ISO/IEC JTC1/SC22

Languages ISO/IEC JTC1l/SC22
Secretariat: CANADA (SCC) N 1 0 6 9
DECEMBER 1991
TITLE: Summary of Voting and Comments Received

on CD 11404: Information Technology -
Programming Languages - Common Language-
Independent Datatypes

SOURCE : Secretariat ISO/IEC JTC1l/SC22

WORK ITEM: JTC1.22.17

STATUS : New

CROSS REFERENCE: NS70

DOCUMENT TYPE: Summary of Voting

ACTION: For information to SC22 Member Bodies.

See attached.

Address reply to: ISO/IEC JTC1/SC22 Secretariat
LL. Coté
Treasury Board Secretariat
140 O'Connor St., 10th Floor, Ottawa, Ontario, Canada, K1A ORS
Tel.: (613)957-2496 Telex: 053-3336 Fax: (613)996-2690

SUMMARY OF VOTING ON:

Letter Ballot Reference No: SC22 N970

Circulated by JTC1/SC22
Circulation Date :1991-06-12
Closing Date :1991-09-27, ext to 91-11-29

SUBJECT: CD 11404: Information Technology - Programming Languages -
Common Language-Independent Datatypes

The following responses have been received:

P’ Members supporting the CD,
without comments : 05

P’ Members supporting the CD,

with comments v
P’ Members not supporting the CD : 05
P’ Members abstaining : 00
P’ Members not voting : 09

Secretariat Action:

The Comments received will be forwarded to WG11 for review and
recommendation for further processing of CD 11404,

ISO/IEC JTC1l/SC22 LETTER BALLOT SUMMARY

PROJECT NO: JIC] 2217
SUBJECT: CD 11404: Information Technology - Programming
Languages = Common Language-Independent Datatypes
Reference Document No: N970 Ballot Document No: N970
Circulation Date: 1991-06-12 Closing Date:1991-09-27
extd to 1991-11-29
Circulated To: SC22 P,O,L Circulated By: Secretariat

SUMMARY OF VOTING AND COMMENTS RECEIVED

B A, e e ——

Approve Disapprove Abstain Comments Not Voting

(A
()
()

P’ Members
Belgium (
Brazil

Canada

China
Czechoslovakia
Denmark
Finland

France

Germany

Iran

Italy

Japan
Netherlands
New Zealand
Romania

Sweden
Switzerland

UK

usa

USSR

s
—
— — —

—
Ed
— T Y

)
)
X)
)
)

— — —— —
E
— —

)
)
A
V)
)
A
)
)
A
)

X

"

b

— e e T e et et et e et Tt

(
(
(
(
(
(
(
(
(
(
(
(

X

"

o
A
)

)

)
)

E
o i i o e it Pt ot Nt S ot

. p— —— — o S
— e et et e e e e e N e mt e et e tae e St S St

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

— — — —, — — — — —— — S S S

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

—— — e — o — A S S S

(
(
(
(
(
(x
(x
(

b

"O" Members
Argentina
Austria
Australia
Cuba
Hungary
Icelan
India
Korea
Poland
Portugal
Singapore
Turkey
Thailand
Yugoslavia

— e e e e et et et et et e et

(
(
(
(
(
(
(
(
(
(
(
(
(
(

— — — — — — — — — — e~
— e e e et S e e et e e
— e e e — e e e e
— e e e e S et et e e Tt T e
" — — — — — — — — — — —
— et et et e e
— o — — — — — — — ———
— e e e et et et et et et

JEB N

VOTE ON COMMITTEE DRAFT 11404

Date of circulation Reference number
1991-06-12

Closing date for voting 1S0 /1sc 22N 970
1991-09-27 RiiB!

BB clhosvine?
o sc22 /089
1Iso/¥e 77>/ ISC 20

Circulated to P-members of the committee for voting
Title

on registration of the draft as a DIS, in accordance with
Languages 2.4.3 of part 1 of the IEC/ISO Directives

Secretariat Canada, SCC

Please send this form, duly completed, to the secretariat indicated above.
CD 11404
Title

Information Technology - Programming Languages -
Common Language - Independent Datatypes

D We agree to the circulation of the draft as a DIS in accordance with 2.5.1 of part 1 of the IEC/ISO Directives

E We do not agree to the circulation of the draft as a DIS
The reasons for our disagreement are the following (use a separate page as annex, if necessary)

P-member voting <. 277 2,7 ; s / i
; ; s -...(
Date &, e /:;.‘J Signature 7 // Fa (P & g
FORM 8 (ISO)

D ¢ SO0

CANADIAN COMMENTS ON DOCUMENT NO. JTC1/SC22 CD11404 N970

TITLE: Information Technology - Programming Languages - Common Language -
Independent Datatypes

Canada does not approve the above document for the, following reasons:

The Canadian National Body is ready to reverse its vote if its suggestiqns are
accepted. The essential points are indicated in underlined characters 1n the

following text.

General considerations

Canada strongly believes there should be an abstract data type
for adequate processing of alphanumeric strings (extendable to
ideographic, if structures are adequately defined).

So far characters are processed with the intrinsic assumption
that their ordering is code-dependent in practice. It is known
that sorts may do special processing for acceptable orders to be
produced, but other programs, processes (hardware and software)
are totally unable to deal consistently with these orders, which
have to be processed by all aplications. Furthermore,
search-oriented operations on character strings are painful. This
pain is also tightly linked to the lack of consistency of
ordering and character-oriented operations.

Canada has designed an Ordering Standard (Preliminary Standard
CAN/CSA Z243.4.1) applicable to all comparison operations. It is
possible to structure alphabetically data in such a way that it
will be processable directly by machines (for searching and
ordering - in other words for flexible data comparisons) and
produce adequate cultural results. In order to relieve the
applications from the burden of reinventing the wheel, Canada
believes that the above-mentioned structures shall be defined in
an abstract manner and that languages implement these structures
accordingly when the requirement exists for a given language.

POSIX already has provisions for processing these structures for
ordering and comparisons via different mechanisms but there is a
lack of formal definitions for them in -all contexts and
particularly for programming languages.

The following discussion also addresses directly Issue 3
presented 1in Outstanding Issues that precede the Foreword of the
CD.

Specific comments

Section 7.1.4 presents operations of the Character Type. If it
stays as it s, the result will be the perpetuating of a
catastrophe that still plagues modern data processing. Word
processing generally knows how to search or compare character
strings (although not consistently from application to
application), but data processing has failed so far to be able to
consistently compare alphabetic data, because of a lack of proper
definitions for string comparisons in programming languages,
which extend to technology at other levels (data bases, sort and
merge programs, record {indexing mechanisms, hardware disk
searches and so on).

For example, if what the CD says is true, compound family names,
written 1in different legal ways, will never be ordered the right
way:

“La Bonté" (with one space) would most of the time be ordered
before "Labadie" because character SPACE comes in general before
SMALL LATIN LETTER B in most character-sets given by the
«repertoire» identifiers. This is incorrect for all Westerners,
whatever their culture. There is very limited need for present
naive ordering but the result is not guaranteed to be consistent
across coding schemes, and it certainly leads to numerous practical
mistakes 1in the real world even when used by skilled programmers
(it is not because you don't find "La Bonté" in a list that it is
not there, 1{it might be because you did not think about the not-
so-naively-interpretable result of the "naijve" sort). And
alphabetical data can not be positionally ordered, which is the
case in the above example 1in naive ordering character by
character. The CHARACTER data type is defined with such a
positional ordering implied.

Moreover, the Canadian Preliminary Standard 2243.4.1 on
Character Ordering could not be implemented system-wise with this
kind of primitive datatype. No other actual culturally valid
ordering scheme (without talking about telephone book data base
management which is more application-dependent because order may
vary and be multiple for a given record, necessitating record
duplication and preprocessing any way, so that it is out of the
question here) could work with such a so-called ordered datatype
as presented in the CD. Canada requires the present CHARACTER
type shall be declared as intrinsically unordered.

As required 1in SHARE Europe National Language Architecture
White Paper, operations required on alphabetical strings do not
limit to Equal, InOrder or Successor, but processibility can be
more complex, including EquallfExact ("COTE"="COTE"),
EqualExceptSpecials ("Mc Arthur”<=>"McArthur"), EqualExceptCase
(“CBTE"<<=>>"c6té“) and RoughlyEqual (“c8té"<<<=>>>"COTE"). SHARE
Europe went farther by talking about fuzzy equality but the latter
is, in this case only, application-dependent (for cases including
telephone book making and beyond) and is not an immediate
requirement here.

precited Canadian standard, by the intermediary of its expert on
internationalisation, Mr. Alain LaBonté, nominated to WG20 as
Canadian representative).

Properties remained to be exactly defined in a formal wayf
Operations are described above (see SHARE Europe Requirements)

Properties of such a data type are similar to 3-part floating
point numbers. and allows the operations presented before as a
requirement: if the mantissa is truncated a floating point number
is still. processable with less precision; if only the exponent
remains you can still work on its order of magnitude; if only the
sign bit remains, you can still tell if it is negative or positive;
here it is the same thing: each part defines a given precision
level, from the highest (pure alpha) to the lowest (specials).
Canada requires that such a flexible data type for adequate

rocessing of character strings be defined in the same fashion
that the type REAL allows easy internal representation and
storage of numbers in a directy processable form.

It is to be noted that such a datatype would be consistent in

a given culture and be totally independent of existing codings if
well implemented. Conversion from/to Standard Character Coding
would be necessary for exchange with culturally-different
environments only out of process time, for capturing or outputing
data. Then instead of a repertoire-identifier it needs a
culture-identifier. Fortunately it is always possible to
transform a PROCESSABLE STRUCTURED ALPHABETIC to a CHARACTER
string because all information ijs preserved at its richest
precision; if precision is less (if only the 1st element of the
structure is preserved for example), the essence of the string is
maintained and still transformable to CHARACTER.

Finally it could be extended to non-alphabetic scripts: Here
it 1is called alphabetic because it definitely applies to all
alphabetic scripts (including Arabic, which could have another
analog concept for case, given the 4 forms of each character).
Other elements (that is, more than 4) could exist in some
alphabetic scripts (the number would be dependent on the culture
and be implicit for this given culture).

_ It is foreseen that the structure could easily be applied to
jdeographic scripts, particularly with the now recognized
international requirement of Han unification by Japan, Korea and
China: part 1 for normalized character (taking into account
traditional, simplified or variant characters), part 2 for
determining the exact character in case of quasi-homographs in
comparisons, eventually a part 3 (to be determined if a need
exists for eventual extra finer discriminants) and part 4 for the
special characters imbedded in the text.

Finally, Canada believes that additionally to the BIT
datatype be defined a BIT STRING Datatype. Many systems level
parameters require the use of a bit mask or a bit string (more
than 1 bit at a time). This could be addressed by use of
integer or character string datatypes, however consideration
of a BIT STRING datatype would be worthwhile.

The CHARACTER type as presently defined in the CD is useful

for transporting character data across Cultures or for presentation
.or 1nput (not process) purposes, as 1long as the coding is
identified. But another data type is needed to allow consistency
of comparison operations on character strings in the real world.
Such a new data type would easily allow for the operations
described 1in the previous paragraph, if it were structured like

this:

[-1]. Number of elements in the structure (here 4 for Western
languages but this number may vary in Eastern Tanguages)

[0]. Culture/Language Ordering identifier (for interpretation
and transport) . -

. Pure alphabetic Base

Diacritic Info

. Case Info

. Special character Info

2 WN

Hence a string like "La Bonté" would be actually structured
as follows (the following could be implemented in different
fashions but each part would bear the same abstract information):

[-1]. 4 elements in the structure

[0]. French (based on Ordering Standard CAN/CSA 2243.4.1)
1. labonte

- <acute><nd><nd><nd><nd><nd><nd>

<up><Towd><up><T1ow><1ow><1owd><1ow>

- <Logical Zero> <Position 3><SPACE>

WM

A discussion on the previous structure and how, once
concatenated (or processed in different phases in other
implementations), the resulting 4-part string can be used
system-wise for any type of comparison (by the way processable by
any engine able to do dumb binary comparisons) is given 1in
Canadian Preliminary Standard CSA Z243.4.1 (to be noted here that
reverse discrimination on accents 1in part 2 of the example
follows the French dictionaries practice and is compatible with
English, which does not deal with accents in such a precise way:
we have designed the Canadian Standard to allow a maximum of
Western Tlanguages at once: French, English, German, Dutch,
[talian, Portuguese and so on [Spanish and Scandinavian will need
adaptation of tables but will use the same structure].

This new data type will need a name: Canada suggests
PROCESSABLE _STRUCTURED ALPHABETIC. It would be described (We
took as model: Date-and-Time): Processable Structured Alphabetic
is a family of datatypes whose values are parsed elements of
alphabetic data in various resolutions. It is independent of the
input-ouput coding of alphabetic data but identifies the culture

assumed for processing.

The Canadian National Body 1is not sure about the exact
description. and syntax it would take in the CD for consistency
with the rest of the document but see no particular difficulty at
first glance. We leave it to the experts that are more famil?ar
with the exact terms of it (Canada is offering to he]p‘1n making
understood this new but field-proven concept explained in the

SE®M N

E—g_ VOTE ON COMMITTEE DRAFT 11404
7. \ Dem of circuiszon Reference number
1991-06-12
_—__Ma-mm mﬂgl isc 22 N 970
1991-09-27
= L lchrent X
D SC2a K
Circ umw?mnofmoummu*orwﬁﬂq
iso/regrr | 1€ 22 mu' 'on of the draft as a DIS, in accordance with
Tide 2__4,3°ffpmtofthalECHSU Directives
Languages

Secrewrist Canada, scc

Plesse send this form, mwm.mmmmuwm.

CD 11404

Common Language < Independent Datatypes

Te 1formation Technology = Programming Languages -

We .qu of the draft as a DIS in accordance with2.5.1 of part 1 of the IEC/ISO Directives

}EQ We do not agree to the circulation of the draft as a DIS

mumfmourmmmmmafm lmamwulm.ﬁml

We think that the Committe Draft 11 404 need
discussion within WG 1l1l. At least the eleven

s further
outstanding

issues should be clarified before circulating a DIS.

—

g

P-member voung d‘
DIN Germany Berlin, 1991-09-19 - L“H-Q__
Date Sigrlltul‘e M Kut m_

FORM B (1SO)

S0EBI N

? a VOTE ON COMMITTEE DRAFT 17,404

Dete of circulation
1991-06-12

Ch-i-nqdl-fum
1991-09-27

Reference number

22
“3@51 /8C N 970

Z sca24/469

1S0/¥e 77 / 1SC 20
Title

Secretarist Canada, SCC

Circulated to Pmofﬂ'lccomﬂittu\‘orvoﬁng
on registration of the draft as a DIS, in accordance with
Languages . 2.4.3 of part 1 of the IEC/ISO Directives

HuumaﬂumﬁwmAMWummhu¢toﬁouummﬁthﬁumdanu.

CD 11404

Common Language - Independent Datatypes

Tde Information Technology - Programming Languages -

|___I We agree to the circulation of the draft as a DIS in accordance with 2.5.1 of part 1 of the IEC/ISO Directives

We do not agree to the circulation of the draft as a DIS

The reasons for our disagreement are the following (use a separate page as annex, if necessary)

Reason for Japanese Negative Vote

Many issues listed in

the CD shall be resolved before, circulating
it as a DIs.

P-member voting

Japan 1

Date : 1991-09-06

Signature " Tk 1o Nakata

(ASS

FORM 8 (ISO)

1 E90025000

'\\

“llllumu.l...'....‘..‘.mullll“

““\qum.‘....'...l..\.mnlﬂ“

0|l||""“"""""""'“"“||||”

|

\\

\t

P-members have an obligation to vote

VOTE ON COMMITTEE DRAFT -0 u-

Date of circulation

Reference number

Closing date for voting

1990-09- 27

ISO/IECJTC | /sC22 Ng70

W{/

A scar2 KIKE

1SO/IEC JTC |

Secretariat SCC

/SC 22

Tile Common Language-Independent
Datatypes

Circulated to P-members of the committee for voting

Please send this form, duly completed, to the secretariat indicated above.

cp 11404

Tite Common Language-Independent Datatypes

Please put a cross in the appropriate boxl{es)

Approval of the draft:

E as presented

X with comments as given below (use separate page as annex, if necessary)

D general
D technical
E] editorial

D Disapproval of the draft for reasons below (use separate page as annex, if necessary)

D Acceptance of these reasons and appropriate changes in the text will change our vote to approval

D Abstention (for reasons below)

This vote of approval is one of 'approval in principle'. The current work being undertaken
by WG 11 on Common Language-Independent Procedure Calling Mechanisms (Work Item
JTC1.22.16) is still at an early stage and it is therefore not possible to assess if there

will be any significant interaction between the two standards.

The current work on bindings covered under Work Item JTC1.22.21 is also relevant and
New Zealand would welcome the addition of an informative Annex indicating the drafter's
opinions and attitude towards potential interactions between those work items before

final voting takes place.

Date 1991-09-11

P-member voting Standards Assoclation of New Zealand

Signature S + £ Brolreas

FORM 8 1ISO/IEC)

Dhvekaial Bsulamal®

Fer. K. \'\opeo.x‘.

VEBI I

VOTE ON COMMITTEE DRAFT 11404

Dem of circulstion Reference number
1991-06-12

Closing dete for voting I.SOJ%I /8¢ 22 N 970

1991-09-27

Scaz A/06 S
Is0/Fe 77>+ 18C 22 Circulated to P-members of the committee for voting
Tide mmofma‘ﬂuapls,_hmm
Languages 2.4.3 of pant 1 of the JEC/ISO Directives

Secreurist Canada, SCC

Mwmm.mm.mmmim.dabm.
CD 11404

Tide Information Technology

= Programming Languages -
Common Language - Inde

pendent Datatypes

D We agree to the circulation of the draft as 8 DIS in accordance with 2.5.1 of part 1 of the IEC/ISO Directives

@ We do not agree to the circulation of the draft as a DIS
Thumrutnromdingmmmmmcfolbuﬁng (uuaumuunagoutnm,ifnomyl

The intention of WG 11 was to
comment only, because further
remaining open issues,

circulate this CD for

work is necessary on the
before proceeding to DIS.

P-member voting

UNITED KINGDOM

\
Date 12 September 1991 Signature “J ﬂm;_

FORM 8 (ISO)

690 E 88 11

PV, 9 e, 4 A -
Sc22 #1649

|

;‘?_'_ VOTE ON COMMITTEE DRAFT 11404

? Date of circulation Reference number

H 1991-06-12

i Gnunqdmu for voting ISC‘.‘J);El isc 22 N 970

W0 W2 (oo # 24 T s T
1so/¥e 77/ 1sc 2] Circulated to P-members of the committee for voting
Title on registration ofmedruftasanls.lin accordance with
Languages 2.4.3 of part 1 of the IEC/ISO Directives

Secretarit Canada, SCC

Pleasa send this form, duly completed, to the secretariat indicated above.

CD 11404

Tde Tnformation Technology = Programming Languages =
Common Language - Independent Datatypes

D We agree to the circulation of the draftasa DIS in accordance with 2.5.1 of part 1 of the IEC/ISO Directives

@ Wae do not agree to the circulation of the draft as a DIS)
The reasons for our disagreement are the following (use a separate page as annex, if necessary)

See attached comments

P-member voting USA (ANSI) % i\’_\?:\i
Diite November 21, 1991 Signature acy M. Leistner .
H
FORM 8 (1SO)

X3T2/91-200R

U.S. Comments on CD 11404: Language-Independent Datatypes

--—-----_---—--—--_—--—------—--—--—---—-n——q.-——---—----.---—-o----——--—

Item: 1
Title: Make CLID a Reference Model
Rating: Major

Clause: 1, 5, 10.1, Annex A
Rationale:

The relationship between the CLI datatypes and CLIPC and RPC has
led to the inclusion of a "minimum datatype list" in the current
draft. This minimum list makes no sense for programming language
conformance, as France has pointed out, nor for the PCTE, and may not
make sense for unforeseen uses of the CLID. This is largely because
CLID is intended as a reference model and what "information processing
entities" may be expected to comply is open-ended. Accordingly, the
concept of "how an information processing entity may comply directly"
is not well-defined. '

The question of which datatypes must be supported by CLIPC/RPC
should be left to those standards (jointly).

Proposed Change:

1. Modify clause 1, first sentence, to read:

"This International Standard defines a reference model for datatypes,
specifying the nomenclature and shared semantics ..."

2. Move the second, third and fourth paragraphs of Clause 1 to
Clause 6. '

3. In 5.1, strike paragraphs 2 and 3, defining total and partial
direct compliance. (Direct compliance means "uses the model and its
syntax consistently with the CLID".)

4. In 5.1, modify bullet ii) to make clear that all additional
types defined by an information Processing entity must be either
type-declarations or new types defined by type-templates. Add a
caveat Note to the effect that types not defined by type-declarations
will not be useable in the CLIPC/RPC environment.

4. In 5.2, 2nd paragraph, strike "total" in all occurrences,
and strike "and outward" in the first line. In the last line, strike
everything after "an inward mapping".

5. In 5.2, strike the 3rd paragraph.

6. In 10.1, strike bullet iii)

7. Delete Annex A.

--._..---._--_...---..--.—-.---....---_---.-----—n---q.-----—-.-------.------;_---——

Title: Relate type of compliance to type of conforming entity
Rating: Major

Clause: 5

Rationale:

It is unclear what kinds of information processing entities are
expected to have direct or indirect compliance.

For example, are programming languages expected to be in
indirect compliance? (It seems that all of datatypes to be used in
the CLIPC/RPC must have a mapping to every language. Is that the
inward mapping or *he outward mapping or both?) ' .

Similarly, is the POSIX language-independent specification
supposed to comply directly or indirectly?

Does "mapping standard" mean a standard containing the mapping
from a given language to/from the CLID? Or is it something else?

The proposed change for this item assumes that the removal of
total and partial compliance was accepted in item 1.

Proposed Change:

Add the following text to the end of the note in Clause 5.
"Programming language standards are expected to comply indirectly
through a mapping standard for that language which directly complies
to the CLIDT. Language independent standards could comply directly
themselves or indirectly via a mapping standard."

Add to Clause 5.3 after the first sentence.
"programming language mapping standards shall require both an inward
and outward mapping to the CLIDT. All other mapping standards shall
have at least an outward mapping to the CLIDT."

- - - -
——---—-—-—----------—-------—---------—--—--—--- - - - -

Item: 3

Title: Add late-binding concept
Rating: Major

Clause: 6, 7 (many places), 8
Rationale:

In procedure calls and record types, because CLID regards bounds,
sizes, and other such parameters as part of the type identification,
the types of some arguments OT fields may be dependent on the values
of other arguments or fields. This feature is referred to in
programming languages as "Jate binding". It is necessary to numerous
mathematical procedure definitions, among others. The CLID does not
currently provide for this feature.

Proposed Change:

1. Change the production for value-expression in Clause 8 to include
"late-binding".

2. Remove the asterisk in 7.3.7, i.e. change the productions for
upperbound and lowerbound to read:

upperbound = value-expression

lowerbound = value-expression
This requires either a corresponding change in the syntax for
select-range in clause 7.2 (see comment 12 below) or a renaming
of the syntactic objects lowerbound and upperbound in 7.3.7.

3. Add the concept "late binding" to Clause 6. The following draft
wording should be considered:

6.x.x Late-Bindings
A late-binding identifies a value which is the value of another

component of some generated-datatype in which the late-binding occurs.
Syntax:

late-binding = late-binding-primary { "." component-reference }
late-binding-primary = field-identifier | argument-name
component-reference = field-identifier | "#"

A datatype-designator x is said to "involve" a particular-instance
of a late-binding if x contains the instance and there is no component
datatype y of x which contains the instance. Thus, exactly one

datatype-designator "involves" a given instance of a late-binding. Any
datatype-designator which involves a late-binding shall identify a
component of some generated-datatype.

The late-binding-primary shall identify a (different) component of
Some generated-datatype which contains the datatype which involves the
late-binding. The component so identified is said to be the "primary
component”, and the generated datatype of which it is a component is
said to be the "primary datatype". The primary datatype shall be
either a procedure-type or a record-type. When the pPrimary datatype
is a procedure-datatype, the late-binding-primary shall be an
argument-name and shall identify an argument of the primary datatype.
When the primary datatype is a record-type, the late-binding-primary
shall be a field-identifier and shall identify a field of the primary
datatype.

When the late-binding contains no component-references, the value
of the late-binding shall be the value of the primary component.
Otherwise, the "current reference" shall comprise the
late-binding-primary, and identify the primary component and its
value, and the following paragraph shall be applied (recursively) to
determine the value of the late-binding.

The datatype of the current reference shall be a record-type, a
choice-type, or a pointer-type. If the datatype of the current
reference is a record-type or a choice-type, then the next
component-reference shall be a field-identifier and shall identify a
field of the current reference. In this case, a new reference shall
comprise the current reference syntax, plus the next
component-reference, and-its value shall be the value of that field of
the current reference which is identified by the next
component-reference. If the current reference is a pointer-type, the
next component-reference shall be an asterisk. In this case, a new
reference shall comprise the current reference syntax, plus the
asterisk, and its value shall be that obtained by dereferencing the
pointer-value of the current reference. In either case, when the
late-binding contains no further component-references, the value of
the late-binding shall be the value of the new reference. Otherwise,
the new reference shall become the current reference and the rules of
this paragraph shall be applied thereto.

NOTES:

1. The datatype which involves a late-binding must be a component
of some generated-datatype, but that generated-datatype may itself be
a component of another generated-datatype, and so on. The pPrimary
datatype may be several levels up this hierarchy.

2. The primary component, and thus the primary datatype, cannot
be ambiguous, even when the late—binding-primary identifier appears
more than once in such a hierarchy. By the scope rules, the meaning
of the identifier X in a datatype-designator (y) which involves X as a
late-binding-primary is the meaning of X as declared in y, or else the
meaning of X in the datatype-designator which immediately contains y.
So, in following the hierarchy upward, there is a "most recent
declaration" of X, and that is the one to which the late-binding
refers.

3. In the same wise, an identifier which may be either a value-
identifier or a late-binding can be resolved by application of the
same scope rules. If the identifier X is found to have a "declaration"
anywhere within the outermost datatype-designator which contains Y,
then that declaration is used. If no such declaration is found, then
a declaration of X in a "global" context, e.g. as a value-identifier,
applies.

Item: 4

Title: Resolve Null/undefined or discard them
Rating: Major

Clause: 7.1.13 and 7.1.14

Rationale:

There is NO consensus on the usefulness or meaning of Null and
Undefined. What currently appears in the draft encountered objections
from the U.S. and France on the CD-registration ballot which were not
resolved.

This issue must be resolved before the CD becomes a DIS.

The US believes it is possible that an "absent" value of every
datatype is isomorphic to the CLIDT WD5 Null datatype.

Undefined, unknown, and other variants of Null with the possible
exception of "absent" are implementation/representation concerns. As
such they can be treated as distinguished values of the state type
using choice. The fundamental property distinguishing "absent" is
that of any item it is present or not. The other interpretations of
Null do not appear to have this universality.

Proposed Change:
Remove clause 7.1.14 Undefined

In clause 7.1.13, chance the title of this clause to "Void".

In the "Syntax", delete "null-literal = 5

In the "Values", replace the text by "none".

In the "Properties", replace the text by "none".

In the "Operations", replace the text by "none".

Replace the text of Note(1l) in clause 7.1.13 by the following.
"Datatype Null is used for example as the type of a procedures
arguments which has no arguments. The alternative of a choice when
the choice has no values."

@ o o - - e e S AR R N A A S SR S S S A A AR B M 4R MR e R R SN S W

Item: 5

Title: Revise Choice to relate alternatives to tag values
Rating: Major

Clause: 7.3.1

Rationale:

The Choice datatype as currently provided does not support
relationship between the alternative "fields" and values of any
tag-type. This version of Choice, therefore, does not support the
Pascal or Ada concept of variant-record very well. Moreover, it
makes the handling of a Choice datatype in an interchange very
difficult: How does the "caller" or "source" identify to the "service"
(e.g. RPC or CLIPC) which alternative applies to the current value?
How is a "tag" associated with a "field-name'?

The Ada/Pascal model solves these problems by associating the

alternatives with values of some datatype. This model should be
used in the CLID.

Proposed Change:

1. In 7.3.1, revise the syntax to read:

choice-type = "choice" "(" selection-type ["=" discriminant] ")"
"of" "(" alternative-list ")"

selection-tyne — datatype

discriminant = value-expression .

alternative-list = alternative { "," alternative }

alternative = selection-values ":" alternative-type
selection-values = select-list | "#" |
alternative-type = datatype

2. In 7.3.1, replace the second sentence under Components with:

"Each datatype is labelled by a list of selection-values drawn
from the value space of the selection-type." The selection-type shall
be any discrete datatype.

And replace the second paragraph under components with the text of
the Components paragraph from 7.2.2, and the following:

"No value of the selection-type shall appear among the
selection-values of more than one alternative. The "*" may appear in
at most one alternative and refers to all values of the selection-type ..
which do not appear in any other alternative."

3. Add Notes to 7.3.1:
NOTE - This generator represents the Pascal/Ada variant-record
concept, and allows the C discriminated union to be
supported by a slight subterfuge. E.g.:
choice(state(al, a2, a3)) of (
al: real,
a2: integer,
a3: boolean

)

NOTE - The useful forms of value-expression for the discriminant
are late-binding or parametric-value which resolves to late-binding,
but there is no reason to exclude the use of constants.

-.-__---.-.--..-_—..--.-_--..---._--_---_--...-—-.---...---—_-—----...-——.---_-—...---—-

Item: 6
Title: Define the model of Pointer type
Rating: Major

Clause: 7.3.3 (Pointer)

Rationale:

1. The model of a pointer-type must be explained. WD5 introduces
the term "variable", in lieu of "instance", but the notion "variable"
is not a datatype and is not defined. The use of "variable should be
removed since it implies the use of an update operation which does not
appear anywhere else in the standard.

2. The characterizing operations on a pointer type must include
some kind of "assignment", in the same way that Array types have
Replace operations. This notion would lead to explaining the behavior
of multiple pointers to the same value.

Proposed Change:
The model of the pointer datatype appropriately belongs in the
rationale document for the CLIDT.

Delete clause 3.41 (definition of "variable")

In clause 7.3.3:

Values: First sentence, delete "a computational variable to
which is associated"
Last line of first paragraph, change "any variable"
to "any instance of the element datatype"
Move the second sentence of the last paragraph to the
end ~f the first paragraph. Delete the first sentence
of the last paragraph.

Description: Change "a variable containing a value" to "an
instance"

Operations (Dereference): Change "possessed by the variable which
the" to "identified by the ".
Delete "identifiers" at the end.

Item: 7

Title: State criteria for inclusion of datatypes in CLID
Rating: Minor

Clause: 6, possibly 5

Rationale:

The standard does not identify the criteria for determining which
datatypes and datatype generators are defined in clause 7 and Annexes
B and C. What is the criterion which makes a datatype a CLI Datatype,
as opposed to a "user-defined" datatype?

Proposed Change:

Add a new paragraph 4 in Clause 6.1 and a note following this
paragraph.

New text:

The datatypes included in this standard are "common", not in the
sense that they are directly supported, i.e., "built in" to many
languages, but in the sense that they are common and useful
generic concepts among professional users of datatypes.

NOTE

As an example, List belongs in the standard not merely (or even
primarily) because it is a datatype supported by such languages
as LISP, but because it is an extremely common conceptual
datatype. This is illustrated by the fact that one can hardly
find a textbook on data structures that ignores it.

---_------..-.-_-__------.-.-----.-----—--—-----..---———-------—--------—-—-

Item: 8

Title: Make support of datatypes a clause
Rating: Editorial

Clause: 6.3 and 6 generally

Rationale:

The concept of "support" of a datatype is critical to the use of
the CLID. It should be elevated to a clause by itself. And all the
elements describing "support" and "preservation of properties” in the
subclauses of clause 6 should be gathered into this new clause.

Proposed Change:

1. Create a new Clause X, titled Support of Datatypes, immediately
before or after Clause 10 (Mappings).)

2. Move clause 6.3 second paragraph to Clause X.

3. Move the last paragraph of each of 6.3.1, 6.3.2, 6.3.3, 6.3.4
and 6.3.6 to Clause X. Move the last 2 paragraphs of 6.3.5 to clause X.

Item: 9

Title: Fix syntax to allow trailing attributes and subtypes
Rating: Minor

Clause: 7
Rationale:

1. It is desirable to permit attributes to be added at the end
of productions rather than in front of the objects they modify, but
they would be ambiguous in several instances. :

2. Syntactic ambiguities arise from the trailing position of
subtype specifications, e.g.

List of Set of State(on, off): size(10).
Does the "size(10)" modify the List or the Set?

Proposed Change:

1. Delimit the element-types of generated-types:
a. In 7.3.3 pointer-type = "pointer" "to" "(" base vy
b. In 7.3.4 set-type = "set" "of" "(" element ")" .
c. In 7.3.5: list-type = "list" "of" "(" element i
d. In 7.3.6 bag-type = "bag" "of" "(" element iy
e. In 7.3.7:
array-type = "array" u(n array-index-list ")" "of" o i Pra—— my
f. In 7.3.8 table-type = "table" "(" key ")" "of" "(" element myH

In 7.3.9 and in 8.2, delete the production for "components" and:
defined-generator = generator-name ["(" parameter-list ")"]
"of" "(" component-list i T

2. Make the corresponding change to explicit-subtype in 7.2.6:
explicit-subtype = "restricted" "to" "(" subtype-definition "

3. Move the attributes to behind the types.
a. In 7:
datatype-designator = CLI-datatype [type-attributes |
b. In 7.1.16:
procedure-declaration =
"procedure” procedure-name "(" [argument-list] "M"
"raises" "(" exception-list ")" [procedure-attributes]
Argument attributes and field attributes should be left as is.

-.--_----...--.--..--_--.-—_-----.-—_--.--q.---—--—q.--.---.--._--.--..--._--.---_-.q.--.

Item: 10
Title: Uniform specification of relative~error
Rating: Minor

Clause: 7.1.6, 7.1.10, 7.1.11, 7.1.12
Rationale:

The means of specification of "relative-error" and "precision"
should be consistent. The current draft specifies values for Real
and Complex as a Real number, and values for Scaled and Date-and-Time
45 two integers.

Proposed Change:
Make all four types use a common pPrecision specification. We
prefer the (radix, factor) form.

_--.__--....--_---.._---.-_----q.---..--q.--....--q.---._-—..--—.-—--—----.---.--.._—q._-

Item: 11
Title: Add properties to Private type
Rating: Minor
Clause: 7.1.15
Rationale: ' _
The Private tyr~ defined in 7.1.15 is described as having two
functionalities:
a) passing a "bit-string" which has a complex internal structure

through a CLID-conforming service, such as RPC, without the service
having to "understand” its contents, and '

b) describing a "handle", or similar object, whose structure and
representation is known to one of the communicating entities but not
to the other.

The first function is better performed by some kind of "bit-string"
datatype, possibly conforming to the ASN.1 "octet string" model. In
any case, the presumption is that the sender, the recipient and the
service -must preserve the length and ordering of the bit-string in
order for the object to retain its meaning. This implies that this
form of Private should be defined to have such properties.

The second function, in which the object is meaningless to all parties
but one, requires the same "bit-string” length and ordering

properties on the part of all but the knowledgeable routine.

This implies that any interface definition would describe the object-type
as Private, and only the "marshalling" service on the "knowledgeable"

end would be aware of the true underlying datatype.

Proposed Change:

1. Move Private to Annex B and define it as derived from Array of
Bit or List of Bit, having fixed size and only the characterizing
operation Equal.

2. Mention the marshalling service concerns in a Note.

- -
- = =S - - -

Item: 12
Title: Change syntax for omitted bounds
Rating: Minor
Clause: 7:2:1; Z:2:9, 7.2.9, 7.2.5, 7.5.7
Rationale:
The asterisk should not be used to mean both an externally specified
bound in Array cases (7.3.7) and no bound in select-range specifications.

Proposed Change:
Allow the upperbound and lowerbound in select-range to be empty, i.e.
select-range = [lowerbound] ".." [upperbound]
and modify the text of 7.2.1, .2, .3 accordingly, replacing the words
"an asterisk” with "not present".
Replace the size production in 7.2.5 with:
size-subtype = base ":" size "(" size-specification ")" .
size-specification = minimum-size | minimum-size ".." [maximum-size]
maximum-size = value-expression
and modify the text of 7.2.5 under Components accordingly.

e e e = = e e e S A S S R SR R e R e R SR S N R GE SR W R e e e AN AR SR R S e e

Item: 13
Title: Value-notation for declared datatypes
Rating: Minor
Clause: Annex B
Rationale:
There is no way to define a specific value notation for a declared
datatype. As in the RPC document, it is clearly necessary to have
a notation for character-string values and bit-string values, and it
may be desirable to add such notations for other declared-datatypes.

Proposed Change:

1. Define a value notation for character-string.
2. Define a value notation for bit-string.

3. Define a standard value-notation mechanism for values of
declared-datatypes in general, e.g. <type-name>.<value>.

Item: 14
Title: Make Annex B and C part of the main text
Rating: Minor

Clause: Annex B, Annex C

Rationale:

The inference drawn by nearly every reader of the draft is that
the datatypes in Annex B and Annex C are considered to be "of lesser
importance". Because they are not primitive, they are relegated to an
Annex. This is not an acceptable disposition of CharacterString and
BitString and possibly others. They are first-rank datatypes, even if
they are not primitive.

Proposed Change:

1. Make a new clause X, following clause 8, titled: Derived
Datatypes and Generators.

2. Make the current Annex B clause X.1.

3. Make the current Annex C clause X.2.

4. Consider whether some members of Annex B or C should be
discarded, specifically B.5 (integer modulo).

----q.--q.--q.--..---.--..--q.---..---..-—--—-------.-—----.--—---u-—--—--—--—

Item: 15
Title: Remove Annex D

Rating: Minor

Clause: Annex D

Rationale:

Annex D, which deals with representational attributes, is outside
the scope of the CLI Datatypes. It cannot be normative in the CLID
and deserves attention as a useful standard for representation
attributes for CLI Datatypes, which may be useful in CLIPC and RPC
implementations.

Proposed Change:
la. Remove Annex D from the draft.

b. On page 1, strike the last paragraph, except for the last
Sentence.

__.._--_--_--_..--...--..---..---.-------—-.-—q.--..--..--...---.--...-- --------------

Item: 16
Title: Add ISO 2375 to Annex E
Rating: Minor
Clause: Annex E
Rationale:
ISO 2375 defines a registration mechanism which effectively defines
character repertoires. It should be included in Annex E.

Proposed Change:
Add the following line to Annex E:
IS0 2375:?7? Procedures for registration of escape sequences

--

Item: 17

Title: Pointer to Procedure
Rating: Questior

Clause: 7.1.16 and 7.3.3
Rationale:

Does the type Pointer to Procedure(<arguments>) have the proper
value space? Do the characterizing operations work correctly? Should
Pointer-to-Procedure be a distinguished type in Clause 7 or Anmex C?

This question should be considered when suggested revisions to
Pointer and Procedure are considered as well.

Item: 18

Title: Add distinguished-name datatype
Rating: for consideration only

Clause: none

Rationale:

0SI defines a datatype "Distinguished Name", which is expected
to be widely used in naming objects in distributed processing
environments. This datatype should be in the CLID, to insure
consistent definition.

Proposed Change: _

Add a new subclause to clause 7.1:
7.1.x Distinguished-Name

Description: Distinguished Name is the datatype of the names
of objects in the 0SI directory (defined in ISO 9545).

Syntax: refer to IS0 9545

Values: refer to ISO 9545

Properties: non-numeric, unordered, discrete

Operations: Append, Detach, Equal, Last

Declare: name-component = new CharacterString;
with operations: Equal from CharacterString.

Append(x: distinguished-name, y: name-component):
distinguished-name is the new distinguished-name formed by appending
the relative name-component y to the distinguished-name Xx;

Detach(x: distinguished-name): distinguished-name formed by
removing the last name-component from the name-component sequence X.
If there is only one name-component in x, then the result is the
distinguished-name value ROQOT;

Last(x: distinguished-name): name-component is the the
relative name-component value which is the last element of the
distinguished-name x;

Equal(x,y: distinguished-name): boolean =

if x is the value ROOT and y is the value ROOT, then
true)

else if x is the value ROOT or y is the value ROOT, then
false

else if name-component .Equal(Last(x), Last(y)) then
Equal(Detach(x), Detach(y))

else
false.

Alternative: In a single clause in Annex B, define the name-component
datatype as above, and declare:

type distinguished-name = list of name-component;
with the above description and operations (derived from list).

= e e e e e e e e R MR SR R e N SR e SR AR S SN A S N S S S R R R TR SR R R S e e e e e e

Item: 19

Title: Modify OSI Object-Identifier type
Rating: for consideration only

Clause: B.9

Rationale:

0SI-Object-Identifier should be a primitive datatype, as it is

in ASN.1, with a value syntax identical to that of ASN.1.

Proposed Change:
Move subclause B.9 into clause 7.1, with the following changes:
1. Replace the "Declaration" and "Parameters" paragraphs with:

Syntax: object-identifier-type = "object" "identifier"
object-identifier-value = "{" objid-component-1ist ol
objid-component-list = objid-component { objid-component }
objid-component = nameform | numberform | nameandnumberform .
nameform = identifier
numberform = value-expression
nameandnumberform = identifier "(" value-expression ")" .

2. In the Values paragraph, replace "a finite sequence of integer values"
with: "a non-empty finite sequence of values isomorphic to the integers"
and strike "Any subsequence ... in the sequence".

3. Replace the Operations paragraph with:
Operations: Append, Length, Detach, Last, Equal.

Declare: object-id-component = new integer;

with operations: Equal from integer.

Append(x: object-identifier, y: object-id-component):
object-identifier is the new object-identifier formed by appending
the relative object-id-component y to the object-identifier x;

Length(x: object-identifier): integer is the number of
object-id-component values in X;

Detach(x: object-identifier): object-identifier, where
Length(x) > 1, is the object-identifier formed by removing the last
object-id-component from the object-id-component sequence X;

Last(x: object-identifier): object-id-component is the the
relative object-id-component value which is the last element of the
object-identifier x;

Equal(x,y: object-identifier): boolean =

if Not(Length(x) = Length(y)) then

false :

else if Not(object-id-component.Equal(Last(x), Last(y))) then
false

else if Length(x) = 1 then
true

else

Equal(Detach(x), Detach(y)).

Alternative: Revise B.9 largely as indicated above, declaring
type object-identifier = list of object-id-component;
with the above operations (derived from list).

-.._-.---._----.---..---q._---...-_-4.---..---__--..._---.---.-----—-...--q.------...-_..

Item: 20
Title: Procedure datatype
Rating: Major
Clause: 7.1.16
Rationale:
Removal of the "in | out | inout" syntax.
No need to determine if two procedure types are the same.

Proposed Change:

Annex F: Delete "direction = "in" | "out" | "inout
Section 7.1.16: .,
- » - 1 | N
Syntax: Delete "direction = "in" | "out" | "inout""

Values:

Replace first 2 sentences by "Conceptually a procedure
operates on a set of input values ("input-list") and
produces a set of output values ("result-list"). It
is outside the scope of the CLIDT to define the input
and output values of a procedure.

Subtypes: Change the text of the first bullet to the following:

Note(4)

Note(7)

. Remove occurrences of "in'" and "out

"P is said to be formally compatible with Q if they have
the same number of arguments, the number of elements in
the "input-list" are the same, and the number of elements
in the "output-list" are the same."

Change the text of the second bullet to the following:

"If P is formally compatible with Q, and for every element

in the "result-list" of Q, the element-type of the corresponding
element-list of P is a (not necessarily proper) subtype of

the Q element-type, then P is said to be a result-type of Q.

If all of the argument-types in the result lists of P and Q

are identical (none are proper subsets), then each is a
result-subtype of the other.

Change the text of the third bullet to the following:

"If P is formally compatible with Q, and for every element

in the input-list of Q, the element-type of the corresponding
element in the input-list of P is a (not necessarily proper)
subtype of the Q element-type, then Q is said to be an
input-subtype of P. If all of the argument-types in the
input-lists of P and Q are identical (none are proper subtypes),
then each is an input-subtype of the other.

" n

from sample
declarations.

. Second sentence, delete "These distinctions are

supported by the syntax, but"

