Types and operations provided . 1

4 Instantiations . 2

5 Implementations . 2

6 Exceptions . 3

7 Generic Real Arrays Package . 4
7.1 Types . 4
7.2 Real_Vector arithmetic operations 4
7.3 Real_Vector scaling operations 5
7.4 Other Real_Vector operations . 5
7.5 Real_Matrix arithmetic operations 5
7.6 Real_Matrix scaling operations 7
7.7 Other Real_Matrix operations . 7

8 Generic Complex Arrays Package . 8
8.1 Types . 8
8.2 Complex_Vector selection, conversion and composition

operations . 8
8.3 Complex_Vector arithmetic operations 9
8.4 Mixed Real_Vector and Complex_Vector arithmetic op-

erations . 10
8.5 Complex_Vector scaling operations 11
8.6 Other Complex_Vector operations 12
8.7 Complex_Matrix selection, conversion and composition

operations . 12
8.8 Complex_Matrix arithmetic operations 13
8.9 Mixed Real_Matrix and Complex_Matrix arithmetic op-

erations . 15
8.10 Complex_Matrix scaling operations 16

ii DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

8.11 Other Complex_Matrix operations 17

9 Standard non-generic packages . 17

Annexes

A Ada specification for Generic_Real_Arrays 18

B Ada specification for Generic_Complex_Arrays 20

C Rationale . 25

D Bibliography . 26

DRAFT iii

ISO/IEC 13813:2001(E) c© ISO/IEC

Foreword

ISO (the International Organization for Standardization) and IEC (the In-
ternational Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. ISO and IEC technical committees collaborate
in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC 1. Draft International Standards
adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at
least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 13813 was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology, Subcommittee 22, Pro-
gramming languages, their environments and system software interfaces.

Annexes A and B form an integral part of this International Standard. An-
nexes C and D are for information only.

iv DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

Introduction

The generic packages described here are intended to provide the basic real
and complex vector and matrix operations from which portable, reusable
applications can be built. This International Standard serves a broad class of
applications with reasonable ease of use, while demanding implementations
that are of high quality, capable of validation and also practical given the
state of the art.

The specifications included in this International Standard are presented as
compilable Ada specifications in annexes A and B with explanatory text
in numbered sections in the main body of text. The explanatory text is
normative, with the exception of notes (labeled as such).

The word “may,” as used in this International Standard, consistently means
“is allowed to” (or “are allowed to”). It is used only to express permission,
as in the commonly occurring phrase “an implementation may”; other words
(such as “can,” “could” or “might”) are used to express ability, possibility,
capacity or consequentiality.

DRAFT v

INTERNATIONAL STANDARD c© ISO/IEC ISO/IEC 13813:2001(E)

Information technology —
Programming languages —
Generic packages of real and complex array declarations
for Ada

1 Scope

This International Standard defines the specifications of two generic packages of vector and matrix operations called
Generic_Real_Arrays and Generic_Complex_Arrays. The specifications of non-generic packages called Real_Arrays
and Complex_Arrays are also defined, together with those of analogous packages for other precisions. This International
Standard does not provide the bodies of these packages.

This International Standard specifies certain fundamental vector and matrix arithmetic operations for real and complex
numbers. They were chosen because of their utility in various application areas.

This International Standard is applicable to programming environments conforming to ISO/IEC 8652.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International
Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to
agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent
editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ISO/IEC 8652, Information technology — Programming languages — Ada.

3 Types and operations provided

The following four array types are exported by the packages provided by this International Standard:

Real_Vector Real_Matrix
Complex_Vector Complex_Matrix

Two composite types with elements of type Real are provided, Real_Vector and Real_Matrix, to represent real vectors
and matrices; and two composite types with elements of type Complex are provided, Complex_Vector and Complex_Ma-
trix, to represent complex vectors and matrices.

The following eigtheen operations are provided:

"+" "-" "*" "/"
"**" "abs" Conjugate Transpose
Re Im Set_Re Set_Im
Compose_From_Cartesian Modulus Argument Compose_From_Polar
Unit_Vector Identity_Matrix

DRAFT 1

ISO/IEC 13813:2001(E) c© ISO/IEC

These are the usual mathematical operators (+, -, * and /) for real and complex vectors and matrices (together with anal-
ogous componentwise operations for vectors); the exponentiation operator (**) for real and complex vectors; the absolute
value operator (abs) for real and complex vectors and matrices; the conjugate operation (Conjugate) for complex vectors
and matrices; the transpose operation (Transpose) for real and complex matrices; the cartesian component operations
(Re, Im, Set_Re, Set_Im and Compose_From_Cartesian) for complex vectors and matrices, for selecting components and
for composing from components; the polar component operations (Modulus, Argument and Compose_From_Polar) for com-
plex vectors and matrices, for selecting components and for composing from components; and the initializing operations
(Unit_Vector and Identity_Matrix) for real and complex vectors and matrices.

4 Instantiations

This International Standard describes generic packages Generic_Real_Arrays and Generic_Complex_Arrays. Each
package has a generic formal parameter, which is a generic formal floating-point type named Real. At instantiation, this
parameter determines the precision of the arithmetic.

This International Standard also describes non-generic packages Real_Arrays and Complex_Arrays, which provide the
same capability as instantiations of the packages Generic_Real_Arrays and Generic_Complex_Arrays. It is required
that non-generic packages be constructed for each precision of floating-point type defined in package Standard.

5 Implementations

An implementation of the array operations defined in Generic_Real_Arrays and Generic_Complex_Arrays shall conform
to all of the implementation requirements specified for the corresponding (scalar) real type operations in ISO/IEC 8652. An
implementation of the array operations defined in Generic_Complex_Arrays shall also conform to all of the implementation
requirements specified for the corresponding (scalar) complex type operations in ISO/IEC 8652.

The accuracy requirements for the results of array operations are defined in terms of corresponding accuracy requirements,
specified in ISO/IEC 8652, on their (real or complex) scalar elements, unless the mathematical definition of the operation
includes an inner product (indicated in the specifications as such). The accuracy of operations involving inner products is
beyond the scope of this International Standard, except that an implementation shall document what, if any, extended-
precision accumulation of intermediate results is used to implement such inner products.

Implementations of Generic_Complex_Arrays shall provide both a strict mode in which the accuracy requirements are
observed, and an opposing relaxed mode, as defined in the Numerics Annex of ISO/IEC 8652. Either mode may be
the defualt mode, and the two modes need not actually be different. This is consistent with the numeric performance
requirements for complex scalar arithmetic, and may in fact be inherited from an implementation of the package Ada.Num-
erics.Generic_Complex_Types specified in ISO/IEC 8652.

Implementations are allowed to make reasonable assumptions about the environment in which they are to be used, but
only when necessary in order to match algorithms to hardware characteristics in an economical manner. For example, an
implementation is allowed to limit the precision it supports (by stating an assumed maximum value for System.Max_Dig-
its), since portable implementations would not, in general, be possible otherwise. All such limits and assumptions shall
be clearly documented. By convention, an implementation of Generic_Real_Arrays and Generic_Complex_Arrays is
said not to conform to this International Standard in any environment in which its limits or assumptions are not satisfied,
and this International Standard does not define its behavior in that environment. In effect, this convention delimits the
portability of implementations.

In implementations of Generic_Complex_Arrays, all operations involving mixed real and complex arithmetic are required
to construct the result by using real arithmetic (instead of by converting real values to complex values and then using
complex arithmetic). This facilitates support for a future Ada binding to IEC 559:1989.

2 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

Some hardware and their accompanying Ada implementations have the capability of representing and discriminating
between positively and negatively signed zeros as a means (for example) of preserving the sign of an infinitesimal quantity
that has underflowed to zero. Implementations in which Real'Signed_Zeros is True should attempt to provide a rational
treatment of the signs of zero results, result components and scalar elements of composite results.

6 Exceptions

The Constraint_Error exception, declared in package Standard of ISO/IEC 8652, is raised by a subprogram in these
generic packages when the argument(s) of the subprogram violate one or more of the conditions for matching elements
of arrays (as in predefined equality); that is, for dyadic array operations, the bounds of the given left and right array
operands need not be equal, but their appropriate vector lengths or row and/or column lengths (for matrices) shall be
equal.

The Argument_Error exception, declared in package Ada.Numerics of ISO/IEC 8652, is raised by a subprogram in Ge-
neric_Complex_Arrays when the argument(s) of the subprogram violate one or more of the conditions given in the
subprogram’s definition.

NOTES

1 These conditions are related only to the mathematical definition of the subprogram and are therefore implementation indepen-
dent.

2 These conditions are inherited from the corresponding scalar subprogram defined in Ada.Numerics.Generic_Complex_Types of
ISO/IEC 8652.

An implementation shall raise the Constraint_Error exception for signaling division by zero in the following specific cases
where the corresponding mathematical results, or components thereof, are infinite, provided Real'Machine_Overflows is
True:

a) array operations whose mathematical definition involves division of an element by (real or complex) zero;

b) array operations whose mathematical definition involves exponentiation of (real or complex) zero by a negative
(integer) exponent;

If Real'Machine_Overflows is False, the result for each of the foregoing specific cases is unspecified.

The Constraint_Error exception shall also be raised by a subprogram for all of the exceptional conditions related to real
and complex types as defined in ISO/IEC 8652, provided Real'Machine_Overflows is True.

For the case of floating-point overflow, some of the operations are allowed to raise Constraint_Error for certain arguments
for which neither component of the result can overflow, provided Real'Machine_Overflows is True. This freedom is
granted for operations involving either an inner product or complex exponentiation. Permission to signal overflow in these
cases recognizes the difficulty of avoiding overflow in the computation of intermediate results, given the current state of
the art.

Besides Argument_Error and Constraint_Error, the only exceptions allowed during a call to a subprogram in these
packages are the other predefined exceptions declared in package Standard of ISO/IEC 8652.

DRAFT 3

ISO/IEC 13813:2001(E) c© ISO/IEC

7 Generic Real Arrays Package

The generic package Generic_Real_Arrays defines operations and types for real vector and matrix arithmetic. One
generic formal parameter, the floating-point type Real, is defined for Generic_Real_Arrays. The corresponding generic
actual parameter determines the precision of the arithmetic to be used in an instantiation of this generic package.

The Ada package specification for Generic_Real_Arrays is given in annex A.

7.1 Types

Two types are defined and exported by Generic_Real_Arrays. The composite type Real_Vector is provided to represent
a vector with elements of type Real; it is defined as an unconstrained, one-dimensional array with an index of type
Integer. The composite type Real_Matrix is provided to represent a matrix with elements of type Real; it is defined as
an unconstrained, two-dimensional array with indices of type Integer.

7.2 Real_Vector arithmetic operations

function "+" (Right : Real_Vector) return Real_Vector;
function "-" (Right : Real_Vector) return Real_Vector;
function "abs" (Right : Real_Vector) return Real_Vector;

Each operation returns the result of applying the appropriate operation to each element of Right. This is also the standard
mathematical operation for vector identity, negation and absolute value.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as defined
in ISO/IEC 8652.

function "+" (Left, Right : Real_Vector) return Real_Vector;
function "-" (Left, Right : Real_Vector) return Real_Vector;
function "*" (Left, Right : Real_Vector) return Real_Vector;
function "/" (Left, Right : Real_Vector) return Real_Vector;

Each operation returns the result of applying the appropriate operation to each element of Left and the matching element
of Right. This is also the standard mathematical operation for vector addition, subtraction, multiplication and division.
The index range of the result is Left'Range. The exception Constraint_Error is raised if Left'Length 6= Right'Length.
The exception specified by ISO/IEC 8652 for signaling division by zero is raised when division by zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as defined
in ISO/IEC 8652.

function "**" (Left : Real_Vector;
Right : Integer) return Real_Vector;

This operation returns the result of applying the standard mathematical operation for exponentiation by an integer power
to each element of Left. The index range of the result is Left'Range. The exception specified by ISO/IEC 8652 for
signaling division by zero is raised if for some integer I (in the index range of Left), Left(I) = 0.0 and Right < 0.

Each array element of the result shall satisfy the (scalar) accuracy requirement of exponentiation by an integer power, as
defined in ISO/IEC 8652.

function "*" (Left, Right : Real_Vector) return Real'Base;

4 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

This operation returns the inner (dot) product of Left and Right. The exception Constraint_Error is raised if
Left'Length 6= Right'Length.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

7.3 Real_Vector scaling operations

function "*" (Left : Real'Base;
Right : Real_Vector) return Real_Vector;

This operation applies the standard mathematical operation for scaling a vector Right by a real number Left. The index
range of the vector result is Right'Range.

Each array element of the result shall satisfy the (scalar) accuracy requirement of multiplication, as defined in
ISO/IEC 8652.

function "*" (Left : Real_Vector;
Right : Real'Base) return Real_Vector;

function "/" (Left : Real_Vector;
Right : Real'Base) return Real_Vector;

Each operation applies the standard mathematical operation for scaling a vector Left by a real number Right. The index
range of the vector result is Left'Range. The exception specified by ISO/IEC 8652 for signaling division by zero is raised
when division by zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as defined
in ISO/IEC 8652.

7.4 Other Real_Vector operations

function Unit_Vector (Index : Integer;
Order : Positive;
First : Integer := 1) return Real_Vector;

This function returns a “unit vector” with Order elements and a lower bound of First. All elements are set to 0.0
except for the Index element which is set to 1.0. The exception Constraint_Error is raised if Index < First, Index >
First + Order− 1 or if First + Order− 1 > Integer'Last.

This function is exact.

7.5 Real_Matrix arithmetic operations

function "+" (Right : Real_Matrix) return Real_Matrix;
function "-" (Right : Real_Matrix) return Real_Matrix;
function "abs" (Right : Real_Matrix) return Real_Matrix;

DRAFT 5

ISO/IEC 13813:2001(E) c© ISO/IEC

Each operation returns the result of applying the appropriate operation to each element of Right. This is also the standard
mathematical operation for matrix identity, negation and absolute value. The index ranges of the result are those of Right.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as defined
in ISO/IEC 8652.

function Transpose (X : Real_Matrix) return Real_Matrix;

This function returns the transpose of a matrix X. The index ranges of the result are X'Range(2) and X'Range(1) (first
and second index respectively).

This function is exact.

function "+" (Left, Right : Real_Matrix) return Real_Matrix;
function "-" (Left, Right : Real_Matrix) return Real_Matrix;

Each operation returns the result of applying the appropriate operation to each element of Left and the matching element
of Right. This is also the standard mathematical operation for matrix addition and subtraction. The index ranges of
the result are those of Left. The exception Constraint_Error is raised if Left'Length(1) 6= Right'Length(1) or
Left'Length(2) 6= Right'Length(2).

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as defined
in ISO/IEC 8652.

function "*" (Left, Right : Real_Matrix) return Real_Matrix;

This operation applies the standard mathematical operation for matrix multiplication. The index ranges of the result are
Left'Range(1) and Right'Range(2) (first and second index respectively). The exception Constraint_Error is raised if
Left'Length(2) 6= Right'Length(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

function "*" (Left, Right : Real_Vector) return Real_Matrix;

This operation applies the standard mathematical operation for multiplication of a (column) vector Left by a (row) vector
Right. The index ranges of the matrix result are Left'Range and Right'Range (first and second index respectively).

Each array element of the result shall satisfy the (scalar) accuracy requirement of multiplication, as defined in
ISO/IEC 8652.

function "*" (Left : Real_Vector;
Right : Real_Matrix) return Real_Vector;

This operation applies the standard mathematical operation for multiplication of a (row) vector Left by a matrix
Right. The index range of the (row) vector result is Right'Range(2). The exception Constraint_Error is raised if
Left'Length 6= Right'Length(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

6 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

function "*" (Left : Real_Matrix;
Right : Real_Vector) return Real_Vector;

This operation applies the standard mathematical operation for multiplication of a matrix Left by a (column) vector
Right. The index range of the (column) vector result is Left'Range(1). The exception Constraint_Error is raised if
Left'Length(2) 6= Right'Length.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

7.6 Real_Matrix scaling operations

function "*" (Left : Real'Base;
Right : Real_Matrix) return Real_Matrix;

This operation applies the standard mathematical operation for scaling a matrix Right by a real number Left. The index
ranges of the matrix result are those of Right.

Each array element of the result shall satisfy the (scalar) accuracy requirement of multiplication, as defined in
ISO/IEC 8652.

function "*" (Left : Real_Matrix;
Right : Real'Base) return Real_Matrix;

function "/" (Left : Real_Matrix;
Right : Real'Base) return Real_Matrix;

Each operation applies the standard mathematical operation for scaling a matrix Left by a real number Right. The index
ranges of the matrix result are those of Left. The exception specified by ISO/IEC 8652 for signaling division by zero is
raised when division by zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as defined
in ISO/IEC 8652.

7.7 Other Real_Matrix operations

function Identity_Matrix (Order : Positive;
First_1, First_2 : Integer := 1) return Real_Matrix;

This function returns a square “identity matrix” with Order2 elements and lower bounds of First_1 and First_2 (for the
first and second index ranges respectively). All elements are set to 0.0 except for the main diagonal, whose elements are
set to 1.0. The exception Constraint_Error is raised if First_1+ Order− 1 > Integer'Last or First_2+ Order− 1 >
Integer'Last.

This function is exact.

DRAFT 7

ISO/IEC 13813:2001(E) c© ISO/IEC

8 Generic Complex Arrays Package

The generic package Generic_Complex_Arrays defines operations and types for complex and mixed real and complex
vector and matrix arithmetic. One generic formal type parameter is defined for Generic_Complex_Arrays, the floating-
point type Real which determines the precision of the arithmetic to be used in an instantiation of this generic package.
Two formal package parameters, Real_Arrays and Complex_Types are also defined.

The Ada package specification for Generic_Complex_Arrays is given in annex B.

8.1 Types

Two types are defined and exported by Generic_Complex_Arrays. The composite type Complex_Vector is provided to
represent a vector with elements of type Complex; it is defined as an unconstrained, one-dimensional array with an index
of type Integer. The composite type Complex_Matrix is provided to represent a matrix with elements of type Complex;
it is defined as an unconstrained, two-dimensional array with indices of type Integer.

8.2 Complex_Vector selection, conversion and composition operations

function Re (X : Complex_Vector) return Real_Vector;
function Im (X : Complex_Vector) return Real_Vector;

Each function returns a vector of the specified cartesian component-parts of X. The index range of the result is X'Range.

Each function is exact.

procedure Set_Re (X : in out Complex_Vector;
Re : in Real_Vector);

procedure Set_Im (X : in out Complex_Vector;
Im : in Real_Vector);

Each procedure resets the specified (cartesian) component of each of the elements of X; the other (cartesian) component
of each of the elements is unchanged. The exception Constraint_Error is raised if X'Length 6= Re'Length and if
X'Length 6= Im'Length.

Each procedure is exact.

function Compose_From_Cartesian
(Re : Real_Vector) return Complex_Vector;

function Compose_From_Cartesian
(Re, Im : Real_Vector) return Complex_Vector;

Each function constructs a vector of Complex results (in cartesian representation) formed from given vectors of cartesian
component-parts (when only the real component-parts are given, imaginary component-parts of zero are assumed). The
index range of the result is Re'Range. The exception Constraint_Error is raised if Re'Length 6= Im'Length.

Each function is exact.

function Modulus (X : Complex_Vector) return Real_Vector;
function "abs" (Right : Complex_Vector) return Real_Vector

renames Modulus;
function Argument (X : Complex_Vector) return Real_Vector;
function Argument (X : Complex_Vector;

Cycle : Real'Base) return Real_Vector;

8 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

Each function calculates and returns a vector of the specified polar component-parts of X. The index range of the result
is X'Range. Each array element of the result shall satisfy the (scalar) range definition of the appropriate function.

Cycle defines the period of Argument; when no Cycle is given, a period of 2π is assumed. The exception Argument_Error
is raised for Cycle ≤ 0.0.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate function.

function Compose_From_Polar
(Modulus, Argument : Real_Vector) return Complex_Vector;

function Compose_From_Polar
(Modulus, Argument : Real_Vector;
Cycle : Real'Base) return Complex_Vector;

Each function constructs a vector of Complex results (in cartesian representation) formed from given vectors of polar
component-parts. Each element of Argument is assumed to have a period of Cycle (and is reduced accordingly); when no
Cycle is given, a period of 2π is assumed. The index range of the result is Modulus'Range. The exception Constraint_Er-
ror is raised if Modulus'Length 6= Argument'Length; the exception Argument_Error is raised for Cycle ≤ 0.0.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate function.

8.3 Complex_Vector arithmetic operations

function "+" (Right : Complex_Vector) return Complex_Vector;
function "-" (Right : Complex_Vector) return Complex_Vector;

Each operation returns the result of applying the appropriate operation to each element of Right. This is also the standard
mathematical operation for vector identity and negation. The index range of the result is Right'Range.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex
arithmetic.

function Conjugate (X : Complex_Vector) return Complex_Vector;

This function returns the result of applying the standard mathematical operation for complex conjugation to each element
of X. The index range of the result is X'Range.

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex conjugation.

function "+" (Left, Right : Complex_Vector) return Complex_Vector;
function "-" (Left, Right : Complex_Vector) return Complex_Vector;
function "*" (Left, Right : Complex_Vector) return Complex_Vector;
function "/" (Left, Right : Complex_Vector) return Complex_Vector;

Each operation returns the result of applying the appropriate operation to each element of Left and the matching element
of Right. This is also the standard mathematical operation for vector addition, subtraction, multiplication and division.
The index range of the result is Left'Range. The exception Constraint_Error is raised if Left'Length 6= Right'Length.
The exception specified by ISO/IEC 8652 for signaling division by zero is raised when division by (complex) zero is
attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex
arithmetic.

DRAFT 9

ISO/IEC 13813:2001(E) c© ISO/IEC

function "**" (Left : Complex_Vector;
Right : Integer) return Complex_Vector;

This operation returns the result of applying the standard mathematical operation for complex exponentiation by an integer
power to each element of Left. The index range of the result is Left'Range. The exception specified by ISO/IEC 8652 for
signaling division by zero is raised if for some integer I (in the index range of Left), Left(I) = (0.0, 0.0) and Right < 0.

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex exponentiation by an integer
power.

function "*" (Left, Right : Complex_Vector) return Complex;

This operation returns the inner (dot) product of Left and Right; no complex conjugation is performed. The exception
Constraint_Error is raised if Left'Length 6= Right'Length.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

8.4 Mixed Real_Vector and Complex_Vector arithmetic operations

function "+" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "+" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

function "-" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "-" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

function "*" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "*" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

function "/" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "/" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

Each operation returns the result of applying the appropriate operation to each element of Left and the matching element
of Right. This is also the standard mathematical operation for vector addition, subtraction, multiplication and division.
The index range of the result is Left'Range. The exception Constraint_Error is raised if Left'Length 6= Right'Length.
The exception specified by ISO/IEC 8652 for signaling division by zero is raised when division by (real or complex) zero
is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for mixed
real and complex arithmetic.

function "*" (Left : Real_Vector;
Right : Complex_Vector) return Complex;

function "*" (Left : Complex_Vector;
Right : Real_Vector) return Complex;

10 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

Each operation returns the inner (dot) product of Left and Right. The exception Constraint_Error is raised if
Left'Length 6= Right'Length.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

8.5 Complex_Vector scaling operations

function "*" (Left : Complex;
Right : Complex_Vector) return Complex_Vector;

Each operation applies the standard mathematical operation for scaling a vector Right by a complex number Left. The
index range of the result is Right'Range.

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex multiplication.

function "*" (Left : Complex_Vector;
Right : Complex) return Complex_Vector;

function "/" (Left : Complex_Vector;
Right : Complex) return Complex_Vector;

Each operation applies the standard mathematical operation for scaling a vector Left by a complex number Right. The
index range of the result is Left'Range. The exception specified by ISO/IEC 8652 for signaling division by zero is raised
when division by (complex) zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex
arithmetic.

function "*" (Left : Real'Base;
Right : Complex_Vector) return Complex_Vector;

Each operation applies the standard mathematical operation for scaling a complex vector Right by a real number Left.
The index range of the result is Right'Range.

Each array element of the result shall satisfy the (scalar) accuracy requirement of mixed real and complex multiplication.

function "*" (Left : Complex_Vector;
Right : Real'Base) return Complex_Vector;

function "/" (Left : Complex_Vector;
Right : Real'Base) return Complex_Vector;

Each operation applies the standard mathematical operation for scaling a complex vector Left by a real number Right.
The index range of the result is Left'Range. The exception specified by ISO/IEC 8652 for signaling division by zero is
raised when division by (real) zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for mixed
real and complex arithmetic.

DRAFT 11

ISO/IEC 13813:2001(E) c© ISO/IEC

8.6 Other Complex_Vector operations

function Unit_Vector (Index : Integer;
Order : Positive;
First : Integer := 1) return Complex_Vector;

This function returns a “unit vector” with Order elements and a lower bound of First. All elements are set to (0.0, 0.0)
except for the Index element which is set to (1.0, 0.0). The exception Constraint_Error is raised if Index < First,
Index > First + Order− 1, or if First + Order− 1 > Integer'Last.

This function is exact.

8.7 Complex_Matrix selection, conversion and composition operations

function Re (X : Complex_Matrix) return Real_Matrix;
function Im (X : Complex_Matrix) return Real_Matrix;

Each function returns a matrix of the specified cartesian component-parts of X. The index ranges of the result are those
of X.

Each function is exact.

procedure Set_Re (X : in out Complex_Matrix;
Re : in Real_Matrix);

procedure Set_Im (X : in out Complex_Matrix;
Im : in Real_Matrix);

Each procedure resets the specified (cartesian) component of each of the elements of X; the other (cartesian) component
of each of the elements is unchanged. The exception Constraint_Error is raised if X'Length(1) 6= Re'Length(1) or
X'Length(2) 6= Re'Length(2) and if X'Length(1) 6= Im'Length(1) or X'Length(2) 6= Im'Length(2).

Each procedure is exact.

function Compose_From_Cartesian
(Re : Real_Matrix) return Complex_Matrix;

function Compose_From_Cartesian
(Re, Im : Real_Matrix) return Complex_Matrix;

Each function constructs a matrix of Complex results (in cartesian representation) formed from given matrices of cartesian
component-parts (when only the real component-parts are given, imaginary component-parts of zero are assumed). The
index ranges of the result are those of Re. The exception Constraint_Error is raised if Re'Length(1) 6= Im'Length(1)
or Re'Length(2) 6= Im'Length(2).

Each function is exact.

function Modulus (X : Complex_Matrix) return Real_Matrix;
function "abs" (Right : Complex_Matrix) return Real_Matrix

renames Modulus;
function Argument (X : Complex_Matrix) return Real_Matrix;
function Argument (X : Complex_Matrix;

Cycle : Real'Base) return Real_Matrix;

12 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

Each function calculates and returns a matrix of the specified polar component-parts of X. The index ranges of the result
are those of X. Each array element of the result shall satisfy the (scalar) range definition of the appropriate function.

Cycle defines the period of Argument; when no Cycle is given, a period of 2π is assumed. The exception Argument_Error
is raised for Cycle ≤ 0.0.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate function.

function Compose_From_Polar
(Modulus, Argument : Real_Matrix) return Complex_Matrix;

function Compose_From_Polar
(Modulus, Argument : Real_Matrix;
Cycle : Real'Base) return Complex_Matrix;

Each function constructs a matrix of Complex results (in cartesian representation) formed from given matrices of polar
component-parts. Each element of Argument is assumed to have a period of Cycle (and is reduced accordingly); when
no Cycle is given, a period of 2π is assumed. The index ranges of the result are those of Modulus. The exception Con-
straint_Error is raised if Modulus'Length(1) 6= Argument'Length(1) or Modulus'Length(2) 6= Argument'Length(2);
the exception Argument_Error is raised for Cycle ≤ 0.0.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate function.

8.8 Complex_Matrix arithmetic operations

function "+" (Right : Complex_Matrix) return Complex_Matrix;
function "-" (Right : Complex_Matrix) return Complex_Matrix;

Each operation returns the result of applying the appropriate operation to each element of Right. This is also the standard
mathematical operation for matrix identity and negation. The index ranges of the result are those of Right.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex
arithmetic.

function Conjugate (X : Complex_Matrix) return Complex_Matrix;

This function returns the result of applying the standard mathematical operation for complex conjugation to each element
of X. The index ranges of the result are those of X.

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex conjugation.

function Transpose (X : Complex_Matrix) return Complex_Matrix;

This function returns the transpose of a matrix X. The index ranges of the result are X'Range(2) and X'Range(1) (first
and second index respectively).

This function is exact.

function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;

DRAFT 13

ISO/IEC 13813:2001(E) c© ISO/IEC

Each operation applies the appropriate standard mathematical operation for matrix addition or subtraction. The index
ranges of the result are those of Left. The exception Constraint_Error is raised if Left'Length(1) 6= Right'Length(1)
or Left'Length(2) 6= Right'Length(2).

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex
arithmetic.

function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;

This operation applies the standard mathematical operation for matrix multiplication. The index ranges of the result are
Left'Range(1) and Right'Range(2) (first and second index respectively). The exception Constraint_Error is raised if
Left'Length(2) 6= Right'Length(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

function "*" (Left, Right : Complex_Vector) return Complex_Matrix;

This operation applies the standard mathematical operation for multiplication of a (column) vector by a (row) vector.
The index ranges of the matrix result are Left'Range and Right'Range (first and second index respectively).

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex multiplication.

function "*" (Left : Complex_Vector;
Right : Complex_Matrix) return Complex_Vector;

This operation applies the standard mathematical operation for multiplication of a (row) vector by a matrix. The index
range of the (row) vector result is Right'Range(2). The exception Constraint_Error is raised if Left'Length 6=
Right'Length(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

function "*" (Left : Complex_Matrix;
Right : Complex_Vector) return Complex_Vector;

This operation applies the standard mathematical operation for multiplication of a matrix by a (column) vector. The index
range of the (column) vector result is Left'Range(1). The exception Constraint_Error is raised if Left'Length(2) 6=
Right'Length.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

14 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

8.9 Mixed Real_Matrix and Complex_Matrix arithmetic operations

function "+" (Left : Real_Matrix;
Right : Complex_Matrix) return Complex_Matrix;

function "+" (Left : Complex_Matrix;
Right : Real_Matrix) return Complex_Matrix;

function "-" (Left : Real_Matrix;
Right : Complex_Matrix) return Complex_Matrix;

function "-" (Left : Complex_Matrix;
Right : Real_Matrix) return Complex_Matrix;

Each operation applies the appropriate standard mathematical operation for matrix addition or subtraction. The index
ranges of the result are those of Left. The exception Constraint_Error is raised if Left'Length(1) 6= Right'Length(1)
or Left'Length(2) 6= Right'Length(2).

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for mixed
real and complex arithmetic.

function "*" (Left : Real_Matrix;
Right : Complex_Matrix) return Complex_Matrix;

function "*" (Left : Complex_Matrix;
Right : Real_Matrix) return Complex_Matrix;

Each operation applies the standard mathematical operation for matrix multiplication. The index ranges of the result are
Left'Range(1) and Right'Range(2) (first and second index respectively). The exception Constraint_Error is raised if
Left'Length(2) 6= Right'Length(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

function "*" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Matrix;

function "*" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Matrix;

Each operation applies the standard mathematical operation for multiplication of a (column) vector by a (row) vector.
The index ranges of the matrix result are Left'Range and Right'Range (first and second index respectively).

Each array element of the result shall satisfy the (scalar) accuracy requirement of mixed real and complex multiplication.

function "*" (Left : Real_Vector;
Right : Complex_Matrix) return Complex_Vector;

function "*" (Left : Complex_Vector;
Right : Real_Matrix) return Complex_Vector;

Each operation applies the standard mathematical operation for multiplication of a (row) vector by a matrix. The
index range of the (row) vector result is Right'Range(2). The exception Constraint_Error is raised if Left'Length 6=
Right'Length(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

DRAFT 15

ISO/IEC 13813:2001(E) c© ISO/IEC

function "*" (Left : Real_Matrix;
Right : Complex_Vector) return Complex_Vector;

function "*" (Left : Complex_Matrix;
Right : Real_Vector) return Complex_Vector;

Each operation applies the standard mathematical operation for multiplication of a matrix by a (column) vector. The index
range of the (column) vector result is Left'Range(1). The exception Constraint_Error is raised if Left'Length(2) 6=
Right'Length.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 6 applies when the elements of Left and Right are such that computation of an intermediate result could signal
overflow.

8.10 Complex_Matrix scaling operations

function "*" (Left : Complex;
Right : Complex_Matrix) return Complex_Matrix;

Each operation applies the standard mathematical operation for scaling a matrix Right by a complex number Left. The
index ranges of the result are those of Right.

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex multiplication.

function "*" (Left : Complex_Matrix;
Right : Complex) return Complex_Matrix;

function "/" (Left : Complex_Matrix;
Right : Complex) return Complex_Matrix;

Each operation applies the standard mathematical operation for scaling a matrix Left by a complex number Right. The
index ranges of the result are those of Left. The exception specified by ISO/IEC 8652 for signaling division by zero is
raised when division by (complex) zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex
arithmetic.

function "*" (Left : Real'Base;
Right : Complex_Matrix) return Complex_Matrix;

Each operation applies the standard mathematical operation for scaling a complex matrix Right by a real number Left.
The index ranges of the result are those of Right.

Each array element of the result shall satisfy the (scalar) accuracy requirement of mixed real and complex multiplication.

function "*" (Left : Complex_Matrix;
Right : Real'Base) return Complex_Matrix;

function "/" (Left : Complex_Matrix;
Right : Real'Base) return Complex_Matrix;

Each operation applies the standard mathematical operation for scaling a complex matrix Left by a real number Right.
The index ranges of the result are those of Left. The exception specified by ISO/IEC 8652 for signaling division by zero
is raised when division by (real) zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for mixed
real and complex arithmetic.

16 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

8.11 Other Complex_Matrix operations

function Identity_Matrix (Order : Positive;
First_1, First_2 : Integer := 1) return Complex_Matrix;

This function returns a square “identity matrix” with Order2 elements and lower bounds of First_1 and First_2 (for
the first and second index ranges respectively). All elements are set to (0.0, 0.0) except for the main diagonal, whose
elements are set to (1.0, 0.0). The exception Constraint_Error is raised if First_1 + Order − 1 > Integer'Last or
First_2 + Order− 1 > Integer'Last.

This function is exact.

9 Standard non-generic packages

In addition to the generic type packages, analogous non-generic packages are required to define standard real and complex
vector and matrix types. Non-generic packages shall be provided for all precisions defined in package Standard. The same
floating-point type shall be used to generate real and complex packages of the same precision.

The packages Real_Arrays and Complex_Arrays shall always be provided; these packages shall define the same types
and subprograms as Generic_Real_Arrays and Generic_Complex_Arrays, respectively, except that the predefined type
Float shall replace type Real throughout.

Names of the other non-generic packages (where defined) shall be assigned as follows:

— if the predefined floating-point type Short_Float is supported by a host implementation of ISO/IEC 8652, then
this type shall be used to generate the packages Short_Real_Arrays and Short_Complex_Arrays;

— if the predefined floating-point type Long_Float is supported by a host implementation of ISO/IEC 8652, then
this type shall be used to generate the packages Long_Real_Arrays and Long_Complex_Arrays; and

— if other predefined floating-point types are supported (e.g., Long_Long_Float), package names shall be assigned by
considering the predefined types in order of ascending (for Long-types) or descending (for Short-types) precision and
matching the prefix of each floating-point type with that of the corresponding package names.

Each non-generic package shall define the same types and subprograms as the corresponding generic package, except that
the appropriate predefined type shall replace type Real throughout.

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for the appropriate
predefined type.

DRAFT 17

ISO/IEC 13813:2001(E) c© ISO/IEC

Annex A
(normative)

Ada specification for Generic_Real_Arrays

generic
type Real is digits <>;

package Ada.Numerics.Generic_Real_Arrays is
pragma Pure(Generic_Real_Arrays);

-- Types

type Real_Vector is array (Integer range <>) of Real'Base;
type Real_Matrix is array (Integer range <>,

Integer range <>) of Real'Base;

-- Subprograms for Real_Vector Types

-- Real_Vector arithmetic operations

function "+" (Right : Real_Vector) return Real_Vector;
function "-" (Right : Real_Vector) return Real_Vector;
function "abs" (Right : Real_Vector) return Real_Vector;

function "+" (Left, Right : Real_Vector) return Real_Vector;
function "-" (Left, Right : Real_Vector) return Real_Vector;
function "*" (Left, Right : Real_Vector) return Real_Vector;
function "/" (Left, Right : Real_Vector) return Real_Vector;
function "**" (Left : Real_Vector;

Right : Integer) return Real_Vector;

function "*" (Left, Right : Real_Vector) return Real'Base;

-- Real_Vector scaling operations

function "*" (Left : Real'Base;
Right : Real_Vector) return Real_Vector;

function "*" (Left : Real_Vector;
Right : Real'Base) return Real_Vector;

function "/" (Left : Real_Vector;
Right : Real'Base) return Real_Vector;

-- Other Real_Vector operations

function Unit_Vector (Index : Integer;
Order : Positive;
First : Integer := 1) return Real_Vector;

-- Subprograms for Real_Matrix Types

-- Real_Matrix arithmetic operations

18 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

function "+" (Right : Real_Matrix) return Real_Matrix;
function "-" (Right : Real_Matrix) return Real_Matrix;
function "abs" (Right : Real_Matrix) return Real_Matrix;
function Transpose (X : Real_Matrix) return Real_Matrix;

function "+" (Left, Right : Real_Matrix) return Real_Matrix;
function "-" (Left, Right : Real_Matrix) return Real_Matrix;
function "*" (Left, Right : Real_Matrix) return Real_Matrix;

function "*" (Left, Right : Real_Vector) return Real_Matrix;
function "*" (Left : Real_Vector;

Right : Real_Matrix) return Real_Vector;
function "*" (Left : Real_Matrix;

Right : Real_Vector) return Real_Vector;

-- Real_Matrix scaling operations

function "*" (Left : Real'Base;
Right : Real_Matrix) return Real_Matrix;

function "*" (Left : Real_Matrix;
Right : Real'Base) return Real_Matrix;

function "/" (Left : Real_Matrix;
Right : Real'Base) return Real_Matrix;

-- Other Real_Matrix operations

function Identity_Matrix (Order : Positive;
First_1, First_2 : Integer := 1) return Real_Matrix;

end Ada.Numerics.Generic_Real_Arrays;

DRAFT 19

ISO/IEC 13813:2001(E) c© ISO/IEC

Annex B
(normative)

Ada specification for Generic_Complex_Arrays

generic
with package Real_Arrays is new Ada.Numerics.Generic_Real_Arrays (<>);
with package Complex_Types is new Ada.Numerics.Generic_Complex_Types (<>);
use Real_Arrays;
use Complex_Types;

package Ada.Numerics.Generic_Complex_Arrays is
pragma Pure(Generic_Complex_Arrays);

-- Types

type Complex_Vector is array (Integer range <>) of Complex;
type Complex_Matrix is array (Integer range <>,

Integer range <>) of Complex;

-- Subprograms for Complex_Vector types

-- Complex_Vector selection, conversion and composition operations

function Re (X : Complex_Vector) return Real_Vector;
function Im (X : Complex_Vector) return Real_Vector;

procedure Set_Re (X : in out Complex_Vector;
Re : in Real_Vector);

procedure Set_Im (X : in out Complex_Vector;
Im : in Real_Vector);

function Compose_From_Cartesian
(Re : Real_Vector) return Complex_Vector;

function Compose_From_Cartesian
(Re, Im : Real_Vector) return Complex_Vector;

function Modulus (X : Complex_Vector) return Real_Vector;
function "abs" (Right : Complex_Vector) return Real_Vector

renames Modulus;
function Argument (X : Complex_Vector) return Real_Vector;
function Argument (X : Complex_Vector;

Cycle : Real'Base) return Real_Vector;

function Compose_From_Polar
(Modulus, Argument : Real_Vector) return Complex_Vector;

function Compose_From_Polar
(Modulus, Argument : Real_Vector;
Cycle : Real'Base) return Complex_Vector;

-- Complex_Vector arithmetic operations

20 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

function "+" (Right : Complex_Vector) return Complex_Vector;
function "-" (Right : Complex_Vector) return Complex_Vector;
function Conjugate (X : Complex_Vector) return Complex_Vector;

function "+" (Left, Right : Complex_Vector) return Complex_Vector;
function "-" (Left, Right : Complex_Vector) return Complex_Vector;
function "*" (Left, Right : Complex_Vector) return Complex_Vector;
function "/" (Left, Right : Complex_Vector) return Complex_Vector;
function "**" (Left : Complex_Vector;

Right : Integer) return Complex_Vector;

function "*" (Left, Right : Complex_Vector) return Complex;

-- Mixed Real_Vector and Complex_Vector arithmetic operations

function "+" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "+" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

function "-" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "-" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

function "*" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "*" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

function "/" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Vector;

function "/" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Vector;

function "*" (Left : Real_Vector;
Right : Complex_Vector) return Complex;

function "*" (Left : Complex_Vector;
Right : Real_Vector) return Complex;

-- Complex_Vector scaling operations

function "*" (Left : Complex;
Right : Complex_Vector) return Complex_Vector;

function "*" (Left : Complex_Vector;
Right : Complex) return Complex_Vector;

function "/" (Left : Complex_Vector;
Right : Complex) return Complex_Vector;

function "*" (Left : Real'Base;
Right : Complex_Vector) return Complex_Vector;

function "*" (Left : Complex_Vector;
Right : Real'Base) return Complex_Vector;

function "/" (Left : Complex_Vector;
Right : Real'Base) return Complex_Vector;

DRAFT 21

ISO/IEC 13813:2001(E) c© ISO/IEC

-- Other Complex_Vector operations

function Unit_Vector (Index : Integer;
Order : Positive;
First : Integer := 1) return Complex_Vector;

-- Subprograms for Complex_Matrix Types

-- Complex_Matrix selection, conversion and composition operations

function Re (X : Complex_Matrix) return Real_Matrix;
function Im (X : Complex_Matrix) return Real_Matrix;

procedure Set_Re (X : in out Complex_Matrix;
Re : in Real_Matrix);

procedure Set_Im (X : in out Complex_Matrix;
Im : in Real_Matrix);

function Compose_From_Cartesian
(Re : Real_Matrix) return Complex_Matrix;

function Compose_From_Cartesian
(Re, Im : Real_Matrix) return Complex_Matrix;

function Modulus (X : Complex_Matrix) return Real_Matrix;
function "abs" (Right : Complex_Matrix) return Real_Matrix

renames Modulus;

function Argument (X : Complex_Matrix) return Real_Matrix;
function Argument (X : Complex_Matrix;

Cycle : Real'Base) return Real_Matrix;

function Compose_From_Polar
(Modulus, Argument : Real_Matrix) return Complex_Matrix;

function Compose_From_Polar
(Modulus, Argument : Real_Matrix;
Cycle : Real'Base) return Complex_Matrix;

-- Complex_Matrix arithmetic operations

function "+" (Right : Complex_Matrix) return Complex_Matrix;
function "-" (Right : Complex_Matrix) return Complex_Matrix;
function Conjugate (X : Complex_Matrix) return Complex_Matrix;
function Transpose (X : Complex_Matrix) return Complex_Matrix;

function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;
function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;

function "*" (Left, Right : Complex_Vector) return Complex_Matrix;
function "*" (Left : Complex_Vector;

Right : Complex_Matrix) return Complex_Vector;

22 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

function "*" (Left : Complex_Matrix;
Right : Complex_Vector) return Complex_Vector;

-- Mixed Real_Matrix and Complex_Matrix arithmetic operations

function "+" (Left : Real_Matrix;
Right : Complex_Matrix) return Complex_Matrix;

function "+" (Left : Complex_Matrix;
Right : Real_Matrix) return Complex_Matrix;

function "-" (Left : Real_Matrix;
Right : Complex_Matrix) return Complex_Matrix;

function "-" (Left : Complex_Matrix;
Right : Real_Matrix) return Complex_Matrix;

function "*" (Left : Real_Matrix;
Right : Complex_Matrix) return Complex_Matrix;

function "*" (Left : Complex_Matrix;
Right : Real_Matrix) return Complex_Matrix;

function "*" (Left : Real_Vector;
Right : Complex_Vector) return Complex_Matrix;

function "*" (Left : Complex_Vector;
Right : Real_Vector) return Complex_Matrix;

function "*" (Left : Real_Vector;
Right : Complex_Matrix) return Complex_Vector;

function "*" (Left : Complex_Vector;
Right : Real_Matrix) return Complex_Vector;

function "*" (Left : Real_Matrix;
Right : Complex_Vector) return Complex_Vector;

function "*" (Left : Complex_Matrix;
Right : Real_Vector) return Complex_Vector;

-- Complex_Matrix scaling operations

function "*" (Left : Complex;
Right : Complex_Matrix) return Complex_Matrix;

function "*" (Left : Complex_Matrix;
Right : Complex) return Complex_Matrix;

function "/" (Left : Complex_Matrix;
Right : Complex) return Complex_Matrix;

function "*" (Left : Real'Base;
Right : Complex_Matrix) return Complex_Matrix;

function "*" (Left : Complex_Matrix;
Right : Real'Base) return Complex_Matrix;

function "/" (Left : Complex_Matrix;
Right : Real'Base) return Complex_Matrix;

-- Other Complex_Matrix operations

function Identity_Matrix (Order : Positive;
First_1, First_2 : Integer := 1) return Complex_Matrix;

DRAFT 23

ISO/IEC 13813:2001(E) c© ISO/IEC

end Ada.Numerics.Generic_Complex_Arrays;

24 DRAFT

c© ISO/IEC ISO/IEC 13813:2001(E)

Annex C
(informative)
Rationale

DRAFT 25

ISO/IEC 13813:2001(E) c© ISO/IEC

Annex D
(informative)
Bibliography

26 DRAFT

