ISO/IEC FCD 13211-2 : 1998(E)

Contents Page
Introduction 2
1 SCOPE. . .ot 2
11 NOES . . .o 2

2 Normativereferences 2
3 Definitions 3
4 Symbols and abbreviations oL 5
5 Compliance 5
51 Prolog processor 5
52 Moduletext. 5
53 Prologgoal 5
54 Prologmodules 6
54.1 Prolog text without modules. 6

542 Theuser module........ 6

55 Documentation. 6
56 EXtensions. 6
561 Modules. 6

6 Syntax 6
6.1 Moduletext.. 6
6.2 TEMS. . .. 7
6.21 Operators. 7

7 Language concepts and semantics. 7
71 Reaedterms 7
711 Quadlified and unqualified terms 7

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be

reproduced or utilized in any form or by any means, electronic or mechanical, including

photocopying and microfilm, without permission in writing from the publisher.
ISO/IEC Copyright Office e Case Postale 56 ¢ CH-1211 Genéve 20 ¢ Switzerland

Printed in Switzerland

© ISO/IEC 1998

ISO/IEC FCD 13211-2 : 1998(E)

72 Moduletext. 8
721 Moduleinterface. 8
722 Moduledirectives 8
723 Modulebody 10
724 Clauses 11

73 Completedatabase 12
731 Visbledatabase 12
732 Examples. 12

74 Meapredicates. 12
741 Metapredicate Built-ins L. 12
742 Module name expansion 12
743 Examples. 13

75 Converting aterm to a clause, and aclauseto aterm 14
75.1 Converting aterm to the head of aclause. 14
752 Converting a term an activated goal 15
753 Converting a term to the body of aclause. 16
75.4 Converting the body of aclausetoaterm. 16
755 Examples. 16

76 ExecutingaProloggoa 16
7.6.1 Datatypes for the execution modd 17
7.6.2 Initidization 17
7.6.3 Searching the complete database. 18
76.4 Sdecting a clause for execution 19
765 Backtracking. 19
7.6.6 Executing a user-defined procedure; 19
7.6.7 Executing a built-in predicate. L. 20

7.7 Executing a control construct L. 20
771 cdlll. ... 20
772 cach/3..... 21
773 throw/l 21

7.8 Predicate properties 22

7.9 EITOIS. . .o 22
79.1 FError classification 22

Built-in predicates 23

8.1 The format of built-in predicate definitions. 23
811 Typeofanargument........... 23

82 Modulepredicates 23
821 currentmodule/l 23
822 predicateproperty/2. 23

8.3 Clause retrieval and information 24
831 clausel2 25
832 currentpredicate/l. 26

8.4 Database access and modification 26
841 assertall. 26
842 assertz/l. 28
843 retract/l 28
84.4 abolish/l 30

INTERNATIONAL STANDARD (© ISO/IEC 1998

ISO/IEC FCD 13211-2 : 1998(E)

| nfor mation technology — Programming languages — Prolog — Part

2: Modules

I ntroduction

This Finad Committee Draft defines syntax and semantics
of modules in ISO Prolog.

Modules in Prolog serve to partition the name space and
support encapsulation for the purposes of constructing large
systems out of smaller components. The proposed module
system is procedure-based rather than atom-based. This
means that each procedure is to be defined in a given name
space. The requirements for Prolog modules are rendered
more complex by the existence of meta-arguments, that is
arguments that are subject to module qualification.

1 Scope

This Final Committee Draft is designed to promote the
applicability and portability of Prolog modules that contain
Prolog text complying with the requirements of the
Programming Language Prolog as specified in this Final
Committee Draft.

This Finad Committee Draft specifies:

a) The representation of Prolog text that congtitutes a
Prolog module,

b) The constraints that shall be satisfied to prepare
Prolog modules for execution, and

C) The requirements, restrictions and limits imposed on
a conforming Prolog processor that processes modules.

This Finad Committee Draft does not specify:

a) The size or number of Prolog modules that will
exceed the capacity of any specific data processing
system or language processor, or the actions to be taken
when the limit is exceeded,

b) The methods of activating the Prolog processor or
the set of commands used to control the environment in
which Prolog modules are prepared for execution,

¢) The mechanisms by which Prolog modules are
loaded,

d) The relationship between Prolog modules and the
processor-specific file system.

1.1 Notes

Notes in this part of ISO/IEC 13211 have no effect on the
language, Prolog text, module text or Prolog processors
that are defined as conforming to this part of ISO/IEC
13211. Reasons for including a note include:

a) Cross references to other clauses and subclauses of
this part of ISO/IEC 13211 in order to help readers find
their way around,

b) Warnings when a built-in predicate as defined in
this part of ISO/IEC 13211 has a different meaning in
some existing implementations.

2 Normative references

The following standards contain provisions which, through
the reference of this text, congtitute provisions of ISO/IEC
13211. At the time of publication, the editions indicated
were valid. All standards are subject to revision, and
parties to agreements based on this part of ISO/IEC 13211
are encouraged to investigate the possibility of applying
the most recent editions of the standards listed below.
Members of IEC and 1SO maintain registers of currently
valid International Standards.

ISO/IEC 13211-1 : 1995, Information technology —
Programming Languages — Prolog Part 1. General Core.

© ISO/IEC 1998

3 Ddfinitions

The terminology for this part of ISO/IEC 13211 has a
format modeled on that of 1SO 2382.

An entry consists of a phrase (in bold type) being defined,
followed by its definition. Words and phrases defined in
the glossary are printed in italics when they are defined in
ISO/IEC 13211-1 or other entries of this part of 1SO/IEC
13211. When a definition contains two words or phrases
defined in separate entries directly following each other
(or separated only by a punctuation sign), * (an asterisk)
separates them.

Words and phrases not defined in the glossary are assumed
to have the meaning given in 1SO 2382-15 and ISO/IEC
13211-1; if they do not appear in 1SO 2382-15 or
ISO/IEC 13211-1, then they are assumed to have their
usual meaning.

A double asterisk (**) is used to denote those definitions
where there is a change from the meaning given in
ISO/IEC 13211-1.

3.1 accessible procedure: A procedure is accessible if
it can be activated; in the case of a dynamic * procedure
modified; or in the case of a non private * procedure
inspected with module name qualification from any module
which is currently loaded.

3.2 activated goal **: A goal has been activated when
it is called for execution.

3.3 calling context: The set of visible procedures, de-
noted by a module name, and used as a context for
activation of a metapredicate.

3.4 database, visible: See 3.50 — visible database.

3.5 defining module: The module in whose module
body a procedure is defined explicitly and entirely.

3.6 export: To make a procedure of an exporting
module available for import by other modules.

3.7 exported procedures A procedure tha is made
available by a module for import by other modules.

ISO/IEC FCD 13211-2 : 1998(E)

3.8 import: To make procedures * exported by a module
* visible in an importing module.

3.9 import, sdective: The importation into a module
of only certain explicitly named procedures * exported by
a module (see 7.2.3.2).

3.10 load (a module): Load the module interface of a
module and correctly prepare al its bodies for execution.

NOTE — The interface of a module shall be loaded before any
body of the module (see 7.2.1).

3.11 load (a module interface): Correctly prepare the
module interface of the module for execution.

3.12 lookup module The module where search for
clauses of a procedure takes place.

NOTE — The lookup module defines the visible database of
procedures accessible without module name qualification (see
7.1.1.3).

3.13 meta-argument: An argument in a metaprocedure
which is context sensitive, and therefore will be subject to
module name qualification when the procedure is activated.

3.14 metapredicate: A predicate denoting a metapro-
cedure.

3.15 metapredicate directive: A directive stipulating
that a procedure is a metapredicate.

3.16 metapredicate modeindicator: A compound term
each of whose argumentsis‘:’, or ‘ *' (see 7.1.1.4).

3.17 metaprocedure: A procedure whose actions de-
pend on the calling context, and which therefore carries
augmented module information designating this calling
context.

3.18 metavariable. A variable occurring as an argu-
ment in a metaprocedure which will be subject to module
name qualification when the procedure is activated.

ISO/IEC FCD 13211-2 : 1998(E)

3.19 module A named collection of procedures and
directives together with provisions to export some of the
procedures and to import * procedures from other modules.

3.20 module body: A Prolog text containing the defini-
tions of the procedures of a module together with import
* directives local to that module body.

3.21 module, calling (of a procedure): The module in
which a corresponding predication is executed.

3.22 module directivee A term D which affects the
meaning of module text (7.2.2), and is denoted in that
module text by a directiveterm : - (D). .

3.23 module, existing: A module whose interface has
been prepared for execution (see 7.2.1).

3.24 module, exporting: A module that makes available
procedures for import or re-export by other modules.

3.25 module interface: A sequence of read-terms
which specify the exported procedures and metapredi-
cates of a module.

3.26 module, importing: A module into which proce-
dures are imported, used as a context to search for a
procedure.

3.27 module name: An atom identifying a module.

3.28 module name qualification: The qualification of
a meta-argument with the module name of the calling
module,

3.29 module, re-exporting: A module which, by re-
exportation,* imports certain procedures and exports these
same procedures.

3.30 module text: A sequence of read-terms denoting
directives, module directives and clauses.

3.31 module, user: A module with name user con-
taining all user-defined procedures that are not specified
as belonging to a specific module.

4

© ISO/IEC 1998

3.32 predicate **: An identifier or qualified identifier
together with an arity.

3.33 preparation for execution: Implementation de-
pendent handling of a Prolog text and module text by
a processor which results, if successful, in the processor
being ready to execute the prepared Prolog text or module
text.

3.34 procedure, accessible: See 3.1 — accessible pro-
cedure,

3.35 procedure, visible: See 3.49 - visible procedure.

3.36 process **: Execution activity of a processor
running a prepared Prolog text and module text to
mani pul ate conforming Prolog data, accomplish side effects
and compute results.

3.37 prototype: A compound term where each argu-
ment is a variable,

3.38 qualification: The textua replacement (7.4.2) of a
term T by the term M T where Mis a module name.

3.39 qualified argument: A qualified term which is an
argument in a module name qualified * predication.

340 qualified clause: A termwhose associated unqual-
ified term (7.1.1.3) is a clause.

341 qualified identifier: A compound term, used to
denote a module qualified object, with principal functor
(:) /2 where the first argument is a module name and the
second argument is an identifier.

3.42 qualified metapredicate modeindicator: A qual-
ified term whose first argument is an atom denoting a
module name and whose second argument is a metapredi-
cate mode indicator.

© ISO/IEC 1998

3.43 qualified predicate indicator: A compound term,
used to denote a module qualified object, with principal
functor (:)/2 where the first argument is a module name
and the second argument is a predicate indicator.

NOTE — If P is an operator the qualified indicator shall
be denoted by M (P)/N. If M is an operator, the qualified
predicate indicator shall be denoted by (M : P/ N.

3.44 qualified predicate name: The qualified identifier
of a predicate.

3.45 qualified prototype: A qualified term whose first
argument is a module name and second argument is a
template.

346 qualified term: A term whose principal functor
is(:)/2.

347 reexport: To make procedures * exported by a
module * visible in an importing module, while at the
same time making them available for import from the
re-exporting module.

348 reexport, seective: The re-exportation by an
importing module of certain named procedures * exported
from a module (see 7.2.2.3).

3.49 visible procedure (in a module M: A procedure
that can be activated from M without using module name
qualification.

3.50 visible database (of a module M: The set of
procedures * accessible without module name qualification
from within M

4 Symbols and abbreviations
5 Compliance
5.1 Prolog processor

A conforming processor shall:

a) Correctly prepare for execution Prolog text and
module text which conforms to:

ISO/IEC FCD 13211-2 : 1998(E)

1) the requirements of this Fina Committee Draft,
including the requirements set out in ISO/IEC 13211-1
General Core, whether or not the text makes explicit
use of modules, and

2) the implementation defined and implementation
specific features of the Prolog processor,

b) Correctly execute Prolog goas which have been
prepared for execution and which conform to:

1) the requirements of this Find Committee Draft
and ISO/IEC 13211, and

2) the implementation defined and implementation
specific features of the Prolog processor,

¢) Reect any Prolog text, module text or read-term
whose syntax fails to conform to:

1) the requirements of this Find Committee Draft
and ISO/IEC 13211, and

2) the implementation defined and implementation
specific features of the Prolog processor,

d) Specify all permitted variations from this Final
Committee Draft and ISO/IEC 13211 in the manner
prescribed by this Fina Committee Draft and 1SO/IEC
13211, and

e) Offer a strictly conforming mode which shall reject
the use of an implementation specific feature in Prolog
text, module text or while executing a god.

5.2 Module text

Conforming module text shall use only the constructs
specified in this Final Committee Draft and 1SO/IEC 13211-
1, and the implementation defined and implementation
specific features supported by the processor.

Strictly conforming module text shall use only the con-
structs specified in this Fina Committee Draft and |SO/IEC

13211-1, and the implementation defined features specified
by this standard.

5.3 Prolog goal

A conforming Prolog goal is one whose execution is
defined by the constructs specified in this Final Committee

5

ISO/IEC FCD 13211-2 : 1998(E)

Draft and ISO/IEC 13211-1, and the implementation
defined and implementation specific features supported by
the processor.

A strictly conforming Prolog goal is one whose execution
is defined by constructs specified in this Final Committee
Draft and ISO/IEC 13211-1, and the implementation
defined features specified by this standard.

5.4 Prolog modules
5.4.1 Prolog text without modules

A processor supporting modules shall be able to prepare
and execute Prolog text that does not explicitly use
modules. Such text shall be prepared and executed as the
body of the required built-in module named user.

5.4.2 The user module

A Prolog processor shal support a built-in module user .
User-defined procedures not defined in any particular
module shall belong to the user module.

55 Documentation

A conforming Prolog processor shall be accompanied
by documentation that completes the definition of every
implementation defined and implementation specific feature
specified in this Find Committee Draft and 1SO/IEC
13211-1.

5.6 Extensions

A processor may support as an implementation specific
festure, any construct that is implicitly or explicitly
undefined in the Find Committee Draft and ISO/IEC
13211-1.

5.6.1 Modules

A Prolog processor may supply additional implementation-
specific or user-defined modul es whose exported procedures
are visible within every loaded module without explicit
import.

6

© ISO/IEC 1998

5.6.1.1 Dynamic Modules
A Prolog processor may support additional implementation

specific procedures that support the creation or abolition
of modules during execution of a Prolog godl.

5.6.1.2 Inaccessible Procedures
A Prolog processor may support additional directives

whose effect is to make certain procedures defined in the
body of a module not accessible from outside the module.

6 Syntax

This clause defines the abstract syntax of Prolog text
that supports modules. The notation is that of ISO/IEC
13211-1.

Clause 6.1 defines the syntax of module text. Clause 6.2
defines the role of the operator *:'.

6.1 Module text

Module text is a sequence of read-terms which denote (1)
module directives, (2) interface directives, (3) directives,
and (4) clauses of user-defined procedures.

The syntax of a module directive and of a module interface
directive is that of a directive.

nodul e text = mtext ;
Abstract: mi mit

mtext =directive term mtext ;
Abstract: d-t d t

mtext = clause term mtext ;

Abstract: c-t c t
mtext =
Abstract: nil

Clause 7.2.2 defines the module directives and the module
interface directives. Clause 7.2.3 defines new directives
that can appear in the body of a module and their
meanings.

© ISO/IEC 1998

Table 1 — The operator table

Priority Specifier Operator(s)
1200 xf x - -
1200 f x D2
1100 xfy ;
1050 xfy ->
1000 xfy ,
900 fy \ +
700 xf x =\=
700 xf x == \== @& @< @ @=
700 xf x =,
700 xf x is===\=<=<>>=
600 xfy :
500 yf x +- /\V\/
400 yf x * [/] remnod << >>
200 xf x **
200 xfy -
200 fy -\

6.2 Terms

6.2.1 Operators

The operator table defines which atoms will be regarded
as operators when (1) a sequence of tokens is parsed
as a read-term by the built-in predicate read_term 3 or
(2) Prolog text is prepared for execution or output by
the built-in predicates writeterm 3, wite_term 2,
wite/l, wite/2, witeq/l, witeq/2.

The effect of the directives op/ 3, char _conversion/ 2
and set _prol og_fl ag/ 2 in modules with multiple bodies
is described in 7.2.3.4.

Table 1 defines the predefined operators. The operator
‘:’ isused for module qudlification.

NOTES

1 This table is the same as table 7 of ISO/IEC 13211-1 with
the single addition of the operator ‘:'.

2 When used in a predicate identifier *:" is an atom qualifier.
This means that a predicate name can be a compound term
provided that the functor is ‘:'.

3 ‘I’ is neither a control construct nor a built-in predicate.
When it appears in a goal it serves to determine the calling
context.

ISO/IEC FCD 13211-2 : 1998(E)

7 Language concepts and semantics

This clause defines the semantic concepts of Prolog with
modules.

a) Subclause 7.1 defines the lookup module and un-
qualified term associated with a term,

b) Subclause 7.2 defines the division of module text
into Prolog modules,

c) Subclause 7.2.4 defines the relationship between
clauses in module text and in the complete database,

d) Subclause 7.3 defines the complete database and its
relation to Prolog modules,

€) Subclause 7.4 defines metapredicates and the process
of name qudlification,

f) Subclause 7.5 defines the process of converting terms
to clauses and vice versa in the context of modules,

g) Subclause 7.6 defines the process of executing a
goa in the presence of module qualification,

h) Subclause 7.7 defines the process of executing a
control construct in the presence of module qualification.

i) Subclause 7.8 defines predicate properties,

j) Subclause 7.9 defines errors in addition to those
required by ISO/IEC 13211-1.

7.1 Rdated terms

This clause extends the definitions of clause 7.1 of 1SO/IEC
13211-1.

7.1.1 Qualified and unqualified terms
7.1.11 Qualified terms

A qudified term is a term whose principa functor is
(:)/2.

7.1.1.2 Unqualified terms

An unqgudified term is a term whose principal functor is
not (:)/2.

ISO/IEC FCD 13211-2 : 1998(E)

7.1.1.3 Lookup module and unqualified terms associ-
ated with a term and module

Given a module M and a term T, the associated lookup
module LM= | m(M T) and associated unqualified term UT
= ut(MT) of the pair (MT) are defined as follows:

a) |If the principa functor of T is not (:)/2 then
IM{MT) isMand ut(MT) isT;

b) If the principa functor of T is (:)/2 with first
argument MM} and second argument TT, then | (M T)
is the lookup module | m{ MM TT), and ut (M T) isthe
unquaified term ut (MM TT) .

NOTE — The lookup module LM determines the visible database
to be the visible database of LM

7114 Metapredicate mode indicators

A metapredicate mode indicator is a compound term
MNane(Modes) each of whose arguments is ;" or ‘*’.
An argument whose position corresponds to a ‘:’ is a
metarargument. Arguments corresponding to ‘*’ are not
meta-arguments.

7.2 Module text

Module text specifies one or more user-defined modules
and the required module user. A module consists of a
single module interface and zero or more corresponding
bodies. The interface shall be prepared for execution
before any of the bodies. Bodies may be separated from
the interface. If there are multiple bodies, they need not
be contiguous.

The heads of clauses in module text shall be implicitly
module qualified only by the context in which they appear,
not by explicit qualification of the clause head.

Every procedure that is neither a control construct nor
a built-in predicate belongs to some module. Built-in
predicates and control constructs are visible everywhere
and do not require module qualification, except that the
built-in metapredicates (7.4.1) and the control constructs
call/1 and catch/3 may be module qudified for the
purpose of setting the calling context.

7.2.0.1 Module user

The required module user contains all user-defined pro-
cedures not defined within a body of a specific module.

8

© ISO/IEC 1998

It has by default an empty module interface. However,
module text may contain an explicit interface for module
user.

NOTE — An explicit interface for module user enables
procedures to be exported from module user to other modules
and allows metapredicates to be defined in module user .

7.2.1 Module interface

A module interface in module text specifies the name
of the module, the operators, character conversions and
Prolog flags that shall be used when the processor begins
to prepare for execution the bodies of the module, and the
user-defined procedures of a module that are

a) exported from the module,
b) re-exported from the module, and
c) defined to be metapredicates by the module.

A seguence of directives shall form the module interface
of the module with name Nane if :

a) The first directive is a directive nodul e(Nane) .
(7.2.2.1)

b) Thelast directiveisa directive end_nodul e(Nare) .
(7.2.2.9)

c) Each other element of the sequence is a module
interface directive. (7.2.2.2 through 7.2.2.8)

The interface for a module Nane shall be loaded before
any body of the module.

All procedures defined in a module are accessible from
any module by use of explicit module qudification. It
shall be an allowable extension to provide a mechanism
that hides certain procedures defined in a module M so
that they cannot be activated, inspected or modified except
from within a body of the module M

7.2.2 Module directives

Module directives are module text which serve to 1)
separate module text into the individual modules, and 2)
define operators that apply to the preparation for execution
of the bodies of the corresponding module.

© ISO/IEC 1998

7.2.2.1 Module directive module/1l

The module directive nodul e(Nanme) specifies that the
interface text bracketed by the directive and the matching
closing interface directive end_nodul e(Nare) defines the
interface to the Prolog module Nare.

7.2.2.2 Module interface directive export/1

A module interface directive export (EL) in the module
interface of a module M where EL is a predicate indicator,
a predicate indicator sequence or a predicate indicator list,
specifies that the module M makes the procedures indicated
by EL available for import into other modules.

No procedure indicated by EL shall be a control construct,
a built-in predicate, or an imported procedure.

NOTES

1 A predicate indicator that denotes a metapredicate may
appear in EL in which case the corresponding metapredicate
procedure is exported.

2 Since control constructs and built-in predicates are visible
everywhere they cannot be exported.

7.2.2.3 Module interface directive reexport/2

A directiver eexport (M PI) intheinterface of a module
MM where M is an atom and Pl is a predicate indicator,
a predicate indicator sequence or a predicate indicator list
specifies that the module MM imports from the module M
al the procedures indicated by PI, and that MM makes
these procedures available for import into other modules
by importation from MM

A procedure indicated by PI in a reexport(M Pl)
directive shal be that of a procedure exported by the
module M

No procedure indicated by Pl in a reexport(M PI)
directive in MM shall be the subject in MM of a selective
reexport (N, Pl') directive from a module N distinct from
M Neither shal it be the subject in MM of a selective
import directive (7.2.3.2) i mport (N, PI') from a module
N distinct from M

No procedure indicated by PI shal be a control construct
or a built-in predicate.

ISO/IEC FCD 13211-2 : 1998(E)

7.2.2.4 Module interface directive reexport/1

A module interface directive reexport(REM in the
module interface of a module M where REM is an atom,
a sequence of atoms, or a list of atoms specifies that
the module M imports all the procedures exported by
the modules indicated by REM and that M makes these
procedures available for import into other modules by
importation from MM

No procedure indicated by REM shall be a control construct
or a built-in predicate.

7.2.25 Module interface directive metapredicate/l

A module interface directive net apr edi cat e(M.) in the
module interface of a module M where M. is a metapred-
icate mode indicator, a metapredicate mode indicator
sequence, or a metapredicate mode indicator list specifies
that the module defines the metaprocedures indicated by
M.

NOTE — The inclusion of a metapredicate mode indicator in
the argument of a module interface directive does not thereby
export the indicated metapredicate. Any procedure exported by
a module shall be the subject of either an export or reexport
directive.

7.2.2.6 Module interface directive op/3

A module interfface directive op(Priority,
p_speci fier, Operator) inthe module interface of a
module M enables the initia operator table to be atered
only for the preparation for execution of all the bodies of
the module M

The arguments Priority, Op.specifier, and
Qperator shal satisfy the same congraints as for the
successful execution of the built-in predicate op/ 3 (8.14.3
of 1SO/IEC 13211-1) and the operator table shall be atered
in the same way.

Operators defined in a module interface directive
op(Priority, Opsspecifier, Operator) shal not

affect the syntax of read terms in Prolog and module texts
other than the bodies of the corresponding module.

7.2.2.7 Module interface directive char_conversion/2

A moduleinterface directivechar _conver si on(| n_char,
Qut _char) in the module interface of a module M enables

9

ISO/IEC FCD 13211-2 : 1998(E)

the initial character conversion mapping Conve (see 3.29
of ISO/IEC 13211-1) to be atered only for the preparation
for execution of all the bodies of the module M

The arguments I nchar, and Qut _char shall satisfy the
same congtraints as for the successful execution of the
built-in predicate char _conver si on/ 2 (8.14.5 of 1SO/IEC
13211-1) and C'onve shall be atered in the same way.

Character conversions defined in a module interface direc-
tive char _conversion(ln_char, Qut_char) shal not
affect the syntax of read terms in Prolog and module texts
other than the bodies of the corresponding module.

7.2.2.8 Module interface directive set_prolog-flag/2

A module interface directive set _prol og_fl ag(Fl ag,
Val ue) in the module interface of a module M enables
the initial value associated with a Prolog flag to be atered
only for the preparation for execution of all the bodies of
the module M

The arguments Fl ag, and Val ue shal satisfy the same
constraints as for the successful execution of the built-in
predicate set _prol og_fl ag/ 2 (8.17.1 of ISO/IEC 13211-
1) and the Val ue shall be associated with flag Fl ag in
the same way.

Values associated with flags in a module interface directive
set _prol og_fl ag(Fl ag, Value) shal not affect the
values associated with flags in Prolog and module texts
other than the bodies of the corresponding module.

7.2.29 Module directive end_modulée/l

The module directive end_nodul e(Nane) where Nane is
an atom that has aready appeared as the argument of a
module directive nodul e/ 1, specifies the termination of
the interface for the module Nare.

NOTE — Unless otherwise so defined module directives
are not prolog text. Thus op/ 3, char _conversi on/2 and
set _prol og_fl ag/ 2 are both module directives and directives
(see ISO/IEC 13211-1 7.4.2.4, 7.4.25 and 7.4.2.9.)

7.2.3 Module body

A module body belonging to a module is Prolog text
which defines user-defined procedures that belong to the
module.

A sequence of directives and clauses shall form a body of
the module with name Narre if:

10

© ISO/IEC 1998

a) The first element of the sequence is a directive
body(Nane) (7.2.3.1).

b) The last element of the sequence is a directive
end_body(Nane) (7.2.3.4).

Directives i nport/1 and i nport/2 make visible in the
importing module procedures defined in an exporting
module.

If a procedure with predicate indicator PI from the
complete database is visible in M no other procedure with
the same predicate indicator shal be made visible in M

7.2.3.1 Module directive body/1

A module directive body(Nane) where Nanme is an atom
giving the name of a module specifies that the Prolog text
bracketed between this directive and the next end module
directive end_body(Nane) belongs to the module Nane.

7.2.3.2 Directive import/2

A directive i nport (M PI) in a body of a module MV
where M is an atom and Pl is a predicate indicator, a
predicate indicator sequence or a predicate indicator list
specifies that the module MM imports from the module M
al the procedures indicated by PI .

A procedure indicated by Pl inai nport (M Pl) directive
shall be a procedure exported by the module M

No procedureindicated by Pl inai nmport (M PI') directive
in MM shall be the subject in MM of a sdlective import
directive inmport (N, Pl) from a module N distinct from
M Nor shall it be the subject in M of a selective reexport
directive (7.2.2.3) reexport (N, Pl) from a module N
distinct from M

No procedure indicated by PI shal be a control construct
or a built-in predicate.

7.2.3.3 Directive import/1

A directive i nport (M) in abody of a module MM where
M is an atom, a sequence of aoms, or a list of atoms
specifies that the module MM imports al the procedures
exported by the modules indicated by M . Such procedures
shal be visible in MM without name qualification.

© I1SO/IEC 1998

NOTES

1 More than one directive i nport (M, Pl) in the bodies
of a module MM may specify the importation of exported
procedures from a given module M Subseguent imports of the
same module Minto MM in a module body of MM shall have no
effect.

2 More than one directive i nport (M) in the bodies of a
module MM may specify the importation of exported predicates
from a given module M Subsequent imports of the same module
Minto MM in a module body of MM shall have no effect.

3 A module M shall not import a procedure whose predicate
indicator is that of a procedure defined in M

4 A module M shall not define a procedure whose predicate
indicator is that of a procedure that M imports.

5 A module M shall not import a procedure with a given
predicate indicator from two different modules.

7.2.3.4 Module directive end_body/1

The module directive end_body(Name) where Nane is
an atom that has aready appeared as the argument of a
module directive body/ 1 specifies the termination of the
Prolog text belonging to the particular module body of
module Nare.

The preparation for execution of any module interface shall
set the operator table, character conversion mapping C'onve
(see 3.29 of ISO/IEC 13211-1), and Prolog flags to a new
initial implementation defined state, determined by the
module interface directives op/ 3, char _conversion/ 2,
and set _prol og_fl ag/ 2 in the interface of M This state
shall only affect the preparation for execution of all the
subsequent bodies of the module. M The effect of directives
op/ 3, char _conversion/ 2, and set _prol og_fl ag/ 2 in
a body of a module M shal accumulate during the
preparation for execution of subsequent bodies of the
module M

NOTE — A single module may have more than one body.
However module text does not permit the nesting of any module
body within the Prolog text of the body of any module other
than the user module.

7.24 Clauses

A clause-term in one of the bodies of a module M of
module text enables a clause of a user-defined procedure
to be added to the module M

|SO/IEC FCD 13211-2 : 1998(E)

A clause d ause of aclause-term d ause. in the body of
a module M shall be an unqualified term which is a clause
term whose head is an unqualifed term and shall satisfy
the same congraints as those required for a successful
execution of the built-in predicate M assert z(Cl ause)
(8.4.2), except that no error shall occur because d ause
refers to a static procedure. The d ause shall be converted
to a clause h: - t and added to the module M

The predicate indicator P/ N of the head of O ause shall
not be the predicate indicator of any built-in predicate, or
a control construct, and shall not be that of any predicate
imported into M or reexported by M

NOTE — If the directive di sconti guous/ 1 is in effect for
a predicate defined in the body of a module, then clauses for
that predicate may appear in separate bodies of the module.
The order in which the clauses are added to the complete
database depends on the order in which the bodies are prepared
for execution.

7241 Examples

The examples defined in this clause assume the complete
database has been created from module text that includes
the following:

;- modul e(utilities).
;- export([length/2, reversel/2]).
;- end_nodul e(utilities).
;- body(utilities).
length(List, Len) :- lengthl(List, 0, N).
lengthl([], N, N).
lengthl([H]| T, N L) :-
NL is N+ 1,lengthl(T, N1, L).

reverse(List, Reversed) :-
reversel(List, [], Reversed).
reversel([], RR.
reversel([H| T], Acc, R :-
reversel(T, [H]| Acc], R.
:-end_body(utilities).

;- nodul e(foo).
;- end_nodul e(fo0).
;- body(foo0).
c-inmport(utilities).
p(Y) - g(X),length(XY).

q([1,2,3,4]).
;- end_body(fo0).

The examples.

foo: p(X).
succeeds,
unifying X with 4.
foo:reverse([1,2,3], L).
succeeds,

11

ISO/IEC FCD 13211-2 : 1998(E)

unifying L with [3,2,1].
utilities:reversel([1,2,3], [], L).

succeeds,

unifying L with [3,2,1].
foo:reversel([1,2,3], [], L).

exi stence_error(procedure, foo:reversel).

7.3 Complete database

The complete database is the database of procedures
against which execution of a goal is performed. The
procedures in the complete database are:

a) al control constructs,
b) dl built-in predicates,
c) al user-defined procedures.

Each user-defined procedure is identified by a unique
qualified predicate indicator (3.43) where the module
gualification of the predicate indicator is the defining
module of the procedure.

7.3.1 Visble database

The visible database of a module Mis the collection of all
procedures in the complete database that can be activated
from M without explicit module qualification and from
outside M with M as lookup context.

It includes al built-in predicates and control constructs, all
procedures defined in the bodies of M and all procedures
imported into M

NOTE — A procedure visible in a module M that is neither a
control construct nor a built-in predicate is either (1) completely
defined in the bodies of M or (2) completely defined in the
bodies of some module MM exported from MM and imported
or reexported into M Furthermore the options (1) and (2) are
mutually exclusive.

7.3.2 Examples

The following examples use the complete database defined
in7.24.1.

The visible database of foo consists of the following
procedures:

Al built-in predicates and control
constructs.

12

© ISO/IEC 1998

From f oo:
p/1, q/1.

Inported fromutilities:
I ength/ 2, reverse/2

74 Metapredicates

Metapredicates are procedures one or more of whose
arguments are meta-arguments. When the metapredicate
is activated these arguments will be unified to terms that
require module qualification. The caling context can be
set explicitly by using the infix operator ‘ : .

741 Metapredicate Built-ins

The following built-in predicates are metapredicates listed
with their metapredicate mode indicators:

a) The database access and modification
built-in predicates cl ause(:, *), asserta(:),
assertz(:), retract(:), abolish(:), and
predi cate_property(:,*),

b) The logic and control built-in predicates once(:),
\+(:), ad

c) The dl solutions predicates setof (*,:,*),
bagof (*,:,*), and findall (*,:,*).

7.4.2 Module name expansion

An argument X of a metapredicate MP which occurs at
a position corresponding to a ‘:’ in the metapredicate
mode indicator of MP shall be qualified with the module
name of the caling context when MP is activated. A
unqualified term X appearing as a ‘:’ argument in a call
of a predicate MP in module Mwill be replaced by (M X)
in the activation of MP.

The meta-arguments in an unqualified term which repre-
sents a metapredicate goal MP in the calling context of
a module CM shal be module qualified with c™Mm If the
term is module qualified then the meta-arguments shall be
module qualified with the associated lookup module of the
par (CM MP) .

© I1SO/IEC 1998

7421 Module qualifying an argument list

An argument list L is converted in the calling context
of module M to a module qualified argument list ML as
follows:

a) If L isthe empty list then ML is the empty list.

b) If L isthelist whose head is H and whose tail is T
then

1) If His a metaargument then ML is the list
whose head is M H and whose tail is the list MJT
obtained by converting T in the calling context of
module Mto a module qualified list,

2) Else H is not a meta-argument and ML is the
list whose head is H and whose tail is the list MJT
obtained by converting T in the calling context module
Mto a module qualified list.

7.4.2.2 Module qualifying a control construct

The control constructs *," /2, ' ;' /2,'->/2 ,call/1
and catch/3 require that some of their arguments be
module qualified with a module M during conversion for
visibility (7.5.2.2.) This is done as follows:

a If an asgument of *,’/2, ";' /2, or *->"/2 is
already module qudified no qualification is done.

b) Each argument X of *,'/2,";'/2, or’->/2 that
is not already module qualified is replaced by M X.

c) If the argument of call/1 is aready module
qualified no qualification is done.

d) If theargument X of cal I / 1 isnot module quaified
it is replaced by M X.

e) If the first argument of cat ch/ 3 is aready module
qualified no further module qualification of thisargument
is done.

f) If the first argument X of catch/3 is not module
qualified it is replaced by M X.

g) The second argument of cat ch/ 3 is not subject to
module qualification.

h) If the third argument of cat ch/ 3 is already module
qualified no further module qualification of this argument
is done.

i) If the third argument X of catch/3 is not module
qualified it is replaced by M X.

|SO/IEC FCD 13211-2 : 1998(E)

74.2.3 Module qualifying a term

A term MP shal be converted in the caling context of
module Mto a module qualified term MQP as follows.

a |If MPis an unqualified term with principal functor
P and argument list L then MQP is the term whose
principal functor is P and whose argument list is the
list ML obtained by converting L in the caling context
of module M to a module qudified list.

b) Elseif MPis aqudlified term with principa functor
(:)/2 with first argument MM and second argument TT
then MP is the term whose principa functor is (:)/2
with first argument MM and second argument MJTT the
term obtained by module qualifying TT in the calling
context of module MM to a module qualified term.

74.3 Examples
7431 Examples: Module qualification

These examples on module qudification assume that the
complete database has been created from the following
module text.

;- nodul e(foo).
c-export(p/2).
;-netapredicate(p(*,:)).

;- end_nodul e(fo0).

;- nodul e(bar).
;- end_nodul e(bar).

;- body(bar).
;-inmport(foo).
;- end_body(bar).

If p(XY) is called in the context of nodule bar
then the corresponding nodule qualified termis
p(X bar:Y).

If foo:p(X Y) is called in the context of a nodule m

then the corresponding nodule qualified termis
foo: p(X foo:Y).

74.3.2 Examples. export and import

These examples of importation, exportation and metapred-
icates assume that the complete database has been created
from the following module text.

;- nodul e(foo).

:- export(p/1l).

;- netapredicate(p(:)).
;- end_nodul e(fo0).

13

ISO/IEC FCD 13211-2 : 1998(E)

;- nodul e(bar).
;- export(q/l).
;- end_nodul e(bar).

;- nodul e(baz).
;- export(q/l).
;- end_nodul e(baz).

;- body(foo0).
p(xX) - wite(X).
;- end_body(fo0).

;- body(bar).
;- inmport(foo, p/l).
q(x) - a(x), p(X
q(X) :- a(X), foo:p(2).
a(l).

;- end_body(bar).

;- body(baz).
;- inmport(bar, g/1).
;- end_body(baz).

baz: q(X).
succeeds,
unifying X with 1
and witing bar:1
on re-execution succeeds
unifying X with 1
and witing foo: 2.

bar: q(X).
succeeds,
unifying X with 1
and witing bar:1
on re-execution succeeds
unifying X with 1
and witing foo: 2.

foo: p(3).
succeeds,
witing foo: 3.

bar: p(3).
succeeds,
writing bar:3.

7.4.3.3 Examples. metapredicates

The following example illustrates the use of a metapredicate
to obtain context information for debugging purposes.

;- nodul e(trace).
i- exports(#/1).
;- metapredicate(#(:)).

;- end_nodul e(trace).
;- body(trace).
:- op(950, fx, #).

(# Goal) :-

Goal = Module : G
informuser (' CALL', Module, G,

14

© I1SO/IEC 1998
call (Goal),
informuser("EXIT', Mdule, G.
(# Goal) :-

Goal = Mudule : G
informuser(’' FAIL', Mdule, Coal),
fail.
informuser(Port, Mdule, CGoal) :-
wite(Port), wite(’ '), wite(Mdule),
wite(' calls '), witeq(Goal), nl.
;- end_body(trace).

;- nodul e(sort_with_errors).
;- export(sort/2).
;- end_nodul e(sort_with_errors).
;- body(sort_with_errors).
;- inport(trace).
sort(List, SortedList) :-
sort(List, SortedList, []).
sort([], L,L).
sort([XIL], RO, R :-
split(XL,L1,L2)),
sort(Ll1, RO, R1),
sort(L2, [XIRl], R.
split(_, [1, [1, [1).
split(X, [Y/L], [Y]|L1], L2):-
Y @& X !,
split(XL, L2, L2).
split(X, [Y] L], [Y |L1], L2):-
split(X L, L2, L2).

;- end_body(sort_with_errors).

The goal :

sort([3,2,1], L).

fails, witing

CALL sort_with_errors calls split(3,[2,1],_A _B)
FAIL sort_with_errors calls split(3,[2,1],_A _B).

7.5 Converting a term to a clause, and a clause
to aterm

Prolog provides the ability to convert Prolog data to and
from code. However the argument of a goa is a term
whereas the complete database contains procedures with
the user-defined procedures being formed from clauses.
Some procedures convert a term to a clause, while others
convert a clause to a corresponding term. This clause
defines how the conversion is to be carried out in the
presence of modules.

75.1 Converting a term to the head of a clause

In the caling context of a module M a term T can be
converted to a predication which is the head H of a clause
with lookup module Mm

a) The associated unqualified term (7.1.1.2) UT of
(MT) is converted to a predication H as in 7.6.1 of
ISO/IEC 13211-1:

© ISO/IEC 1998

b) The lookup module MM for the predication is the
lookup module of (M T).

75.2 Converting a term an activated goal

In the calling context of a module M with defining module
DM a term T is converted to an activated goal G in three

steps.

a) Theterm T is first converted for control constructs
(7.5.2.1) in the caling context of Mto a body BG with
module qualifications;

b) The body with module qudifications BGis converted
for visibility of built-ins (7.5.2.2) in the calling context
of Mto a body VBG qualified for visibility;

¢) Terms in the body qudified for visibility VBG that
denote metapredicates are module qudified (7.5.2.3) in
the calling context of the defining module DM

7521 Conversion of a term to a module qualified
body

A term T shal be converted for control constructs to a
body with module qualifications BG in the context of a
caling module Mwith defining module DM as follows:

a |If T is an unquaified terem and M is equa to DM
then T is converted for control constructs as follows:

1) If T isavariable then BG is the control construct
cal whose argument is T.

2) If T is aterm whose principal functor is one of
the control constructs call, catch, throw, ! , true or
fail then BG is the same control construct and the
arguments if, if any, of BG and T are identical.

3) If T is a term whose principal functor is one
of the control one of the control constructs (,)/2
or (;)/2 or (->)/2 then BG is the corresponding
control construct and the arguments of T shadl be
converted for control constructs with calling context
and defining module M

4) If Tisan atom or compound term whose principal
functor FT does not appear in table 8 of ISO/IEC
13211-1 then BG is a predication whose predicate
indicator is FT, and the arguments, if any, of T and
BG are identical.

ISO/IEC FCD 13211-2 : 1998(E)

b) Elseif T isan unqualified term and Mis not equal to
DM then the qualified term M T is converted for control
constructs, with calling context and defining module M

c) Elseif Tisaquadlified term the associated unqualified
ut (M T) isconverted for control constructsin the caling
context of the defining module | (M T) with defining
module I m(M T) to the predication UG and BG is
ImMT): UG

7522 Converson of a module qualified body for
visibility

A module qudified body BG shall be converted for the
visibility of control constructs in the calling context of a
module Mto a body qualified for visibility VBG as follows:

a) |If BG is an unqualified term then the conversion
proceeds as follows:

1) If the principa functor of BGis one of the control
constructs’,’ /2, ;' /2, or’->"/2 then VBG is the
corresponding control construct and each argument of
BG is converted for visibility in the calling context of
M

2) Else BG and VBG are identical.

b) Elseif BGisa module qualified term with principal
functor (:)/2, first argument MM and second argument
UBG the conversion proceeds as follows:

1) If the principa functor of UBG is one of the
control constructs’ ,’ /2, ;' /2, 0r’ ->"/ 2 then VBG
is the corresponding control construct, the arguments
of UBG are module qudified with MM as in 7.4.2.2
and converted for visibility of control constructs.

2) If the principal functor of UBG is the control
congtruct cal I /1 or catch/ 3 then VBG is the same
control construct and the arguments of UBG are module
qualified according to 7.4.2.2,

3) Else BG and VBG are identical.

75.2.3 Converting a body qualified for visibility to an
activated goal

A body VBG qualified for visibility can be converted to

an activated goal AG in the caling context of a module M
with defining module DM as follows.

15

ISO/IEC FCD 13211-2 : 1998(E)

a) If VBGis aterm whose principa functor is one of
the control constructs *,’ /2, *;' /2, or *->"/2 then
each argument of VBG is converted to an activated goal
in the in the caling context of M

b) If VBGis an unqualified term denoting a metapredi-
cate then AG is the result of module qualifying (7.4.2.3)
the arguments of VBG with DM

c) If VBGis a qudified term denoting a metapredicate
then AGL is the unqualified term obtained by mod-
ule qualifying the arguments of the unquaified term
VBGL associated to (M VBGL) with the lookup module
I m(M VBGL), if the metapredicate denoted by VBGL is
one of the metapredicate built-ins (7.4.1) then AGis AGL
gse AGis | m(M VBGL) : AGL,

d) Else VBG and BG are identical.

75.3 Converting a term to the body of a clause

It is implementation defined as to whether all of the steps
in conversion of a term to an activated goa take place
when aterm is converted to agoa. Converting aterm to a
goa shall convert the term for control constructs (7.5.2.1)
but may aso convert for visibility (7.5.2.2). Conversion
to an activated goa (7.5.2.3) must be completed (if not
done a conversion to a goa time) by 7.6.4 e

75.4 Converting the body of a clause to a term

A goa G which is a predication with predicate indicator
P/ N in the body of a clause of a module M can be
converted to aterm T:

a) If the principa functor of Gisnot (:)/2 and if N
is zero, then T is the atom P.

b) If the principal functor of Gisnot (:)/2 and Nis
not zero then T is a renamed copy of TT where TT is
the compound term whose principa functor is P/ N and
the arguments of G and TT are identical.

c) If Gis a control construct which appears in table
9 of ISO/IEC 13211-1, then T is a term with the
corresponding principal functor. If the principal functor
of T is call/1, catch/3 or throw 1 then the
arguments of G and T are identical, else if the principal
functor of Tis(,)/2 or (;)/2 or (->)/2 then each
argument of G shal also be converted to a term.

16

© ISO/IEC 1998

d) Else if the principal functor of G is (:)/2 with
first argument MM and second argument GG then G is
converted to the term MM TT, where TT is obtained by
converting GG to a term in the calling context of MM

NOTE — A fully activated goal is not subject to further module
qualifcation of its arguments.

755 Examples

The following examples are provided to illustrate the three
stages of converting a term to a fully activated god.

Defining module = m calling nodul e = foo.
This would arise in a goal such as
foo:asserta(mbar(X) :- baz(X)).

Term - baz(X), baz/1 not a netapredicate.

Converted for control constructs - mbaz(X).
Converted for visibility - m baz(X) .
Fully activated goal - mbaz(X).

Term - netabaz(X), netabaz a netapredicate

Converted for control constructs:- mnetabaz(X).
Converted for visibility - mumetabaz(X).

Fully activated goal - mnetabaz(m X).

Term- X

Converted for control constructs - mcall(X)
Converted for visibility - call (mX).

Ful l'y activated goal - call (mX).

Term- '-> (bar:a(X), b(Y)).
Converted for control constructs

- '->(bar:a(X), mb(Y))
Converted for visibility

- '->(bar:a(X), mb(Y))
Fully activated goal

- '->(bar:a(X), mb(Y))

Term- ', (setof (X,GS)), wite(S)).
Converted for control constructs

-, (msetof (X, GS)), mwite(S)).
Converted for visibility

- ' (msetof (X,GS)), wite(9)).
Fully activated goal

-) (setof (X mG S)), wite(S)).

Term - true.

Converted for control constructs - true.
Converted for visibility - true.
Fully activated goal - true.

7.6 Executing a Prolog goal

This clause describes the flow of control through Prolog
clauses as a god is executed in the presence of module
qualification. It is based on the stack mode in clause 7.7
of ISO/IEC 13211-1.

© ISO/IEC 1998

7.6.1 Data types for the execution model

The execution model of module Prolog is based on an
execution stack S of execution states ES. It is an extension
of the modd in clause 7.7 of ISO/IEC 13211-1, where the
extension adds module information.

ES is a structured data type with components:

Sindex — A vaue defined by the current number of
components of S.

decsgl stk — A stack of decorated subgoals which
defines a sequence of activators that might be activated
during execution.

subst — A substitution which defines the state of the
instantiations of the variables.

Bl — Backtrack information: a value which defines
how to re-execute a goal.

The choi cepoi nt for the execution state ES;;1 is ES..

A decorated subgoal DS is a structured data type with
components:

activator — A predication prepared for execution
which must be executed successfully in order to satisfy
the goadl.

cont ext rodul e — An atom identifying the module in
which the subgoal is being caled.

cutparent — A pointer to a deeper execution state
that indicates where control is resumed should a cut be
re-executed.

currstate, the current execution state is top(S). It
contains:

a An index which identifies its position in S, and
b) The current decorated subgoal stack, and

¢) The current substitution, and

d) Backtracking information.

currdecgsgl, the -current decorated subgod, is
top(decsgl stk) of currstate. It contains:

a) The current activator, curract, (this may be a
qualified term,)

ISO/IEC FCD 13211-2 : 1998(E)

Table 2 — The execution stack after initialization with
the goal m:goal

S Decorated Substi- Bl
i ndex Subgoa Stack, tution
1 ((mgoal, user, 0), {} ni |

newst ackpgs) ,

newst ackgs

b) The current context module cont ext nodul e, which
gives the context in which the current decorated subgoal
is to be executed, and

c) Itscutparent.

Bl has value:
nil —Itsinitia vaue, or
ctrl — The procedure is a control construct, or

bi p — The activated procedure is a built-in predicate,
or

(DM up(CL)) — CL is a list of the clauses of a
user-defined procedure whose predicate is identical to
curract, and which are till to be executed, and DM is
the module in whose body these clauses appesr.

7.6.2 Initialization

The method by which a user delivers a goa to the Prolog
processor shall be implementation defined.

A goal is prepared for execution by transforming it into
an activator. Execution of a metapredicate requires that
al arguments of type ‘' be module qualified (7.4.2) with
the module name of the calling context prior to execution
(764 €.

The initia value of the calling context is user.

Table 2 shows the execution stack after it has been
initialized and is ready to execute m goal .

7.6.21 A goal succeeds
A god is satisfied when the decorated subgoa stack of

currstate is empty. A solution for the goa m goal is
represented by the corresponding substitution 2.

17

ISO/IEC FCD 13211-2 : 1998(E)

7.6.22 A goal fails

Execution fails when the execution stack S is empty.

7.6.23 Re-executing a goal

After satisfying an initial goal, execution may continue by
trying to satisfy it again.

Procedurally,
a) Popcurrstate froms,

b) Continue execution a 7.6.5.

7.6.3 Searching the complete database

This clause describes how, with lookup module m the
processor locates a procedure p in the complete database
whose predicate indicator corresponds to a given (possibly
module qualified) activator.

7.6.3.1 Searching the visible database

The procedure in the complete database corresponding to
a procedure p (whose principa functor is necessarily not
(:)/2) in the visible database defined by a module mis
located as follows:

a) |If the principal functor of p is a control construct
or built-in predicate then p is the required procedure.

b) If thereis a user-defined procedure p with the same
principal functor and arity as p defined in mthen p is
the required procedure.

c) The selective import, reexport and selective reexport
directives of m are examined; (1) if there is a directive
naming p as imported or re-exported from a module
n then search is carried out in the visible database of
n for a procedure p which is exported by n; (2) ese
if there is a directive naming a module n as imported
or re-exported then search is carried out in the visible
database of n for a procedure p which is exported by n.

d) Else the search fails.

Procedurally the search in the visible database of a module
mfor a user defined procedure p is carried out as follows:

18

© ISO/IEC 1998

a) |If thereis a user-defined procedure p with the same
principal functor and arity as p defined in mthen p is
the required procedure,

b) Else form two sets Open and O osed each initidly
empty.

¢) Add mto the set d osed.

d If there is a sdective import directive
import(n,Pl) or a sdective reexport directive
reexport(n, Pl) where Pl includes p replace Open
by the set whose sole member is n,

€) Else create a list S of all the modules that are the
subject of inport/1 or reexport/1 directives in m
and replace Open by the set S.

f) If Open is empty the search fails,

g) Else remove a module n from Open and add it to
d osed.

h) If there is a user defined procedure q with the
same principal functor and arity as q defined in n and
exported by n then q is the required procedure, and the
search terminates,

i) Else if there is a inport/2 directive or a
reexport/2 directive in n naming p as imported
from a module nn and nn is not on d osed replace
Open by the set whose sole element is nn,

j) Else create the set S of dl modules that are the
subject of inport/1 or reexport/1 directives in n
and add to Open the ements of S that are on neither
Open nor d osed.

k) Continue at 7.6.3.1 f.

NOTES

1 Because a module m may not make visible two different
procedures from the same database that would have the same
unqualified predicate indicator (7.2.3) in m no more than one
such procedure can be found.

2 Because no more than one procedure can be found the
choice of module from the set Open does not need to be
specified.

3 Since importation is idempotent no module needs to be
searched more than once.

© ISO/IEC 1998

7.6.3.2 Searching for a given procedure

The processor locates in the complete database with lookup
module m a procedure p corresponding to a given term T.

ISO/IEC FCD 13211-2 : 1998(E)

€) Ensure that curract has been converted to an
activated goal by module qudifying (7.4.2.3) its meta-
arguments.

a) Determine the unqualified term UT and lookup
module LT associated to (m T) .

b) If the principa functor of UT is a control construct
or built-in procedure g then q is the required procedure.

c) |If the principa functor of UT is a user-defined
procedure g (not a control construct or built-in predicate)
then the visible database (7.3.1) of LT is searched for
a procedure q. If no such procedure exists the search
fails.

7.6.4 Sdecting a clause for execution

Execution proceeds in a succession of steps.

a) Using the visible database given by the lookup
module cont ext modul e of the current decorated sub-
goa currdecsgl, the processor searches the complete
database (7.6.3) for a procedure p whose (possibly
module qualified) predicate indicator corresponds with
the (possibly qualified) identifier and arity of curract.

b) If no procedure is found in step 7.6.4 a, then action
depends on the value of the flag unknown:

error — There shdl be an error
exi stence_error (procedure, M PF)

where Mis the lookup module and PF is the predicate
indicator of the (possibly qualified) curract, or

war ning — An implementation dependent warning
shall be generated and curract replaced by the control
construct fail, or

fail — curract shal be replaced by the control
construct fail .

c) |If curract identifies a user-defined predicate set
DM to the module name of the module in whose body
the predicate is defined.

d) Set contextnodul e in the current decorated sub-
goa to the lookup module associated to the pair
(contextnodul e, curract) and set curract to the
associated unqudified term.

f) If p is a control construct (true, fail, cal, cut,
conjunction, digunction, if-then, if-then-else, catch,
throw) then Bl is set to ctrl and execution continues
according to the rules defined in (7.7).

g) |If p isabuilt-in predicate BP then Bl is set to bi p
and continue execution at 7.6.7.

h) If p is a user-defined procedure then DM is set to
the module in which the procedure is defined and Bl is
set to (DM up(CL)), where CL is alist of the current
clauses of p of the procedure; Continue execution at
7.6.6

NOTE — After the execution of these steps curract is not
module qualified.

7.6.5 Backtracking

A procedure backtracks (1) if a goa has faled, or (2)
if the initial goal has been satisfied, and the processor is
asked to re-execute it.

Procedurally, backtracking shall be executed as follows:

a) Examine the value of BI for the new currstate.

b) If Bl is (DM up(CL)) then p is a user defined
procedure remove the head of CL and continue at 7.6.6.

c) |If Bl isbip then p is a built-in predicate, continue
execution a 7.6.7.

d) If Bl isctrl the effect of re-executing it is defined
in7.7.

€) If Bl isnil then the new curract has not been
executed, continue execution at 7.6.4.

7.6.6 Executing a user-defined procedure:

Procedurally a user-defined procedure shall be executed as
follows:

a) |If there are no (more) clauses for p then Bl has the
value (DM up([])) and continue execution at 7.6.6.1,

b) Else consider clause c where Bl has the value (DM
up([c | CT])) with the caling context DM

19

ISO/IEC FCD 13211-2 : 1998(E)

c) |If the head of ¢ and curract are unifiable then
it is sdected for execution, and continue execution at
7.6.6 e

d) Else Bl isreplaced by a value (DM up(CT)) and
continue execution at 7.6.6 a.

€) Letc’ bearenamed copy of the clause ¢ of up([c
1)

f) Unify the head of ¢’ and curract producing a
most general unifier M3U.

g) Apply the substitution MaU to the body of c’ .

h) Make a copy CCS of currstate. It contains a
copy of the current goa which is caled CCG.

i) Apply the substitution M3U to CCG

i) Replace the current activator of CCG by the MU
modified body of ¢’ .

k) SetBl of CCStonil.

[) Set the substitution on CCS to a composition of the
substitution of currstate and M3U.

m) Set cutparent of the new first subgoa of the
decorated subgoa stack of CCS to the current choice
point.

n) Set the cont ext nodul e of the new first subgoal
of the decorated subgoa stack to DM

0) Push CCS on to S. It becomes the new currstate
and the previouscur r st at e becomes itschoi cepoi nt .

p) Continue execution a 7.6.4.

7.6.6.1 Executing a user-defined procedure with no
more clauses

When a user-defined procedure has been selected for
execution 7.6.4 but has no more clauses, i.e. Bl has a
value (DM up([])), it shal be executed as follows:

a) Popcurrstate fromsS.

b) Continue execution a 7.6.5.

20

© ISO/IEC 1998

7.6.7 Executing a built-in predicate

Procedurally a built-in predicate shall be executed as in
section 7.7.12 of ISO/IEC 13211-1.

For the built-in predicates that have meta
arguments, the database access and modifica
tion built-in predicates cl ause(:,*), asserta(:),

assertz(:), retract(:), abolish(:), and
predi cate_property(:,*), thelogic and control built-
in predicates once(:), \+(:), and the al solu-
tions predicates setof (*,:,*), bagof(*,:,*), and
findall(*,:,*), the current decorated subgoa gives
access to the calling context required for module name
expansion (7.6.4 e).

7.7 Executing a control construct

This clause describes the modifications required to the
descriptions of the execution modd of 1SO/IEC 13211-1.
For all control constructs not specifically described, the
model is unchanged.

771 calll/l

7.7.11 Description

cal | (G istruein the caling context of module CM iff G
represents a goal which is true.

Procedurally, a control construct cal, denoted by cal | (G,
shall be executed as follows:

a) Make a copy CCS of currstate.
b) Set Bl of CCS tonil .

c) Popcurrdecsgl (= (call(Q, cM CP)) from
current goal of CCS.

d) If the teem G has as associated unqualified term a
variable, there shal be an instantiation error,

e) Else if the term G has as associated unquaified
term a number, there shall be a type error,

f) Else in the cdling context of the module CM and
defining module CM convert the term G to a goa Goal
with calling context M the lookup module associated to
(oM G (7.5.3).

g) Let NN be the choice point of currstate.

© ISO/IEC 1998

h) Push (Goal, M NN) on to currentgoal of CCS.
i) Push CCS onto S.

j) Continue execution at 7.6.4.

k) Pop currstate from S.

[) Continue execution at 7.6.5.

cal | (G is re-executable. On backtracking, continue at
7.7.1.1 k.

NOTE — The built-in predicates once/ 1 and \ +/ 1 contain
an implicit cal I, their behaviour in the presence of modules
is modified accordingly.

7.7.1.2 Template and modes

call (+callable_term.

7.7.1.3 Errors

a Gisavariable
—instantiation_error.

b) Thelookup module of (CM G cannot be determined
(7.1.2).
—instantiation_error.

C) G s neither a variable nor a calable term
—type_error(callable, Q.

d) G cannot be converted to a goa

—type_error(callable, Q.

7.7.14 Examples

call (m X: foo).

type_error(callable, mX foo).

7.7.2 catch/3

The cat ch and t hr ow control constructs enable execution
to continue after an error without intervention from the
user.

ISO/IEC FCD 13211-2 : 1998(E)

7.7.21 Description

catch(G C R) istruein the caling context of module CV
iff (1) call (Q istrue, or (2) the call of Gis interrupted
by a cal of t hrow 1 whose argument unifies with C, and
cal | (R istrue

Procedurally, a control construct catch, denoted by
catch(G C R) is executed as follows:

a) Make a copy CCS of currstate.
b) Replace curract of CCS by call (G.
c) SetBl tonil.
d) Push CCS onto S.
€) Continue execution at 7.6.4.
f) Pop currstate from S,
g) Continue execution at 7.6.5.
catch(G C, R) is re-executable. On backtracking, con-

tinue at 7.7.2.1 f.

7.7.2.2 Template and modes

catch(?callable_term ?term ?term

7.7.23 Errors

a Gisavarable
—instantiation_error.

b) Thelookup moduleof (CM G cannot be determined
(7.1.2).
—instantiation_error.

C) Gis neither a variable nor a calable term
—type_error(callable, Q.

7.7.3 throw/l

7.7.3.1 Description

throw B) is a control construct that is neither true nor
fdse It exists only for its procedural effect of causing

the norma flow of control to be transferred back to an
existing cal of catch/ 3 (see 7.7.2).

Procedurally, a control construct throw, denoted by
t hr ow(B), shall be executed as follows:

21

ISO/IEC FCD 13211-2 : 1998(E)

a) Make a renamed copy CA of curract, and a copy
CP of cut parent.

b) Pop currstate from S.

c) It shall be a system error (7.12.2) of ISO/IEC
13211-1) if S is now empty,

d) Elseif (1) the new curract isacdl of the control
congtruct cat ch/ 3, and (2) the argument of CA unifies
with the second argument C of the catch with most
genera unifier MaU, and (3) the cut parent is less than
CP, then continue at 7.7.3.1 b .

€) Apply MaU to currentgoal .

f) Replace curract by call (R, where R is the
third argument of the control construct cat ch/ 3 from
7.73.1 d.

g) SetBl tonil.

h) Continue execution a 7.6.4.

7.7.32 Template and modes

t hr o +nonvar)

7.7.3.3 Errors

a) Bisavaiable
—instantiation_error.

b) B does not unify with the C argument of any call

of catch/3
— systemerror.

7.8 Predicate properties
The properties of proceduress can be found using
the built-in predicate predi cat e_property(Cal | abl e,
Property), where Cal | abl e is the meta-argument term
Modul e: Goal 8.2.2. The predicate properties supported
shal include:

static — The procedure is static.

dynani ¢ — The procedure is dynamic.

public — The procedure is a public procedure.

22

© ISO/IEC 1998

private — The procedure is a private procedure.
built_in — The procedure is a built-in predicate.

multifile — The procedure is the subject of a
multifile directive.

exported - The module Mbdul e exports the proce-
dure.

met apredi cate(MPM) — The procedure is a
metapredicate, and MPM is its metapredicate mode
indicator.

i mported_fronm(Fron) — The predicate is imported
into module Mbdul e from the module Fr om

defi ned.i n(Defini ngvbdule) — The module

Def i ni nghbdul e defines the procedure.

A processor may support one of more additiona predicate
properties as an implementation specific feature.

79 Errors

The following errors are defined in addition to those
defined in section 7.12 of 1SO/IEC 13211-1.

79.1 Error classification

The following types are added to the classification of
7.12.2 of ISO/IEC 13211-1.

a) The list of valid types is extended by the addition
of netapredi cate_node.i ndicator. (See 7122 b
of ISO/IEC 13211-1)

b) Thelist of valid domains is extended by the addition
of predicate_property. (See 7.12.2 c of ISO/IEC
13211-1.)

c) The list of object types is extended by the addition
of nodul e. (See 7.12.2 d of ISO/IEC 13211-1.)

d) The list of permission types is extended by the
addition of inplicit. (See 7122 e of ISO/IEC
13211-1.)

© ISO/IEC 1998

8 Built-in predicates
8.1 The format of built-in predicate definitions

The format of the built-in predicate definitions follows that
of ISO/IEC 13211-1.

8.1.1 Type of an argument

The following additiona argument types are required:
met apr edi cat e_node_i ndi cat or — as terminology.
predi cat e_property — a procedure property (7.8).

pr ot ot ype — as terminology.

qual i fied_or _unqualified_cl ause — a clause or term
whose associated unquaified term is a clause.

8.2 Module predicates
The examples provided for these built-in predicates assume

the complete database has been created from the module
text given in the first example of 7.4.3.2.

8.2.1 current_module/l
8.2.1.1 Description

cur rent _nmodul e(Mbdul e) istrueiff Modul e unifieswith
the name of an existing module.

Procedurally current _nmodul e(Mbdul e) is executed as
follows:

a) Searches the complete database for all active mod-
ules and creates a set S of al terms M such that there
is a module whose identifier unifies with Modul e.

b) If a non-empty set is found, then proceeds to
82114,

c) Else the god fails.
d) Chooses an element of S and the goal succeeds.

e) If al the elements of S have been chosen then the
goad fails,

ISO/IEC FCD 13211-2 : 1998(E)

f) Else chooses an element of the set S which has not
already been chosen and the goa succeeds.

current _nodul e(Modul e) is re-executable. On back-
tracking, continue at 8.2.1.1 e.

NOTE — current _nodul e(M succeeds if the interface to

M has been loaded, whether or not any bodies of M may have
been prepared for execution.

8.2.1.2 Template and Modes

current _nodul e(?at om

8.21.3 Errors
a) Module is neither a variable nor an atom

— type_error(atom Mdul e).

8.2.1.4 Examples

current _nodul e(foo).
succeeds.

current _nodul e(fred: sid).
type_error(atom fred:sid).

8.2.2 predicate_property/2
8.2.2.1 Description

predi cat e_property(Prototype, Property) is true
in the caling context of a module M iff the procedure
associated with the argument Prot ot ype has predicate
property Property.

Procedurally

predi cat e_property(Prototype, Property) is ex-
ecuted as follows:

a) Determines the lookup module MV of
(M Prototype).

b) Determines the unquadified term T with principal
functor P of arity N associated with (M Prot ot ype).
P/ N is the associated predicate indicator.

c) Searches the complete database and creates a set
Setpp Of al terms PP such that P/ N identifies a procedure
in the visible database of MMwhich has predicate property
PP and PP is unifiable with Property.

23

|SO/IEC FCD 13211-2 : 1998(E)

d) |If Setpp is non empty set is proceeds to 8.2.2.1 f,
€) Else the predicate fails.

f) Chooses the first element PPP of Setrp, unifies PPP
with Property and the predicate succeeds.

g) If al the elements of Seirr have been chosen the
predicate fails,

h) Else chooses the first element PPP of Setrp that has
not aready been chosen, unifies PPP with Property
and the predicate succeeds.

predi cate_property(Prototype, Property) is re
executable. On backtracking, continue at 8.2.2.1 g.

The order in which properties are found by
predi cat e_property/ 2 is implementation dependent.

8.2.22 Template and modes

pr edi cat e_pr operty(+pr ot otype,
?pr edi cat e_property)

8.2.2.3 Errors

a) Prototype isavariable
—instantiation_error.

b) The lookup module of (M Prot ot ype) cannot be
determined (7.1.1)
—instantiation_error.

C) Prototype isnether avariable nor a calable term
—type_error(cal |l abl e, Prototype).

d) Property is neither a variable nor a predicate

property
— donumi n_error (predi cate_property, Property).

€) The module identified by MV does not exist
— exi stence_error(nodul e, M.

8.22.4 Examples

bar: predi cate_property(q(X), exported).
succeeds, X is not instantiated.

bar: predi cate_property(p(X), defined_in(S)).

succeeds, Sis unified with foo,
X is not instantiated.

24

© ISO/IEC 1998

baz: predi cate_property(foo: p(X), netapredicate(Y)).
succeeds, Y is unified with p(:),
X is not instantiated.

bar: predi cate_property(X: foo:p(Y), exported).
instantiation_error.

8.3 Clauseretrieval and information

This clause describes the interaction of the built-in predicate
cl ause/ 2 with the module system.

The examples provided for these built-in predicates assume
that the complete database has been created from the
following module text.

;- nmodul e(mamal s) .

;- export(dog/0, cat/0, elk/1).
;- end_nodul e(manmmal s) .
;- body(mammal s) .

;- dynam c(cat/0).
cat.

;- dynam c(dog/0).
dog :- true.

;- dynamic(el k/1).
el k(X) :- moose(X).

;- dynam c(noose/ 1) .

| egs(4).

;- end_body(mamal s) .
;- nodul e(i nsects)

;- export(ant/0, bee/0).
;- end_nodul e(i nsects).
;- body(insects).

;- dynam c(ant/0).

ant .

;- dynam c(bee/0).
bee.

;- dynam c(l egs/1).
| egs(6).

body_type(segnented).
;- end_body(insects).
;- nodul e(ani nal s).

;- exports(linbs/1).
;- end_nodul e(ani mal s).

© I1SO/IEC 1998

;- body(aninmals).
;- inmport(insects, [ant/0, bee/0]).
;- inmport(mamual s, [dog/0, cat/0, elk/1]).

;- dynam c(horns/1).

limbs(X) :- insects:|egs(X).
limbs(X) :- mammal s: | egs(X).

;- end_body(ani mal s).

83.1 clause/2
8.3.1.1 Description

cl ause(Head, Body) is true in the caling context of a
module M iff:

— The associated unqualified term of (M Head) is HH,
(7.1.1.3),

— The procedure of HH is public, and
— There is a clause in the the lookup module DV
associated with (M Head) which corresponds to a term
H: - B which unifies with HH : - Body.

Procedurally, cl ause(Head, Body) is executed in the
caling context of a module M as follows:

a) Determines the lookup module DM associated with
(M Head) (7.1.1.3) to be searched for the clauses.

b) Determines the unqualified term HH associated with
(M Head).

C) Searches sequentidly through each public user-
defined procedure defined in the chosen module and
creates a list L of al the terms cl ause(H, B) such that:
1) DMcontains a clause whose head can be converted
to a term H and whose body can be converted to a
term B,
2) H unifies with HH, and
3) B unifies with Body.

d) If a non-empty list is found, then proceeds to
8311 f,

€) Else the god fails.

|SO/IEC FCD 13211-2 : 1998(E)

f) Chooses the first element of the list L, and the goal
succeeds.

g) If al the elements of the list L have been chosen
then the god fails,

h) Else chooses the first element of L that has not
already been chosen, and the goa succeeds.

cl ause/ 2 is re-executable. On backtracking, continue at
8311lg.

8.3.1.2 Template and modes

clause(+term ?callableterm

8.3.1.3 Errors

a) Head isavariable
—instantiation_error.

b) The lookup module of (M Head) cannot be deter-
mined (7.1.1.3)
—instantiation_error.

C) Head is a qudified term and either the associated
ungualified term or lookup module is a variable
—instantiation_error.

d) Head is neither a variable nor a predication
—type_error(callabl e, Head).

€) Head cannot be converted to a predication.
—type_error(callabl e, Head).

f) The predicate indicator Pred of the associated un-
qualified term of Head is that of a private procedure
- per i ssi on_error(access,
private_procedure, Pred).

g) The predicate indicator Pred of the associated
unqualified term of Head isthat of a procedure imported
or re-exported by DM

— perm ssion_error(access, inplicit, Pred).

h) Body is neither a variable nor a calable term
—type_error(call abl e, Body).

i) The module identified by DM does not exist
— exi stence_error(nodul e, DV.

25

ISO/IEC FCD 13211-2 : 1998(E)

8.3.1.4 Examples

The examples amplify those of ISO/IEC 13211-1 by
illustrating the effect of the module structure.

insects:clause(legs(X) , A.
succeeds unifying X with 6
and Awth true.

i nsects: cl ause(body_type(X), true).
succeeds unifying X with segnented.

ani mal s: cl ause(linmbs(X) , B).
succeeds unifying B with insects:|egs(X)
on re-execution unifies B with nammal s: | egs(X).

clause(insects:legs(X) , A.
succeeds unifying X with 6
and Awth true.

ani mal s: cl ause(el k(X), B).
perm ssion_error(access, inplicit, elk).

ani mal s: predi cate_property(elk(_), defined_in(M),
M cl ause(el k(Y), B).

succeeds, Mis unified with nammal s,

Bis unified with moose(Y).

ani mal s: cl ause(manmmal s: el k(X), B).
succeeds, Bis unified with
moose(X) .

clause(insects: Mlegs(X), A.
instantiation_error.

8.3.2 current_predicate/l

8.3.2.1 Description

current _predicate(Pl) is true in the caling context
of a module M iff PI is a predicate indicator for one of

the user-defined procedures in the visible database of M

Procedurally, current _predicate(Pl) is executed as
follows:

a) Searches the visible database of Mand creates a set
Set4n of terms A/ N such that (1) the visible database
contains a user-defined procedure whose predicate has
identifier A and arity N, and (2) A/ N identifies with PI .

b) If a non-empty set is found, then proceeds to
83214,

¢) Else the god fails.

d) Chooses amember of Set 4 and the goal succeeds.

26

© ISO/IEC 1998

e) If al members of Setsny have been chosen, then
the goal fails,

f) Else chooses a member of Setsn which has not
already been chosen, and the goa succeeds.

current _predicate(Pl) is re-executable. On back-

tracking continue at 8.3.2.1 e.

The order in which predicate indicators are found by
current _predi cate(Pl) isimplementation dependent.

8.3.2.2 Template and modes

current _predi cat e(?predi cat e_i ndi cat or)

8.3.2.3 Errors

a) Pl is nether a variable nor a predicate indicator
—type_error(predicate.indicator, PI).

8.3.24 Examples

insects:current_predicate(legs/1).
Succeeds.

ani mal s: current _predi cate(ant/X).
Succeeds unifying X with 0.

ani mal s: current _predi cate(l egs/1).
Fails.

8.4 Database access and modification
This clause describes the interaction of the predicates

asserta/l, assertz/1, retract/1 and abolish/1
with the module system.

84.1 asserta/l
8.4.1.1 Description
asserta(Cl ause) istrue

Procedurally, assert a(d ause) isexecuted in the calling
context of a module M as follows:

a) Extracts the unquaified term C and associated
lookup module M from (M d ause) (7.1.1.3).

© I1SO/IEC 1998

b) If C unifies with ' : -’ (Head, Body) proceeds to
84.1.1d,

¢) Else unifies Head with C and true with Body.

d) Converts (7.5.1) the term Head to a head H with
lookup module DM in calling context CM

€) Converts (7.5.3) the term Body to a body B in
caling context CM with defining module DM

f) Constructs the clause with head H and body B.

g) Adds the clause to the selected module DM before all
existing clauses of the procedure in DM whose predicate
is equa to the functor of Head.

h) The goa succeeds.

8.4.1.2 Template and modes

asserta(@ualified_or_unqualified_cl ause)

84.1.3 Errors

a) Head is avariable
—instantiation_error.

b) DMis a variable
—instantiation_error.

c¢) The lookup module of (M O ause) cannot be
determined (7.1.1.3)
—instantiation_error.

d) Head cannot be converted to a predication
—type_error(callabl e, Head).

€) Body cannot be converted to a goal
—type_error(callabl e, Body).

f) The predicate indicator Pred of Head is that of a
static procedure

— perm ssion_error(nodify, static_procedure,
Pred) .

g) The procedure identified by Pred is imported or
re-exported by the module DMV
—permssion_error(nodify, inplicit, Pred).

h) The module identified by DM does not exist
— exi stence_error(nodul e, DV.

|SO/IEC FCD 13211-2 : 1998(E)

8.4.1.4 Examples

mamel s: asserta((noose(fred)).
succeeds addi ng noose(fred) to the
nmodul e manmal s.

ani mal s: asserta((el k(X) :- new_npose(X))).
perm ssion_error(nodify, inmplicit, elk).

ani mal s: predi cate_property(elk(_), defined_in(M),
M asserta(el k(joe)).
succeeds adding el k(joe) to
t he nodul e mammal s,
Mis unified with mamal s.

nonodul e: asserta(foo(3)).
exi stence_error(nodul e, nonodul e).

asserta(mammal s: el k(anna)).
succeeds addi ng el k(anna) to
t he nodul e mammal s.

manmal s: asserta(ani mal s: horns(X) :- noose(X)).
succeeds addi ng horns(X) :- nmammual s: moose(X)
to the nodul e animals.

asserta(M manmmal s: el k(j oe)).
type_error(instantiation_error).

After these examples the complete database could have
been created from the following module text.

;- nmodul e(mamal s) .
;- export(dog/0, cat/0, elk/1).
;- end_nodul ee(mammal s) .

;- body(mammal s).

;- dynam c(cat/0).
cat.

;- dynam c(dog/0).
dog :- true.

;- dynamic(el k/1).

el k(anna) .

el k(joe).

el k(X) :- moose(X).

;- dynam c(noose/ 1) .

;- noose(fred).

| egs(4).
;- end_body(mammal s) .
;- nodul e(i nsects)

;- export(ant/0, bee/0).
;- end_nodul e(i nsects).
;- body(insects).

;- dynam c(ant/0).

27

ISO/IEC FCD 13211-2 : 1998(E)

ant .

;- dynam c(bee/0).
bee.

;- dynam c(l egs/1).
| egs(6).

body_type(segnented).

;- end_body(insects).

;- nodul e(ani nal s).
:- exports(linbs/1).

;- end_nodul e(ani mal s) .

;- body(aninmals).
;- inmport(insects, [ant/0, bee/0]).
;- inmport(mamual s, [dog/0, cat/0, elk/1]).

;- dynam c(horns/1).

horns(X) :- nmanmmal s: nobose(X).

linmbs(X) :- insects:legs(X).
linmbs(X) :- nmammal s: | egs(X).

;- end_body(ani mal s).

84.2 assertz/l
8.4.2.1 Description
assertz(Cl ause) istrue

Procedurally, assert z(d ause) isexecuted in the calling
context of module M as follows:;

a) Extracts the unquaified term C and associated
lookup module LM from (M d ause) (7.1.1.3).

b) If C unifies with *: -’ (Head, Body) proceeds to
84.1.1d,

¢) Else unifies Head with C and true with Body.

d) Converts (7.5.1) the term Head to a head H and
lookup module DM in calling context LM

€) Converts (7.5.3) the term Body to a body B in
caling context LM with defining module DM

f) Constructs the clause with head H and body B.

g) Adds the clause to the selected module DM &fter all
existing clauses of the procedure in DM whose predicate
is equa to the functor of Head.

h) The goa succeeds.

28

© ISO/IEC 1998

8.4.22 Template and modes

assertz(@ualified_or_unqualified_cl ause)

84.2.3 Errors

a) Head is avariable
—instantiation_error.

b) DMis a variable
—instantiation_error.

¢) The lookup module of (M d ause) cannot be
determined (7.1.1)
—instantiation_error.

d) Head cannot be converted to a predication
—type_error(cal |l abl e, Head).

€) Body cannot be converted to a goal
—type_error(cal |l abl e, Body).

f) The predicate indicator Pred of Head is that of a
static procedure

— perm ssion_error(nodify, static_procedure,
Pred) .

g) The procedure identified by Pred is imported or
re-exported by the module DMV
—perm ssion_error(nodify, inplicit, Pred).

h) The module identified by DM does not exist
— exi stence_error(nodul e, DV.

8.4.3 retract/1
8.4.3.1 Description

retract (Cl ause) is true in the caling context of a
module M iff:

— The associated unqualified term of (M O ause) is
C with lookup module DM (7.1.1.3),

— The complete database contains at least one dynamic
procedure with defining module DM and with a clause
Head : - Body which unifies with C.

Procedurally retract (O ause) is executed in the calling
context of a module M as follows:

© I1SO/IEC 1998

a) Determines the lookup module DM associated with
(M dause) (7.1.1.3) to be searched for the clauses.

b) Determines the unqualified term C and lookup
module L1 associated with (M d ause).

c) If C unifies with *:-'(HH, BB) proceeds to
84.31 g,

d) Else unifies C with HH and t r ue with BB.

€) Determines the unqualified term Head and lookup
module DM associated with (L1, HH).

f) Determines the unqualifed term Body and the lookup
module BM associated to (L1, BB.

g) Chooses the module DM as the defining module to
search.

h) Searches sequentialy through each dynamic user-
defined open procedure in DM and creates a list L of
al the terms cl ause(H, B) such that: (1) the module
DM contains a clause whose head can be converted to a
term HH and whose body can be converted with context
module BM and defining module DM to a god B, (2) H
unifies with Head, and (3) B unifies with Body.

i) If a non-empty list is found, then proceeds to
8.4.3.1Kk,

j) Else the god fails.
k) Chooses the first dement of the list L, removes the
clause corresponding to it from the defining module DM

and the goal succeeds.

[) If al the elements of the list L have been chosen,
then the god fails,

m) Else chooses the first element of the list L which
has not aready been chosen, removes the clause, if it
exists, corresponding to it from the defining module DM
and the goal succeeds.

retract/ 1 is re-executable. On backtracking, continue at
8431 1.

8.4.3.2 Template and modes

retract (+qualified_or_unqualified_cl ause)

|SO/IEC FCD 13211-2 : 1998(E)

8.4.3.3 Errors

a) Head isavariable
—instantiation_error.

b) DMis a variable
—instantiation_error.

¢) The lookup module of (M O ause) cannot be
determined (7.1.1)
—instantiation_error.

d) Head is not a predication
—type_error(callabl e, Head).

€) Body cannot be converted to a goal
—type_error(call abl e, Body).

f) The predicate indicator Pred of Head is that of a
private procedure

— perm ssion_error(nodify, static_procedure,
Pred).

g) The procedure identified by Pred is imported or
re-exported by the module DMV
—perm ssion_error(nodify, inplicit, Pred).

h) The module identified by DM does not exist
— exi stence_error(nodul e, DV.

8.4.34 Examples

The following examples assume that the compl ete database
has been created from the modul e text in subclause (8.4.1.4)

mamel s: retract(cat).
succeeds.

ani mal s: predi cate_property(ant, defined_in(M),
Mretract(ant).
succeeds.

retract (ani mal s: dog) .
succeeds.

retract (M ani mal s: cat).
type_error(instantiation_error).

retract (nonodul e: foo(bar)).
exi stence_error(nodul e, nonodul e).

After these examples the complete database could have
been created from the following module text:

29

ISO/IEC FCD 13211-2 : 1998(E)

;- nmodul e(mamal s) .

;- export(dog/0, cat/0, elk/1).
;- end_nodul e(manmmal s) .
;- body(mammal s) .

;- dynam c(cat/0).

;- dynam c(dog/0).

;- dynamic(el k/1).
el k(X) :- moose(X).

;- dynam c(noose/ 1).
| egs(4).
;- end_body(mammal s) .
;- nodul e(i nsects)
;- export(ant/0, bee/0).
;- end_nodul e(i nsects).
;- dynam c(ant/0).
;- dynam c(bee/0).
bee.
;- dynam c(l egs/1).
| egs(6).
body_type(segnented).
;- end_body(insects).
;- nodul e(ani nal s).
i- exports(linbs/1).
;- end_nodul e(ani mal s).
;- body(aninmals).
;- inmport(insects, [ant/0, bee/0]).
;- inmport(mamual s, [dog/0, cat/0, elk/1]).
;- dynam c(horns/1).
linmbs(X) :- insects:legs(X).
linmbs(X) :- nmammal s: | egs(X).

;- end_body(ani nmal s).

8.4.4 abolish/1
8.4.41 Description

abol i sh(Pred) is true.

30

© ISO/IEC 1998

Procedurally, abol i sh(Pred) is executed in the calling
context of a module M as follows:

a) Determines the lookup module DM of (M Pred).
b) Determines the unqualified term PI of (M Pred) .

¢) If the module DM defines a dynamic procedure whose
predicate indicator is Pl , then proceeds to 8.4.4.1 e,

d) Else the goa succeeds.

e) Removes from the module DMthe procedure specified
by PI and al its clauses, and the goa succeeds.

8.4.42 Template and modes

abol i sh(@r edi cat e_i ndi cat or)

84.4.3 Errors

a) Pred isavariable
—instantiation_error.

b) DMis a variable
—instantiation_error.

¢) The lookup module DM of (M Pred) cannot be
determined (7.1.1).
—instantiation_error.

d) PI isaterm Nane/ Arity and a least one of Nane,
or Arity is avariable,
—instantiation_error.

€) Pl is neither a term nor a predicate indicator
—type_error(predicate.indicator, Pl).

f) Pl isaterm Nane/Arity and Arity is neither a
variable nor an integer
—type_error(integer, Arity).

g) Pl isaterm Nane/Arity and Nane is neither a
variable nor an atom
—type_error(atom Nane).

h) Pl isaterm Nane/ Arity and Arity is an integer
less than zero
— donmi n_error(not _| ess_than_zero, Arity).

© ISO/EC 1998 ISO/IEC FCD 13211-2 : 1998(E)

i) Pl is a term Name/Arity and Arity is an
integer grester than the implementation defined integer
max_arity

—representation_error(nmax_arity).

j) The predicate indicator Pl is that of a prodedure
which is static

— perm ssion_error(nodify, static_procedure,
Pred).

k) Pl is a tem Name/Arity and the procedure
identified by Nane is imported or re-exported by DV
—perm ssion_error(nodify, inplicit, Nane).

[) The module identified by DM does not exist
— exi stence_error(nodul e, DV.

8.4.44 Examples

i nsects: abol i sh(bee/0).
succeeds renoving i nsects: bee
fromthe conpl et e dat abase.

ani mal s: abol i sh(dog/ 0) .
perm ssion_error(nodify, inplicit, dog/0).

i nsects: abol i sh(X: manmmal : | egs/ 2)
instantiation_error.

31

