
ISO/IEC FCD 13211-2 : 1998(E)

Contents Page

Introduction : 2

1 Scope : 2
1.1 Notes : 2

2 Normative references : 2

3 Definitions : 3

4 Symbols and abbreviations : 5

5 Compliance : 5
5.1 Prolog processor : 5
5.2 Module text : 5
5.3 Prolog goal : 5
5.4 Prolog modules : 6

5.4.1 Prolog text without modules : 6
5.4.2 The user module : 6

5.5 Documentation : 6
5.6 Extensions : 6

5.6.1 Modules : 6

6 Syntax : 6
6.1 Module text : 6
6.2 Terms : 7

6.2.1 Operators : 7

7 Language concepts and semantics : 7
7.1 Related terms : 7

7.1.1 Qualified and unqualified terms : : : : : : : : : : : : : : : : : : 7

c ISO/IEC 1998
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office � Case Postale 56 � CH-1211 Genève 20 � Switzerland
Printed in Switzerland

ii

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

7.2 Module text : 8
7.2.1 Module interface : 8
7.2.2 Module directives : 8
7.2.3 Module body : 10
7.2.4 Clauses : 11

7.3 Complete database : 12
7.3.1 Visible database : 12
7.3.2 Examples : 12

7.4 Metapredicates : 12
7.4.1 Metapredicate Built-ins : 12
7.4.2 Module name expansion : 12
7.4.3 Examples : 13

7.5 Converting a term to a clause, and a clause to a term : : : : : : : : 14
7.5.1 Converting a term to the head of a clause : : : : : : : : : : : 14
7.5.2 Converting a term an activated goal : : : : : : : : : : : : : : : 15
7.5.3 Converting a term to the body of a clause : : : : : : : : : : : 16
7.5.4 Converting the body of a clause to a term : : : : : : : : : : : 16
7.5.5 Examples : 16

7.6 Executing a Prolog goal : 16
7.6.1 Data types for the execution model : : : : : : : : : : : : : : : : 17
7.6.2 Initialization : 17
7.6.3 Searching the complete database : : : : : : : : : : : : : : : : : : 18
7.6.4 Selecting a clause for execution : : : : : : : : : : : : : : : : : : 19
7.6.5 Backtracking : 19
7.6.6 Executing a user-defined procedure: : : : : : : : : : : : : : : : 19
7.6.7 Executing a built-in predicate : 20

7.7 Executing a control construct : 20
7.7.1 call/1 : 20
7.7.2 catch/3 : 21
7.7.3 throw/1 : 21

7.8 Predicate properties : 22
7.9 Errors : 22

7.9.1 Error classification : 22

8 Built-in predicates : 23
8.1 The format of built-in predicate definitions : : : : : : : : : : : : : : : : 23

8.1.1 Type of an argument : 23
8.2 Module predicates : 23

8.2.1 current module/1 : 23
8.2.2 predicate property/2 : 23

8.3 Clause retrieval and information : 24
8.3.1 clause/2 : 25
8.3.2 current predicate/1 : 26

8.4 Database access and modification : 26
8.4.1 asserta/1 : 26
8.4.2 assertz/1 : 28
8.4.3 retract/1 : 28
8.4.4 abolish/1 : 30

iii

INTERNATIONAL STANDARD c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

Information technology — Programming languages — Prolog — Part
2: Modules

Introduction

This Final Committee Draft defines syntax and semantics
of modules in ISO Prolog.

Modules in Prolog serve to partition the name space and
support encapsulation for the purposes of constructing large
systems out of smaller components. The proposed module
system is procedure-based rather than atom-based. This
means that each procedure is to be defined in a given name
space. The requirements for Prolog modules are rendered
more complex by the existence of meta-arguments, that is
arguments that are subject to module qualification.

1 Scope

This Final Committee Draft is designed to promote the
applicability and portability of Prolog modules that contain
Prolog text complying with the requirements of the
Programming Language Prolog as specified in this Final
Committee Draft.

This Final Committee Draft specifies:

a) The representation of Prolog text that constitutes a
Prolog module,

b) The constraints that shall be satisfied to prepare
Prolog modules for execution, and

c) The requirements, restrictions and limits imposed on
a conforming Prolog processor that processes modules.

This Final Committee Draft does not specify:

a) The size or number of Prolog modules that will
exceed the capacity of any specific data processing
system or language processor, or the actions to be taken
when the limit is exceeded,

b) The methods of activating the Prolog processor or
the set of commands used to control the environment in
which Prolog modules are prepared for execution,

c) The mechanisms by which Prolog modules are
loaded,

d) The relationship between Prolog modules and the
processor-specific file system.

1.1 Notes

Notes in this part of ISO/IEC 13211 have no effect on the
language, Prolog text, module text or Prolog processors
that are defined as conforming to this part of ISO/IEC
13211. Reasons for including a note include:

a) Cross references to other clauses and subclauses of
this part of ISO/IEC 13211 in order to help readers find
their way around,

b) Warnings when a built-in predicate as defined in
this part of ISO/IEC 13211 has a different meaning in
some existing implementations.

2 Normative references

The following standards contain provisions which, through
the reference of this text, constitute provisions of ISO/IEC
13211. At the time of publication, the editions indicated
were valid. All standards are subject to revision, and
parties to agreements based on this part of ISO/IEC 13211
are encouraged to investigate the possibility of applying
the most recent editions of the standards listed below.
Members of IEC and ISO maintain registers of currently
valid International Standards.

ISO/IEC 13211-1 : 1995, Information technology —
Programming Languages – Prolog Part 1: General Core.

2

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

3 Definitions

The terminology for this part of ISO/IEC 13211 has a
format modeled on that of ISO 2382.

An entry consists of a phrase (in bold type) being defined,
followed by its definition. Words and phrases defined in
the glossary are printed in italics when they are defined in
ISO/IEC 13211-1 or other entries of this part of ISO/IEC
13211. When a definition contains two words or phrases
defined in separate entries directly following each other
(or separated only by a punctuation sign), * (an asterisk)
separates them.

Words and phrases not defined in the glossary are assumed
to have the meaning given in ISO 2382-15 and ISO/IEC
13211-1; if they do not appear in ISO 2382-15 or
ISO/IEC 13211-1, then they are assumed to have their
usual meaning.

A double asterisk (**) is used to denote those definitions
where there is a change from the meaning given in
ISO/IEC 13211-1.

3.1 accessible procedure: A procedure is accessible if
it can be activated; in the case of a dynamic * procedure
modified; or in the case of a non private * procedure
inspected with module name qualification from any module
which is currently loaded.

3.2 activated goal **: A goal has been activated when
it is called for execution.

3.3 calling context: The set of visible procedures, de-
noted by a module name, and used as a context for
activation of a metapredicate.

3.4 database, visible: See 3.50 – visible database.

3.5 defining module: The module in whose module
body a procedure is defined explicitly and entirely.

3.6 export: To make a procedure of an exporting
module available for import by other modules.

3.7 exported procedure: A procedure that is made
available by a module for import by other modules.

3.8 import: To make procedures * exported by a module
* visible in an importing module.

3.9 import, selective: The importation into a module
of only certain explicitly named procedures * exported by
a module (see 7.2.3.2).

3.10 load (a module): Load the module interface of a
module and correctly prepare all its bodies for execution.

NOTE — The interface of a module shall be loaded before any
body of the module (see 7.2.1).

3.11 load (a module interface): Correctly prepare the
module interface of the module for execution.

3.12 lookup module: The module where search for
clauses of a procedure takes place.

NOTE — The lookup module defines the visible database of
procedures accessible without module name qualification (see
7.1.1.3).

3.13 meta-argument: An argument in a metaprocedure
which is context sensitive, and therefore will be subject to
module name qualification when the procedure is activated.

3.14 metapredicate: A predicate denoting a metapro-
cedure.

3.15 metapredicate directive: A directive stipulating
that a procedure is a metapredicate.

3.16 metapredicate mode indicator: A compound term
each of whose arguments is ‘:’, or ‘*’ (see 7.1.1.4).

3.17 metaprocedure: A procedure whose actions de-
pend on the calling context, and which therefore carries
augmented module information designating this calling
context.

3.18 metavariable: A variable occurring as an argu-
ment in a metaprocedure which will be subject to module
name qualification when the procedure is activated.

3

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

3.19 module: A named collection of procedures and
directives together with provisions to export some of the
procedures and to import * procedures from other modules.

3.20 module body: A Prolog text containing the defini-
tions of the procedures of a module together with import
* directives local to that module body.

3.21 module, calling (of a procedure): The module in
which a corresponding predication is executed.

3.22 module directive: A term D which affects the
meaning of module text (7.2.2), and is denoted in that
module text by a directive-term :- (D)..

3.23 module, existing: A module whose interface has
been prepared for execution (see 7.2.1).

3.24 module, exporting: A module that makes available
procedures for import or re-export by other modules.

3.25 module interface: A sequence of read-terms
which specify the exported procedures and metapredi-
cates of a module.

3.26 module, importing: A module into which proce-
dures are imported, used as a context to search for a
procedure.

3.27 module name: An atom identifying a module.

3.28 module name qualification: The qualification of
a meta-argument with the module name of the calling
module.

3.29 module, re-exporting: A module which, by re-
exportation,* imports certain procedures and exports these
same procedures.

3.30 module text: A sequence of read-terms denoting
directives, module directives and clauses.

3.31 module, user: A module with name user con-
taining all user-defined procedures that are not specified
as belonging to a specific module.

3.32 predicate **: An identifier or qualified identifier
together with an arity.

3.33 preparation for execution: Implementation de-
pendent handling of a Prolog text and module text by
a processor which results, if successful, in the processor
being ready to execute the prepared Prolog text or module
text.

3.34 procedure, accessible: See 3.1 – accessible pro-
cedure.

3.35 procedure, visible: See 3.49 - visible procedure.

3.36 process **: Execution activity of a processor
running a prepared Prolog text and module text to
manipulate conforming Prolog data, accomplish side effects
and compute results.

3.37 prototype: A compound term where each argu-
ment is a variable.

3.38 qualification: The textual replacement (7.4.2) of a
term T by the term M:T where M is a module name.

3.39 qualified argument: A qualified term which is an
argument in a module name qualified * predication.

3.40 qualified clause: A term whose associated unqual-
ified term (7.1.1.3) is a clause.

3.41 qualified identifier: A compound term, used to
denote a module qualified object, with principal functor
(:)/2 where the first argument is a module name and the
second argument is an identifier.

3.42 qualified metapredicate mode indicator: A qual-
ified term whose first argument is an atom denoting a
module name and whose second argument is a metapredi-
cate mode indicator.

4

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

3.43 qualified predicate indicator: A compound term,
used to denote a module qualified object, with principal
functor (:)/2 where the first argument is a module name
and the second argument is a predicate indicator.

NOTE — If P is an operator the qualified indicator shall
be denoted by M:(P)/N. If M is an operator, the qualified
predicate indicator shall be denoted by (M):P/N.

3.44 qualified predicate name: The qualified identifier
of a predicate.

3.45 qualified prototype: A qualified term whose first
argument is a module name and second argument is a
template.

3.46 qualified term: A term whose principal functor
is (:)/2.

3.47 re-export: To make procedures * exported by a
module * visible in an importing module, while at the
same time making them available for import from the
re-exporting module.

3.48 re-export, selective: The re-exportation by an
importing module of certain named procedures * exported
from a module (see 7.2.2.3).

3.49 visible procedure (in a module M): A procedure
that can be activated from M without using module name
qualification.

3.50 visible database (of a module M): The set of
procedures * accessible without module name qualification
from within M.

4 Symbols and abbreviations

5 Compliance

5.1 Prolog processor

A conforming processor shall:

a) Correctly prepare for execution Prolog text and
module text which conforms to:

1) the requirements of this Final Committee Draft,
including the requirements set out in ISO/IEC 13211-1
General Core, whether or not the text makes explicit
use of modules, and

2) the implementation defined and implementation
specific features of the Prolog processor,

b) Correctly execute Prolog goals which have been
prepared for execution and which conform to:

1) the requirements of this Final Committee Draft
and ISO/IEC 13211, and

2) the implementation defined and implementation
specific features of the Prolog processor,

c) Reject any Prolog text, module text or read-term
whose syntax fails to conform to:

1) the requirements of this Final Committee Draft
and ISO/IEC 13211, and

2) the implementation defined and implementation
specific features of the Prolog processor,

d) Specify all permitted variations from this Final
Committee Draft and ISO/IEC 13211 in the manner
prescribed by this Final Committee Draft and ISO/IEC
13211, and

e) Offer a strictly conforming mode which shall reject
the use of an implementation specific feature in Prolog
text, module text or while executing a goal.

5.2 Module text

Conforming module text shall use only the constructs
specified in this Final Committee Draft and ISO/IEC 13211-
1, and the implementation defined and implementation
specific features supported by the processor.

Strictly conforming module text shall use only the con-
structs specified in this Final Committee Draft and ISO/IEC
13211-1, and the implementation defined features specified
by this standard.

5.3 Prolog goal

A conforming Prolog goal is one whose execution is
defined by the constructs specified in this Final Committee

5

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

Draft and ISO/IEC 13211-1, and the implementation
defined and implementation specific features supported by
the processor.

A strictly conforming Prolog goal is one whose execution
is defined by constructs specified in this Final Committee
Draft and ISO/IEC 13211-1, and the implementation
defined features specified by this standard.

5.4 Prolog modules

5.4.1 Prolog text without modules

A processor supporting modules shall be able to prepare
and execute Prolog text that does not explicitly use
modules. Such text shall be prepared and executed as the
body of the required built-in module named user.

5.4.2 The user module

A Prolog processor shall support a built-in module user.
User-defined procedures not defined in any particular
module shall belong to the user module.

5.5 Documentation

A conforming Prolog processor shall be accompanied
by documentation that completes the definition of every
implementation defined and implementation specific feature
specified in this Final Committee Draft and ISO/IEC
13211-1.

5.6 Extensions

A processor may support as an implementation specific
feature, any construct that is implicitly or explicitly
undefined in the Final Committee Draft and ISO/IEC
13211-1.

5.6.1 Modules

A Prolog processor may supply additional implementation-
specific or user-defined modules whose exported procedures
are visible within every loaded module without explicit
import.

5.6.1.1 Dynamic Modules

A Prolog processor may support additional implementation
specific procedures that support the creation or abolition
of modules during execution of a Prolog goal.

5.6.1.2 Inaccessible Procedures

A Prolog processor may support additional directives
whose effect is to make certain procedures defined in the
body of a module not accessible from outside the module.

6 Syntax

This clause defines the abstract syntax of Prolog text
that supports modules. The notation is that of ISO/IEC
13211-1.

Clause 6.1 defines the syntax of module text. Clause 6.2
defines the role of the operator ‘:’.

6.1 Module text

Module text is a sequence of read-terms which denote (1)
module directives, (2) interface directives, (3) directives,
and (4) clauses of user-defined procedures.

The syntax of a module directive and of a module interface
directive is that of a directive.

module text = m text ;

Abstract: mt mt

m text = directive term, m text ;

Abstract: d � t d t

m text = clause term, m text ;

Abstract: c � t c t

m text = ;

Abstract: nil

Clause 7.2.2 defines the module directives and the module
interface directives. Clause 7.2.3 defines new directives
that can appear in the body of a module and their
meanings.

6

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

Table 1 — The operator table

Priority Specifier Operator(s)
1200 xfx :- -->

1200 fx :- ?-

1100 xfy ;

1050 xfy ->

1000 xfy ,
900 fy \+
700 xfx = \=
700 xfx == \== @< @=< @> @>=
700 xfx =..

700 xfx is =:= =\= < =< > >=
600 xfy :
500 yfx + - /\ \/
400 yfx * / // rem mod << >>

200 xfx **

200 xfy ˆ
200 fy - \

6.2 Terms

6.2.1 Operators

The operator table defines which atoms will be regarded
as operators when (1) a sequence of tokens is parsed
as a read-term by the built-in predicate read term/3 or
(2) Prolog text is prepared for execution or output by
the built-in predicates write term/3, write term/2,
write/1, write/2, writeq/1, writeq/2.

The effect of the directives op/3, char conversion/2

and set prolog flag/2 in modules with multiple bodies
is described in 7.2.3.4.

Table 1 defines the predefined operators. The operator
‘:’ is used for module qualification.

NOTES

1 This table is the same as table 7 of ISO/IEC 13211-1 with
the single addition of the operator ‘:’.

2 When used in a predicate identifier ‘:’ is an atom qualifier.
This means that a predicate name can be a compound term
provided that the functor is ‘:’.

3 ‘:’ is neither a control construct nor a built-in predicate.
When it appears in a goal it serves to determine the calling
context.

7 Language concepts and semantics

This clause defines the semantic concepts of Prolog with
modules.

a) Subclause 7.1 defines the lookup module and un-
qualified term associated with a term,

b) Subclause 7.2 defines the division of module text
into Prolog modules,

c) Subclause 7.2.4 defines the relationship between
clauses in module text and in the complete database,

d) Subclause 7.3 defines the complete database and its
relation to Prolog modules,

e) Subclause 7.4 defines metapredicates and the process
of name qualification,

f) Subclause 7.5 defines the process of converting terms
to clauses and vice versa in the context of modules,

g) Subclause 7.6 defines the process of executing a
goal in the presence of module qualification,

h) Subclause 7.7 defines the process of executing a
control construct in the presence of module qualification.

i) Subclause 7.8 defines predicate properties,

j) Subclause 7.9 defines errors in addition to those
required by ISO/IEC 13211-1.

7.1 Related terms

This clause extends the definitions of clause 7.1 of ISO/IEC
13211-1.

7.1.1 Qualified and unqualified terms

7.1.1.1 Qualified terms

A qualified term is a term whose principal functor is
(:)/2.

7.1.1.2 Unqualified terms

An unqualified term is a term whose principal functor is
not (:)/2.

7

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

7.1.1.3 Lookup module and unqualified terms associ-
ated with a term and module

Given a module M and a term T, the associated lookup
module LM = lm(M,T) and associated unqualified term UT

= ut(M,T) of the pair (M,T) are defined as follows:

a) If the principal functor of T is not (:)/2 then
lm(M,T) is M and ut(M,T) is T;

b) If the principal functor of T is (:)/2 with first
argument MM, and second argument TT, then lm(M,T)
is the lookup module lm(MM,TT), and ut(M,T) is the
unqualified term ut(MM,TT).

NOTE — The lookup module LM determines the visible database
to be the visible database of LM.

7.1.1.4 Metapredicate mode indicators

A metapredicate mode indicator is a compound term
M Name(Modes) each of whose arguments is ‘:’ or ‘*’.
An argument whose position corresponds to a ‘:’ is a
meta-argument. Arguments corresponding to ‘*’ are not
meta-arguments.

7.2 Module text

Module text specifies one or more user-defined modules
and the required module user. A module consists of a
single module interface and zero or more corresponding
bodies. The interface shall be prepared for execution
before any of the bodies. Bodies may be separated from
the interface. If there are multiple bodies, they need not
be contiguous.

The heads of clauses in module text shall be implicitly
module qualified only by the context in which they appear,
not by explicit qualification of the clause head.

Every procedure that is neither a control construct nor
a built-in predicate belongs to some module. Built-in
predicates and control constructs are visible everywhere
and do not require module qualification, except that the
built-in metapredicates (7.4.1) and the control constructs
call/1 and catch/3 may be module qualified for the
purpose of setting the calling context.

7.2.0.1 Module user

The required module user contains all user-defined pro-
cedures not defined within a body of a specific module.

It has by default an empty module interface. However,
module text may contain an explicit interface for module
user.

NOTE — An explicit interface for module user enables
procedures to be exported from module user to other modules
and allows metapredicates to be defined in module user.

7.2.1 Module interface

A module interface in module text specifies the name
of the module, the operators, character conversions and
Prolog flags that shall be used when the processor begins
to prepare for execution the bodies of the module, and the
user-defined procedures of a module that are

a) exported from the module,

b) re-exported from the module, and

c) defined to be metapredicates by the module.

A sequence of directives shall form the module interface
of the module with name Name if :

a) The first directive is a directive module(Name).
(7.2.2.1)

b) The last directive is a directive end module(Name).
(7.2.2.9)

c) Each other element of the sequence is a module
interface directive. (7.2.2.2 through 7.2.2.8)

The interface for a module Name shall be loaded before
any body of the module.

All procedures defined in a module are accessible from
any module by use of explicit module qualification. It
shall be an allowable extension to provide a mechanism
that hides certain procedures defined in a module M so
that they cannot be activated, inspected or modified except
from within a body of the module M.

7.2.2 Module directives

Module directives are module text which serve to 1)
separate module text into the individual modules, and 2)
define operators that apply to the preparation for execution
of the bodies of the corresponding module.

8

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

7.2.2.1 Module directive module/1

The module directive module(Name) specifies that the
interface text bracketed by the directive and the matching
closing interface directive end module(Name) defines the
interface to the Prolog module Name.

7.2.2.2 Module interface directive export/1

A module interface directive export(EL) in the module
interface of a module M, where EL is a predicate indicator,
a predicate indicator sequence or a predicate indicator list,
specifies that the module M makes the procedures indicated
by EL available for import into other modules.

No procedure indicated by EL shall be a control construct,
a built-in predicate, or an imported procedure.

NOTES

1 A predicate indicator that denotes a metapredicate may
appear in EL in which case the corresponding metapredicate
procedure is exported.

2 Since control constructs and built-in predicates are visible
everywhere they cannot be exported.

7.2.2.3 Module interface directive reexport/2

A directive reexport(M, PI) in the interface of a module
MM where M is an atom and PI is a predicate indicator,
a predicate indicator sequence or a predicate indicator list
specifies that the module MM imports from the module M

all the procedures indicated by PI, and that MM makes
these procedures available for import into other modules
by importation from MM.

A procedure indicated by PI in a reexport(M,PI)
directive shall be that of a procedure exported by the
module M.

No procedure indicated by PI in a reexport(M,PI)

directive in MM shall be the subject in MM of a selective
reexport(N,PI) directive from a module N distinct from
M. Neither shall it be the subject in MM of a selective
import directive (7.2.3.2) import(N,PI) from a module
N distinct from M.

No procedure indicated by PI shall be a control construct
or a built-in predicate.

7.2.2.4 Module interface directive reexport/1

A module interface directive reexport(REM) in the
module interface of a module M, where REM is an atom,
a sequence of atoms, or a list of atoms specifies that
the module M imports all the procedures exported by
the modules indicated by REM and that M makes these
procedures available for import into other modules by
importation from MM.

No procedure indicated by REM shall be a control construct
or a built-in predicate.

7.2.2.5 Module interface directive metapredicate/1

A module interface directive metapredicate(ML) in the
module interface of a module M, where ML is a metapred-
icate mode indicator, a metapredicate mode indicator
sequence, or a metapredicate mode indicator list specifies
that the module defines the metaprocedures indicated by
ML.

NOTE — The inclusion of a metapredicate mode indicator in
the argument of a module interface directive does not thereby
export the indicated metapredicate. Any procedure exported by
a module shall be the subject of either an export or reexport
directive.

7.2.2.6 Module interface directive op/3

A module interface directive op(Priority,
Op specifier, Operator) in the module interface of a
module M enables the initial operator table to be altered
only for the preparation for execution of all the bodies of
the module M.

The arguments Priority, Op specifier, and
Operator shall satisfy the same constraints as for the
successful execution of the built-in predicate op/3 (8.14.3
of ISO/IEC 13211-1) and the operator table shall be altered
in the same way.

Operators defined in a module interface directive
op(Priority, Op specifier, Operator) shall not
affect the syntax of read terms in Prolog and module texts
other than the bodies of the corresponding module.

7.2.2.7 Module interface directive char conversion/2

A module interface directive char conversion(In char,

Out char) in the module interface of a module M enables

9

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

the initial character conversion mapping ConvC (see 3.29
of ISO/IEC 13211-1) to be altered only for the preparation
for execution of all the bodies of the module M.

The arguments In char, and Out char shall satisfy the
same constraints as for the successful execution of the
built-in predicate char conversion/2 (8.14.5 of ISO/IEC
13211-1) and ConvC shall be altered in the same way.

Character conversions defined in a module interface direc-
tive char conversion(In char, Out char) shall not
affect the syntax of read terms in Prolog and module texts
other than the bodies of the corresponding module.

7.2.2.8 Module interface directive set prolog flag/2

A module interface directive set prolog flag(Flag,

Value) in the module interface of a module M enables
the initial value associated with a Prolog flag to be altered
only for the preparation for execution of all the bodies of
the module M.

The arguments Flag, and Value shall satisfy the same
constraints as for the successful execution of the built-in
predicate set prolog flag/2 (8.17.1 of ISO/IEC 13211-
1) and the Value shall be associated with flag Flag in
the same way.

Values associated with flags in a module interface directive
set prolog flag(Flag, Value) shall not affect the
values associated with flags in Prolog and module texts
other than the bodies of the corresponding module.

7.2.2.9 Module directive end module/1

The module directive end module(Name)where Name is
an atom that has already appeared as the argument of a
module directive module/1, specifies the termination of
the interface for the module Name.

NOTE — Unless otherwise so defined module directives
are not prolog text. Thus op/3, char conversion/2 and
set prolog flag/2 are both module directives and directives
(see ISO/IEC 13211-1 7.4.2.4, 7.4.2.5 and 7.4.2.9.)

7.2.3 Module body

A module body belonging to a module is Prolog text
which defines user-defined procedures that belong to the
module.

A sequence of directives and clauses shall form a body of
the module with name Name if:

a) The first element of the sequence is a directive
body(Name) (7.2.3.1).

b) The last element of the sequence is a directive
end body(Name)(7.2.3.4).

Directives import/1 and import/2 make visible in the
importing module procedures defined in an exporting
module.

If a procedure with predicate indicator PI from the
complete database is visible in M no other procedure with
the same predicate indicator shall be made visible in M.

7.2.3.1 Module directive body/1

A module directive body(Name) where Name is an atom
giving the name of a module specifies that the Prolog text
bracketed between this directive and the next end module
directive end body(Name) belongs to the module Name.

7.2.3.2 Directive import/2

A directive import(M, PI) in a body of a module MM

where M is an atom and PI is a predicate indicator, a
predicate indicator sequence or a predicate indicator list
specifies that the module MM imports from the module M
all the procedures indicated by PI.

A procedure indicated by PI in a import(M,PI) directive
shall be a procedure exported by the module M.

No procedure indicated by PI in a import(M,PI) directive
in MM shall be the subject in MM of a selective import
directive import(N,PI) from a module N distinct from
M. Nor shall it be the subject in M of a selective reexport
directive (7.2.2.3) reexport(N,PI) from a module N

distinct from M.

No procedure indicated by PI shall be a control construct
or a built-in predicate.

7.2.3.3 Directive import/1

A directive import(MI) in a body of a module MM where
MI is an atom, a sequence of atoms, or a list of atoms
specifies that the module MM imports all the procedures
exported by the modules indicated by MI. Such procedures
shall be visible in MM without name qualification.

10

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

NOTES

1 More than one directive import(MI, PI) in the bodies
of a module MM may specify the importation of exported
procedures from a given module M. Subsequent imports of the
same module M into MM in a module body of MM shall have no
effect.

2 More than one directive import(MI) in the bodies of a
module MM may specify the importation of exported predicates
from a given module M. Subsequent imports of the same module
M into MM in a module body of MM shall have no effect.

3 A module M shall not import a procedure whose predicate
indicator is that of a procedure defined in M.

4 A module M shall not define a procedure whose predicate
indicator is that of a procedure that M imports.

5 A module M shall not import a procedure with a given
predicate indicator from two different modules.

7.2.3.4 Module directive end body/1

The module directive end body(Name) where Name is
an atom that has already appeared as the argument of a
module directive body/1 specifies the termination of the
Prolog text belonging to the particular module body of
module Name.

The preparation for execution of any module interface shall
set the operator table, character conversion mapping ConvC

(see 3.29 of ISO/IEC 13211-1), and Prolog flags to a new
initial implementation defined state, determined by the
module interface directives op/3, char conversion/2,
and set prolog flag/2 in the interface of M. This state
shall only affect the preparation for execution of all the
subsequent bodies of the module. M. The effect of directives
op/3, char conversion/2, and set prolog flag/2 in
a body of a module M shall accumulate during the
preparation for execution of subsequent bodies of the
module M.

NOTE — A single module may have more than one body.
However module text does not permit the nesting of any module
body within the Prolog text of the body of any module other
than the user module.

7.2.4 Clauses

A clause-term in one of the bodies of a module M of
module text enables a clause of a user-defined procedure
to be added to the module M.

A clause Clause of a clause-term Clause. in the body of
a module M shall be an unqualified term which is a clause
term whose head is an unqualifed term and shall satisfy
the same constraints as those required for a successful
execution of the built-in predicate M:assertz(Clause)

(8.4.2), except that no error shall occur because Clause
refers to a static procedure. The Clause shall be converted
to a clause h:- t and added to the module M.

The predicate indicator P/N of the head of Clause shall
not be the predicate indicator of any built-in predicate, or
a control construct, and shall not be that of any predicate
imported into M or reexported by M.

NOTE — If the directive discontiguous/1 is in effect for
a predicate defined in the body of a module, then clauses for
that predicate may appear in separate bodies of the module.
The order in which the clauses are added to the complete
database depends on the order in which the bodies are prepared
for execution.

7.2.4.1 Examples

The examples defined in this clause assume the complete
database has been created from module text that includes
the following:

:- module(utilities).
:- export([length/2, reverse/2]).
:- end_module(utilities).
:- body(utilities).

length(List, Len) :- length1(List, 0, N).
length1([], N, N).
length1([H | T], N, L) :-

N1 is N + 1,length1(T, N1, L).

reverse(List, Reversed) :-
reverse1(List, [], Reversed).

reverse1([], R,R).
reverse1([H | T], Acc, R) :-

reverse1(T, [H | Acc], R).
:-end_body(utilities).

:- module(foo).
:- end_module(foo).
:- body(foo).
:-import(utilities).

p(Y) :- q(X),length(X,Y).

q([1,2,3,4]).
:- end_body(foo).

The examples.

foo:p(X).
succeeds,
unifying X with 4.

foo:reverse([1,2,3], L).
succeeds,

11

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

unifying L with [3,2,1].
utilities:reverse1([1,2,3], [], L).

succeeds,
unifying L with [3,2,1].

foo:reverse1([1,2,3], [], L).
existence_error(procedure, foo:reverse1).

7.3 Complete database

The complete database is the database of procedures
against which execution of a goal is performed. The
procedures in the complete database are:

a) all control constructs,

b) all built-in predicates,

c) all user-defined procedures.

Each user-defined procedure is identified by a unique
qualified predicate indicator (3.43) where the module
qualification of the predicate indicator is the defining
module of the procedure.

7.3.1 Visible database

The visible database of a module M is the collection of all
procedures in the complete database that can be activated
from M without explicit module qualification and from
outside M with M as lookup context.

It includes all built-in predicates and control constructs, all
procedures defined in the bodies of M and all procedures
imported into M.

NOTE — A procedure visible in a module M that is neither a
control construct nor a built-in predicate is either (1) completely
defined in the bodies of M or (2) completely defined in the
bodies of some module MM, exported from MM and imported
or reexported into M. Furthermore the options (1) and (2) are
mutually exclusive.

7.3.2 Examples

The following examples use the complete database defined
in 7.2.4.1.

The visible database of foo consists of the following
procedures:

All built-in predicates and control
constructs.

From foo:
p/1, q/1.

Imported from utilities:
length/2, reverse/2

7.4 Metapredicates

Metapredicates are procedures one or more of whose
arguments are meta-arguments. When the metapredicate
is activated these arguments will be unified to terms that
require module qualification. The calling context can be
set explicitly by using the infix operator ‘:’.

7.4.1 Metapredicate Built-ins

The following built-in predicates are metapredicates listed
with their metapredicate mode indicators:

a) The database access and modification
built-in predicates clause(:,*), asserta(:),

assertz(:), retract(:), abolish(:), and
predicate property(:,*),

b) The logic and control built-in predicates once(:),
\+(:), and

c) The all solutions predicates setof(*,:,*),

bagof(*,:,*), and findall(*,:,*).

7.4.2 Module name expansion

An argument X of a metapredicate MP which occurs at
a position corresponding to a ‘:’ in the metapredicate
mode indicator of MP shall be qualified with the module
name of the calling context when MP is activated. A
unqualified term X appearing as a ‘:’ argument in a call
of a predicate MP in module M will be replaced by (M:X)

in the activation of MP.

The meta-arguments in an unqualified term which repre-
sents a metapredicate goal MP in the calling context of
a module CM shall be module qualified with CM. If the
term is module qualified then the meta-arguments shall be
module qualified with the associated lookup module of the
pair (CM,MP).

12

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

7.4.2.1 Module qualifying an argument list

An argument list L is converted in the calling context
of module M to a module qualified argument list MQL as
follows:

a) If L is the empty list then MQL is the empty list.

b) If L is the list whose head is H and whose tail is T

then

1) If H is a meta-argument then MQL is the list
whose head is M:H and whose tail is the list MQT

obtained by converting T in the calling context of
module M to a module qualified list,

2) Else H is not a meta-argument and MQL is the
list whose head is H and whose tail is the list MQT

obtained by converting T in the calling context module
M to a module qualified list.

7.4.2.2 Module qualifying a control construct

The control constructs ’,’/2, ’;’/2, ’->’/2 , call/1
and catch/3 require that some of their arguments be
module qualified with a module M during conversion for
visibility (7.5.2.2.) This is done as follows:

a) If an argument of ’,’/2, ’;’/2, or ’->’/2 is
already module qualified no qualification is done.

b) Each argument X of ’,’/2, ’;’/2, or ’->’/2 that
is not already module qualified is replaced by M:X.

c) If the argument of call/1 is already module
qualified no qualification is done.

d) If the argument X of call/1 is not module qualified
it is replaced by M:X.

e) If the first argument of catch/3 is already module
qualified no further module qualification of this argument
is done.

f) If the first argument X of catch/3 is not module
qualified it is replaced by M:X.

g) The second argument of catch/3 is not subject to
module qualification.

h) If the third argument of catch/3 is already module
qualified no further module qualification of this argument
is done.

i) If the third argument X of catch/3 is not module
qualified it is replaced by M:X.

7.4.2.3 Module qualifying a term

A term MP shall be converted in the calling context of
module M to a module qualified term MQP as follows.

a) If MP is an unqualified term with principal functor
P and argument list L then MQP is the term whose
principal functor is P and whose argument list is the
list MQL obtained by converting L in the calling context
of module M to a module qualified list.

b) Else if MP is a qualified term with principal functor
(:)/2 with first argument MM and second argument TT
then MQP is the term whose principal functor is (:)/2

with first argument MM and second argument MQTT the
term obtained by module qualifying TT in the calling
context of module MM to a module qualified term.

7.4.3 Examples

7.4.3.1 Examples: Module qualification

These examples on module qualification assume that the
complete database has been created from the following
module text.

:- module(foo).
:-export(p/2).
:-metapredicate(p(*,:)).

:- end_module(foo).

:- module(bar).
:- end_module(bar).

:- body(bar).
:-import(foo).

:- end_body(bar).

If p(X,Y) is called in the context of module bar
then the corresponding module qualified term is
p(X,bar:Y).

If foo:p(X,Y) is called in the context of a module m
then the corresponding module qualified term is
foo:p(X,foo:Y).

7.4.3.2 Examples: export and import

These examples of importation, exportation and metapred-
icates assume that the complete database has been created
from the following module text.

:- module(foo).
:- export(p/1).
:- metapredicate(p(:)).

:- end_module(foo).

13

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

:- module(bar).
:- export(q/1).

:- end_module(bar).

:- module(baz).
:- export(q/1).

:- end_module(baz).

:- body(foo).
p(X) :- write(X).

:- end_body(foo).

:- body(bar).
:- import(foo, p/1).
q(X) :- a(X), p(X)
q(X) :- a(X), foo:p(2).
a(1).

:- end_body(bar).

:- body(baz).
:- import(bar, q/1).

:- end_body(baz).

baz:q(X).
succeeds,
unifying X with 1
and writing bar:1
on re-execution succeeds
unifying X with 1
and writing foo:2.

bar:q(X).
succeeds,
unifying X with 1
and writing bar:1
on re-execution succeeds
unifying X with 1
and writing foo:2.

foo:p(3).
succeeds,
writing foo:3.

bar:p(3).
succeeds,
writing bar:3.

7.4.3.3 Examples: metapredicates

The following example illustrates the use of a metapredicate
to obtain context information for debugging purposes.

:- module(trace).
:- exports(#/1).
:- metapredicate(#(:)).

:- end_module(trace).
:- body(trace).

:- op(950, fx, #).

(# Goal) :-
Goal = Module : G,
inform_user(’CALL’, Module, G),

call(Goal),
inform_user(’EXIT’, Module, G).

(# Goal) :-
Goal = Module : G,
inform_user(’FAIL’, Module, Goal),
fail.

inform_user(Port, Module, Goal) :-
write(Port), write(’ ’), write(Module),
write(’ calls ’), writeq(Goal), nl.

:- end_body(trace).

:- module(sort_with_errors).
:- export(sort/2).

:- end_module(sort_with_errors).
:- body(sort_with_errors).

:- import(trace).
sort(List, SortedList) :-

sort(List, SortedList, []).
sort([], L,L).
sort([X|L], R0, R) :-

split(X,L,L1,L2),
sort(L1, R0, R1),
sort(L2, [X|R1], R).

split(_, [], [], []).
split(X, [Y|L], [Y |L1], L2):-

Y @< X, !,
split(X,L, L2, L2).

split(X, [Y | L], [Y |L1], L2):-
split(X, L, L2, L2).

:- end_body(sort_with_errors).
The goal:
sort([3,2,1], L).
fails, writing
CALL sort_with_errors calls split(3,[2,1],_A,_B)
FAIL sort_with_errors calls split(3,[2,1],_A,_B).

7.5 Converting a term to a clause, and a clause
to a term

Prolog provides the ability to convert Prolog data to and
from code. However the argument of a goal is a term
whereas the complete database contains procedures with
the user-defined procedures being formed from clauses.
Some procedures convert a term to a clause, while others
convert a clause to a corresponding term. This clause
defines how the conversion is to be carried out in the
presence of modules.

7.5.1 Converting a term to the head of a clause

In the calling context of a module M a term T can be
converted to a predication which is the head H of a clause
with lookup module MM:

a) The associated unqualified term (7.1.1.2) UT of
(M,T) is converted to a predication H as in 7.6.1 of
ISO/IEC 13211-1:

14

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

b) The lookup module MM for the predication is the
lookup module of (M,T).

7.5.2 Converting a term an activated goal

In the calling context of a module M with defining module
DM a term T is converted to an activated goal G in three
steps.

a) The term T is first converted for control constructs
(7.5.2.1) in the calling context of M to a body BG with
module qualifications;

b) The body with module qualifications BG is converted
for visibility of built-ins (7.5.2.2) in the calling context
of M to a body VBG qualified for visibility;

c) Terms in the body qualified for visibility VBG that
denote metapredicates are module qualified (7.5.2.3) in
the calling context of the defining module DM.

7.5.2.1 Conversion of a term to a module qualified
body

A term T shall be converted for control constructs to a
body with module qualifications BG in the context of a
calling module M with defining module DM as follows:

a) If T is an unqualified term and M is equal to DM

then T is converted for control constructs as follows:

1) If T is a variable then BG is the control construct
call whose argument is T.

2) If T is a term whose principal functor is one of
the control constructs call, catch, throw, ! , true or
fail then BG is the same control construct and the
arguments if, if any, of BG and T are identical.

3) If T is a term whose principal functor is one
of the control one of the control constructs (,)/2

or (;)/2 or (->)/2 then BG is the corresponding
control construct and the arguments of T shall be
converted for control constructs with calling context
and defining module M.

4) If T is an atom or compound term whose principal
functor FT does not appear in table 8 of ISO/IEC
13211-1 then BG is a predication whose predicate
indicator is FT, and the arguments, if any, of T and
BG are identical.

b) Else if T is an unqualified term and M is not equal to
DM then the qualified term M:T is converted for control
constructs, with calling context and defining module M.

c) Else if T is a qualified term the associated unqualified
ut(M,T) is converted for control constructs in the calling
context of the defining module lm(M,T) with defining
module lm(M,T) to the predication UG and BG is
lm(M,T):UG.

7.5.2.2 Conversion of a module qualified body for
visibility

A module qualified body BG shall be converted for the
visibility of control constructs in the calling context of a
module M to a body qualified for visibility VBG as follows:

a) If BG is an unqualified term then the conversion
proceeds as follows:

1) If the principal functor of BG is one of the control
constructs ’,’/2, ’;’/2, or ’->’/2 then VBG is the
corresponding control construct and each argument of
BG is converted for visibility in the calling context of
M,

2) Else BG and VBG are identical.

b) Else if BG is a module qualified term with principal
functor (:)/2, first argument MM and second argument
UBG the conversion proceeds as follows:

1) If the principal functor of UBG is one of the
control constructs ’,’/2, ’;’/2, or ’->’/2 then VBG

is the corresponding control construct, the arguments
of UBG are module qualified with MM as in 7.4.2.2
and converted for visibility of control constructs.

2) If the principal functor of UBG is the control
construct call/1 or catch/3 then VBG is the same
control construct and the arguments of UBG are module
qualified according to 7.4.2.2,

3) Else BG and VBG are identical.

7.5.2.3 Converting a body qualified for visibility to an
activated goal

A body VBG qualified for visibility can be converted to
an activated goal AG in the calling context of a module M

with defining module DM as follows.

15

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

a) If VBG is a term whose principal functor is one of
the control constructs ’,’/2, ’;’/2, or ’->’/2 then
each argument of VBG is converted to an activated goal
in the in the calling context of M.

b) If VBG is an unqualified term denoting a metapredi-
cate then AG is the result of module qualifying (7.4.2.3)
the arguments of VBG with DM.

c) If VBG is a qualified term denoting a metapredicate
then AG1 is the unqualified term obtained by mod-
ule qualifying the arguments of the unqualified term
VBG1 associated to (M,VBG1) with the lookup module
lm(M,VBG1), if the metapredicate denoted by VBG1 is
one of the metapredicate built-ins (7.4.1) then AG is AG1
else AG is lm(M,VBG1):AG1,

d) Else VBG and BG are identical.

7.5.3 Converting a term to the body of a clause

It is implementation defined as to whether all of the steps
in conversion of a term to an activated goal take place
when a term is converted to a goal. Converting a term to a
goal shall convert the term for control constructs (7.5.2.1)
but may also convert for visibility (7.5.2.2). Conversion
to an activated goal (7.5.2.3) must be completed (if not
done at conversion to a goal time) by 7.6.4 e.

7.5.4 Converting the body of a clause to a term

A goal G which is a predication with predicate indicator
P/N in the body of a clause of a module M can be
converted to a term T:

a) If the principal functor of G is not (:)/2 and if N

is zero, then T is the atom P.

b) If the principal functor of G is not (:)/2 and N is
not zero then T is a renamed copy of TT where TT is
the compound term whose principal functor is P/N and
the arguments of G and TT are identical.

c) If G is a control construct which appears in table
9 of ISO/IEC 13211-1, then T is a term with the
corresponding principal functor. If the principal functor
of T is call/1, catch/3 or throw/1 then the
arguments of G and T are identical, else if the principal
functor of T is (,)/2 or (;)/2 or (->)/2 then each
argument of G shall also be converted to a term.

d) Else if the principal functor of G is (:)/2 with
first argument MM and second argument GG then G is
converted to the term MM:TT, where TT is obtained by
converting GG to a term in the calling context of MM.

NOTE — A fully activated goal is not subject to further module
qualifcation of its arguments.

7.5.5 Examples

The following examples are provided to illustrate the three
stages of converting a term to a fully activated goal.

Defining module = m, calling module = foo.
This would arise in a goal such as
foo:asserta(m:bar(X) :- baz(X)).

Term - baz(X), baz/1 not a metapredicate.
Converted for control constructs - m:baz(X).
Converted for visibility - m:baz(X).
Fully activated goal - m:baz(X).

Term - metabaz(X), metabaz a metapredicate
Converted for control constructs:- m:metabaz(X).
Converted for visibility - m:metabaz(X).
Fully activated goal - m:metabaz(m:X).

Term - X
Converted for control constructs - m:call(X)
Converted for visibility - call(m:X).
Fully activated goal - call(m:X).

Term - ’->’(bar:a(X), b(Y)).
Converted for control constructs

- ’->’(bar:a(X), m:b(Y))
Converted for visibility

- ’->’(bar:a(X), m:b(Y))
Fully activated goal

- ’->’(bar:a(X), m:b(Y))

Term - ’,’(setof(X,G,S)), write(S)).
Converted for control constructs

- ’,’(m:setof(X,G,S)), m:write(S)).
Converted for visibility

- ’,’(m:setof(X,G,S)), write(S)).
Fully activated goal

- ’,’(setof(X,m:G,S)), write(S)).

Term - true.
Converted for control constructs - true.
Converted for visibility - true.
Fully activated goal - true.

7.6 Executing a Prolog goal

This clause describes the flow of control through Prolog
clauses as a goal is executed in the presence of module
qualification. It is based on the stack model in clause 7.7
of ISO/IEC 13211-1.

16

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

7.6.1 Data types for the execution model

The execution model of module Prolog is based on an
execution stack S of execution states ES. It is an extension
of the model in clause 7.7 of ISO/IEC 13211-1, where the
extension adds module information.

ES is a structured data type with components:

S index – A value defined by the current number of
components of S.

decsglstk – A stack of decorated subgoals which
defines a sequence of activators that might be activated
during execution.

subst – A substitution which defines the state of the
instantiations of the variables.

BI – Backtrack information: a value which defines
how to re-execute a goal.

The choicepoint for the execution state ESi+1 is ESi.

A decorated subgoal DS is a structured data type with
components:

activator – A predication prepared for execution
which must be executed successfully in order to satisfy
the goal.

contextmodule – An atom identifying the module in
which the subgoal is being called.

cutparent – A pointer to a deeper execution state
that indicates where control is resumed should a cut be
re-executed.

currstate, the current execution state is top(S). It
contains:

a) An index which identifies its position in S, and

b) The current decorated subgoal stack, and

c) The current substitution, and

d) Backtracking information.

currdecgsgl, the current decorated subgoal, is
top(decsglstk) of currstate. It contains:

a) The current activator, curract, (this may be a
qualified term,)

Table 2 — The execution stack after initialization with
the goal m:goal

S Decorated Substi- BI
index Subgoal Stack, tution

1 ((m:goal, user, 0), fg nil
newstackDS) ,

newstackES

b) The current context module contextmodule, which
gives the context in which the current decorated subgoal
is to be executed, and

c) Its cutparent.

BI has value:

nil – Its initial value, or

ctrl – The procedure is a control construct, or

bip – The activated procedure is a built-in predicate,
or

(DM, up(CL)) – CL is a list of the clauses of a
user-defined procedure whose predicate is identical to
curract, and which are still to be executed, and DM is
the module in whose body these clauses appear.

7.6.2 Initialization

The method by which a user delivers a goal to the Prolog
processor shall be implementation defined.

A goal is prepared for execution by transforming it into
an activator. Execution of a metapredicate requires that
all arguments of type ‘:’ be module qualified (7.4.2) with
the module name of the calling context prior to execution
(7.6.4 e).

The initial value of the calling context is user.

Table 2 shows the execution stack after it has been
initialized and is ready to execute m:goal.

7.6.2.1 A goal succeeds

A goal is satisfied when the decorated subgoal stack of
currstate is empty. A solution for the goal m:goal is
represented by the corresponding substitution Σ.

17

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

7.6.2.2 A goal fails

Execution fails when the execution stack S is empty.

7.6.2.3 Re-executing a goal

After satisfying an initial goal, execution may continue by
trying to satisfy it again.

Procedurally,

a) Pop currstate from S,

b) Continue execution at 7.6.5.

7.6.3 Searching the complete database

This clause describes how, with lookup module m, the
processor locates a procedure p in the complete database
whose predicate indicator corresponds to a given (possibly
module qualified) activator.

7.6.3.1 Searching the visible database

The procedure in the complete database corresponding to
a procedure p (whose principal functor is necessarily not
(:)/2) in the visible database defined by a module m is
located as follows:

a) If the principal functor of p is a control construct
or built-in predicate then p is the required procedure.

b) If there is a user-defined procedure p with the same
principal functor and arity as p defined in m then p is
the required procedure.

c) The selective import, reexport and selective reexport
directives of m are examined; (1) if there is a directive
naming p as imported or re-exported from a module
n then search is carried out in the visible database of
n for a procedure p which is exported by n; (2) else
if there is a directive naming a module n as imported
or re-exported then search is carried out in the visible
database of n for a procedure p which is exported by n.

d) Else the search fails.

Procedurally the search in the visible database of a module
m for a user defined procedure p is carried out as follows:

a) If there is a user-defined procedure p with the same
principal functor and arity as p defined in m then p is
the required procedure,

b) Else form two sets Open and Closed each initially
empty.

c) Add m to the set Closed.

d) If there is a selective import directive
import(n,PI) or a selective reexport directive
reexport(n,PI) where PI includes p replace Open

by the set whose sole member is n,

e) Else create a list S of all the modules that are the
subject of import/1 or reexport/1 directives in m

and replace Open by the set S.

f) If Open is empty the search fails,

g) Else remove a module n from Open and add it to
Closed.

h) If there is a user defined procedure q with the
same principal functor and arity as q defined in n and
exported by n then q is the required procedure, and the
search terminates,

i) Else if there is a import/2 directive or a
reexport/2 directive in n naming p as imported
from a module nn and nn is not on Closed replace
Open by the set whose sole element is nn,

j) Else create the set S of all modules that are the
subject of import/1 or reexport/1 directives in n

and add to Open the elements of S that are on neither
Open nor Closed.

k) Continue at 7.6.3.1 f.

NOTES

1 Because a module m may not make visible two different
procedures from the same database that would have the same
unqualified predicate indicator (7.2.3) in m no more than one
such procedure can be found.

2 Because no more than one procedure can be found the
choice of module from the set Open does not need to be
specified.

3 Since importation is idempotent no module needs to be
searched more than once.

18

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

7.6.3.2 Searching for a given procedure

The processor locates in the complete database with lookup
module m a procedure p corresponding to a given term T.

a) Determine the unqualified term UT and lookup
module LT associated to (m,T).

b) If the principal functor of UT is a control construct
or built-in procedure q then q is the required procedure.

c) If the principal functor of UT is a user-defined
procedure q (not a control construct or built-in predicate)
then the visible database (7.3.1) of LT is searched for
a procedure q. If no such procedure exists the search
fails.

7.6.4 Selecting a clause for execution

Execution proceeds in a succession of steps.

a) Using the visible database given by the lookup
module contextmodule of the current decorated sub-
goal currdecsgl, the processor searches the complete
database (7.6.3) for a procedure p whose (possibly
module qualified) predicate indicator corresponds with
the (possibly qualified) identifier and arity of curract.

b) If no procedure is found in step 7.6.4 a, then action
depends on the value of the flag unknown:

error – There shall be an error

existence error(procedure,M:PF)

where M is the lookup module and PF is the predicate
indicator of the (possibly qualified) curract, or

warning – An implementation dependent warning
shall be generated and curract replaced by the control
construct fail, or

fail – curract shall be replaced by the control
construct fail.

c) If curract identifies a user-defined predicate set
DM to the module name of the module in whose body
the predicate is defined.

d) Set contextmodule in the current decorated sub-
goal to the lookup module associated to the pair
(contextmodule, curract) and set curract to the
associated unqualified term.

e) Ensure that curract has been converted to an
activated goal by module qualifying (7.4.2.3) its meta-
arguments.

f) If p is a control construct (true, fail, call, cut,
conjunction, disjunction, if-then, if-then-else, catch,
throw) then BI is set to ctrl and execution continues
according to the rules defined in (7.7).

g) If p is a built-in predicate BP then BI is set to bip

and continue execution at 7.6.7.

h) If p is a user-defined procedure then DM is set to
the module in which the procedure is defined and BI is
set to (DM,up(CL)), where CL is a list of the current
clauses of p of the procedure; Continue execution at
7.6.6

NOTE — After the execution of these steps curract is not
module qualified.

7.6.5 Backtracking

A procedure backtracks (1) if a goal has failed, or (2)
if the initial goal has been satisfied, and the processor is
asked to re-execute it.

Procedurally, backtracking shall be executed as follows:

a) Examine the value of BI for the new currstate.

b) If BI is (DM, up(CL)) then p is a user defined
procedure remove the head of CL and continue at 7.6.6.

c) If BI is bip then p is a built-in predicate, continue
execution at 7.6.7.

d) If BI is ctrl the effect of re-executing it is defined
in 7.7.

e) If BI is nil then the new curract has not been
executed, continue execution at 7.6.4.

7.6.6 Executing a user-defined procedure:

Procedurally a user-defined procedure shall be executed as
follows:

a) If there are no (more) clauses for p then BI has the
value (DM, up([])) and continue execution at 7.6.6.1,

b) Else consider clause c where BI has the value (DM,

up([c j CT])) with the calling context DM.

19

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

c) If the head of c and curract are unifiable then
it is selected for execution, and continue execution at
7.6.6 e,

d) Else BI is replaced by a value (DM, up(CT)) and
continue execution at 7.6.6 a.

e) Let c’ be a renamed copy of the clause c of up([c
j]).

f) Unify the head of c’ and curract producing a
most general unifier MGU.

g) Apply the substitution MGU to the body of c’.

h) Make a copy CCS of currstate. It contains a
copy of the current goal which is called CCG.

i) Apply the substitution MGU to CCG.

j) Replace the current activator of CCG by the MGU

modified body of c’.

k) Set BI of CCS to nil.

l) Set the substitution on CCS to a composition of the
substitution of currstate and MGU.

m) Set cutparent of the new first subgoal of the
decorated subgoal stack of CCS to the current choice
point.

n) Set the contextmodule of the new first subgoal
of the decorated subgoal stack to DM.

o) Push CCS on to S. It becomes the new currstate

and the previous currstate becomes its choicepoint.

p) Continue execution at 7.6.4.

7.6.6.1 Executing a user-defined procedure with no
more clauses

When a user-defined procedure has been selected for
execution 7.6.4 but has no more clauses, i.e. BI has a
value (DM, up([])), it shall be executed as follows:

a) Pop currstate from S.

b) Continue execution at 7.6.5.

7.6.7 Executing a built-in predicate

Procedurally a built-in predicate shall be executed as in
section 7.7.12 of ISO/IEC 13211-1.

For the built-in predicates that have meta-
arguments, the database access and modifica-
tion built-in predicates clause(:,*), asserta(:),

assertz(:), retract(:), abolish(:), and
predicate property(:,*), the logic and control built-
in predicates once(:), \+(:), and the all solu-
tions predicates setof(*,:,*), bagof(*,:,*), and
findall(*,:,*), the current decorated subgoal gives
access to the calling context required for module name
expansion (7.6.4 e).

7.7 Executing a control construct

This clause describes the modifications required to the
descriptions of the execution model of ISO/IEC 13211-1.
For all control constructs not specifically described, the
model is unchanged.

7.7.1 call/1

7.7.1.1 Description

call(G) is true in the calling context of module CM iff G
represents a goal which is true.

Procedurally, a control construct call, denoted by call(G),
shall be executed as follows:

a) Make a copy CCS of currstate.

b) Set BI of CCS to nil.

c) Pop currdecsgl (= (call(G), CM, CP)) from
currentgoal of CCS.

d) If the term G has as associated unqualified term a
variable, there shall be an instantiation error,

e) Else if the term G has as associated unqualified
term a number, there shall be a type error,

f) Else in the calling context of the module CM and
defining module CM convert the term G to a goal Goal
with calling context M, the lookup module associated to
(CM,G) (7.5.3).

g) Let NN be the choice point of currstate.

20

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

h) Push (Goal, M, NN) on to currentgoal of CCS.

i) Push CCS onto S.

j) Continue execution at 7.6.4.

k) Pop currstate from S.

l) Continue execution at 7.6.5.

call(G) is re-executable. On backtracking, continue at
7.7.1.1 k.

NOTE — The built-in predicates once/1 and \+/1 contain
an implicit call, their behaviour in the presence of modules
is modified accordingly.

7.7.1.2 Template and modes

call(+callable term).

7.7.1.3 Errors

a) G is a variable
– instantiation error.

b) The lookup module of (CM,G) cannot be determined
(7.1.1).
– instantiation error.

c) G is neither a variable nor a callable term
– type error(callable, G).

d) G cannot be converted to a goal
– type error(callable, G).

7.7.1.4 Examples

call(m:X:foo).

type_error(callable, m:X:foo).

7.7.2 catch/3

The catch and throw control constructs enable execution
to continue after an error without intervention from the
user.

7.7.2.1 Description

catch(G,C,R) is true in the calling context of module CM

iff (1) call(G) is true , or (2) the call of G is interrupted
by a call of throw/1 whose argument unifies with C, and
call(R) is true.

Procedurally, a control construct catch, denoted by
catch(G,C,R) is executed as follows:

a) Make a copy CCS of currstate.

b) Replace curract of CCS by call(G).

c) Set BI to nil.

d) Push CCS onto S.

e) Continue execution at 7.6.4.

f) Pop currstate from S.

g) Continue execution at 7.6.5.

catch(G,C,R) is re-executable. On backtracking, con-
tinue at 7.7.2.1 f.

7.7.2.2 Template and modes

catch(?callable term, ?term, ?term)

7.7.2.3 Errors

a) G is a variable
– instantiation error.

b) The lookup module of (CM,G) cannot be determined
(7.1.1).
– instantiation error.

c) G is neither a variable nor a callable term
– type error(callable, G).

7.7.3 throw/1

7.7.3.1 Description

throw(B) is a control construct that is neither true nor
false. It exists only for its procedural effect of causing
the normal flow of control to be transferred back to an
existing call of catch/3 (see 7.7.2).

Procedurally, a control construct throw, denoted by
throw(B), shall be executed as follows:

21

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

a) Make a renamed copy CA of curract, and a copy
CP of cutparent.

b) Pop currstate from S.

c) It shall be a system error (7.12.2j of ISO/IEC
13211-1) if S is now empty,

d) Else if (1) the new curract is a call of the control
construct catch/3, and (2) the argument of CA unifies
with the second argument C of the catch with most
general unifier MGU, and (3) the cutparent is less than
CP, then continue at 7.7.3.1 b .

e) Apply MGU to currentgoal.

f) Replace curract by call(R), where R is the
third argument of the control construct catch/3 from
7.7.3.1 d.

g) Set BI to nil.

h) Continue execution at 7.6.4.

7.7.3.2 Template and modes

throw(+nonvar)

7.7.3.3 Errors

a) B is a variable
– instantiation error.

b) B does not unify with the C argument of any call
of catch/3
– system error.

7.8 Predicate properties

The properties of proceduress can be found using
the built-in predicate predicate property(Callable,

Property), where Callable is the meta-argument term
Module:Goal 8.2.2. The predicate properties supported
shall include:

static – The procedure is static.

dynamic – The procedure is dynamic.

public – The procedure is a public procedure.

private – The procedure is a private procedure.

built in – The procedure is a built-in predicate.

multifile – The procedure is the subject of a
multifile directive.

exported - The module Module exports the proce-
dure.

metapredicate(MPMI) – The procedure is a
metapredicate, and MPMI is its metapredicate mode
indicator.

imported from(From) — The predicate is imported
into module Module from the module From.

defined in(DefiningModule) – The module
DefiningModule defines the procedure.

A processor may support one of more additional predicate
properties as an implementation specific feature.

7.9 Errors

The following errors are defined in addition to those
defined in section 7.12 of ISO/IEC 13211-1.

7.9.1 Error classification

The following types are added to the classification of
7.12.2 of ISO/IEC 13211-1.

a) The list of valid types is extended by the addition
of metapredicate mode indicator. (See 7.12.2 b
of ISO/IEC 13211-1.)

b) The list of valid domains is extended by the addition
of predicate property. (See 7.12.2 c of ISO/IEC
13211-1.)

c) The list of object types is extended by the addition
of module. (See 7.12.2 d of ISO/IEC 13211-1.)

d) The list of permission types is extended by the
addition of implicit. (See 7.12.2 e of ISO/IEC
13211-1.)

22

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

8 Built-in predicates

8.1 The format of built-in predicate definitions

The format of the built-in predicate definitions follows that
of ISO/IEC 13211-1.

8.1.1 Type of an argument

The following additional argument types are required:

metapredicate mode indicator – as terminology.

predicate property – a procedure property (7.8).

prototype – as terminology.

qualified or unqualified clause – a clause or term
whose associated unqualified term is a clause.

8.2 Module predicates

The examples provided for these built-in predicates assume
the complete database has been created from the module
text given in the first example of 7.4.3.2.

8.2.1 current module/1

8.2.1.1 Description

current module(Module) is true iff Module unifies with
the name of an existing module.

Procedurally current module(Module) is executed as
follows:

a) Searches the complete database for all active mod-
ules and creates a set S of all terms M such that there
is a module whose identifier unifies with Module.

b) If a non-empty set is found, then proceeds to
8.2.1.1 d,

c) Else the goal fails.

d) Chooses an element of S and the goal succeeds.

e) If all the elements of S have been chosen then the
goal fails,

f) Else chooses an element of the set S which has not
already been chosen and the goal succeeds.

current module(Module) is re-executable. On back-
tracking, continue at 8.2.1.1 e.

NOTE — current module(M) succeeds if the interface to
M has been loaded, whether or not any bodies of M may have
been prepared for execution.

8.2.1.2 Template and Modes

current module(?atom)

8.2.1.3 Errors

a) Module is neither a variable nor an atom

— type error(atom, Module).

8.2.1.4 Examples

current_module(foo).
succeeds.

current_module(fred:sid).
type_error(atom, fred:sid).

8.2.2 predicate property/2

8.2.2.1 Description

predicate property(Prototype, Property) is true
in the calling context of a module M iff the procedure
associated with the argument Prototype has predicate
property Property.

Procedurally
predicate property(Prototype, Property) is ex-
ecuted as follows:

a) Determines the lookup module MM of
(M,Prototype).

b) Determines the unqualified term T with principal
functor P of arity N associated with (M, Prototype).
P/N is the associated predicate indicator.

c) Searches the complete database and creates a set
SetPP of all terms PP such that P/N identifies a procedure
in the visible database of MM which has predicate property
PP and PP is unifiable with Property.

23

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

d) If SetPP is non empty set is proceeds to 8.2.2.1 f,

e) Else the predicate fails.

f) Chooses the first element PPP of SetPP , unifies PPP
with Property and the predicate succeeds.

g) If all the elements of SetPP have been chosen the
predicate fails,

h) Else chooses the first element PPP of SetPP that has
not already been chosen, unifies PPP with Property

and the predicate succeeds.

predicate property(Prototype, Property) is re-
executable. On backtracking, continue at 8.2.2.1 g.

The order in which properties are found by
predicate property/2 is implementation dependent.

8.2.2.2 Template and modes

predicate property(+prototype,

?predicate property)

8.2.2.3 Errors

a) Prototype is a variable
– instantiation error.

b) The lookup module of (M,Prototype) cannot be
determined (7.1.1)
– instantiation error.

c) Prototype is neither a variable nor a callable term
– type error(callable, Prototype).

d) Property is neither a variable nor a predicate
property
– domain error(predicate property, Property).

e) The module identified by MM does not exist
– existence error(module, MM).

8.2.2.4 Examples

bar:predicate_property(q(X), exported).
succeeds, X is not instantiated.

bar:predicate_property(p(X), defined_in(S)).
succeeds, S is unified with foo,
X is not instantiated.

baz:predicate_property(foo:p(X), metapredicate(Y)).
succeeds, Y is unified with p(:),
X is not instantiated.

bar:predicate_property(X:foo:p(Y), exported).
instantiation_error.

8.3 Clause retrieval and information

This clause describes the interaction of the built-in predicate
clause/2 with the module system.

The examples provided for these built-in predicates assume
that the complete database has been created from the
following module text.

:- module(mammals).
:- export(dog/0, cat/0, elk/1).

:- end_module(mammals).

:- body(mammals).

:- dynamic(cat/0).
cat.

:- dynamic(dog/0).

dog :- true.

:- dynamic(elk/1).
elk(X) :- moose(X).

:- dynamic(moose/1).

legs(4).

:- end_body(mammals).

:- module(insects)
:- export(ant/0, bee/0).

:- end_module(insects).

:- body(insects).
:- dynamic(ant/0).
ant.

:- dynamic(bee/0).
bee.

:- dynamic(legs/1).
legs(6).

body_type(segmented).

:- end_body(insects).

:- module(animals).
:- exports(limbs/1).

:- end_module(animals).

24

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

:- body(animals).
:- import(insects, [ant/0, bee/0]).
:- import(mammals, [dog/0, cat/0, elk/1]).

:- dynamic(horns/1).

limbs(X) :- insects:legs(X).
limbs(X) :- mammals:legs(X).

:- end_body(animals).

8.3.1 clause/2

8.3.1.1 Description

clause(Head, Body) is true in the calling context of a
module M iff:

– The associated unqualified term of (M,Head) is HH,
(7.1.1.3),

– The procedure of HH is public, and

– There is a clause in the the lookup module DM

associated with (M,Head) which corresponds to a term
H:- B which unifies with HH :- Body.

Procedurally, clause(Head, Body) is executed in the
calling context of a module M as follows:

a) Determines the lookup module DM associated with
(M, Head) (7.1.1.3) to be searched for the clauses.

b) Determines the unqualified term HH associated with
(M, Head).

c) Searches sequentially through each public user-
defined procedure defined in the chosen module and
creates a list L of all the terms clause(H,B) such that:

1) DM contains a clause whose head can be converted
to a term H and whose body can be converted to a
term B,

2) H unifies with HH, and

3) B unifies with Body.

d) If a non-empty list is found, then proceeds to
8.3.1.1 f,

e) Else the goal fails.

f) Chooses the first element of the list L, and the goal
succeeds.

g) If all the elements of the list L have been chosen
then the goal fails,

h) Else chooses the first element of L that has not
already been chosen, and the goal succeeds.

clause/2 is re-executable. On backtracking, continue at
8.3.1.1 g.

8.3.1.2 Template and modes

clause(+term, ?callable term)

8.3.1.3 Errors

a) Head is a variable
– instantiation error.

b) The lookup module of (M,Head) cannot be deter-
mined (7.1.1.3)
– instantiation error.

c) Head is a qualified term and either the associated
unqualified term or lookup module is a variable
– instantiation error.

d) Head is neither a variable nor a predication
– type error(callable, Head).

e) Head cannot be converted to a predication.
– type error(callable, Head).

f) The predicate indicator Pred of the associated un-
qualified term of Head is that of a private procedure
– permission error(access,

private procedure, Pred).

g) The predicate indicator Pred of the associated
unqualified term of Head is that of a procedure imported
or re-exported by DM

– permission error(access, implicit, Pred).

h) Body is neither a variable nor a callable term
– type error(callable, Body).

i) The module identified by DM does not exist
– existence error(module, DM).

25

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

8.3.1.4 Examples

The examples amplify those of ISO/IEC 13211-1 by
illustrating the effect of the module structure.

insects:clause(legs(X) , A).
succeeds unifying X with 6
and A with true.

insects:clause(body_type(X), true).
succeeds unifying X with segmented.

animals:clause(limbs(X) , B).
succeeds unifying B with insects:legs(X)
on re-execution unifies B with mammals:legs(X).

clause(insects:legs(X) , A).
succeeds unifying X with 6
and A with true.

animals:clause(elk(X), B).
permission_error(access, implicit, elk).

animals:predicate_property(elk(_), defined_in(M)),
M:clause(elk(Y), B).

succeeds, M is unified with mammals,
B is unified with moose(Y).

animals:clause(mammals:elk(X), B).
succeeds, B is unified with
moose(X).

clause(insects:M:legs(X), A).
instantiation_error.

8.3.2 current predicate/1

8.3.2.1 Description

current predicate(PI) is true in the calling context
of a module M, iff PI is a predicate indicator for one of
the user-defined procedures in the visible database of M.

Procedurally, current predicate(PI) is executed as
follows:

a) Searches the visible database of M and creates a set
SetAN of terms A/N such that (1) the visible database
contains a user-defined procedure whose predicate has
identifier A and arity N, and (2) A/N identifies with PI.

b) If a non-empty set is found, then proceeds to
8.3.2.1 d,

c) Else the goal fails.

d) Chooses a member of SetAN and the goal succeeds.

e) If all members of SetAN have been chosen, then
the goal fails,

f) Else chooses a member of SetAN which has not
already been chosen, and the goal succeeds.

current predicate(PI) is re-executable. On back-
tracking continue at 8.3.2.1 e.

The order in which predicate indicators are found by
current predicate(PI) is implementation dependent.

8.3.2.2 Template and modes

current predicate(?predicate indicator)

8.3.2.3 Errors

a) PI is neither a variable nor a predicate indicator
– type error(predicate indicator, PI).

8.3.2.4 Examples

insects:current_predicate(legs/1).
Succeeds.

animals:current_predicate(ant/X).
Succeeds unifying X with 0.

animals:current_predicate(legs/1).
Fails.

8.4 Database access and modification

This clause describes the interaction of the predicates
asserta/1, assertz/1, retract/1 and abolish/1

with the module system.

8.4.1 asserta/1

8.4.1.1 Description

asserta(Clause) is true.

Procedurally, asserta(Clause) is executed in the calling
context of a module M as follows:

a) Extracts the unqualified term C and associated
lookup module CM from (M, Clause) (7.1.1.3).

26

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

b) If C unifies with ’:-’(Head, Body) proceeds to
8.4.1.1 d,

c) Else unifies Head with C and true with Body.

d) Converts (7.5.1) the term Head to a head H with
lookup module DM in calling context CM.

e) Converts (7.5.3) the term Body to a body B in
calling context CM with defining module DM.

f) Constructs the clause with head H and body B.

g) Adds the clause to the selected module DM before all
existing clauses of the procedure in DM whose predicate
is equal to the functor of Head.

h) The goal succeeds.

8.4.1.2 Template and modes

asserta(@qualified or unqualified clause)

8.4.1.3 Errors

a) Head is a variable
– instantiation error.

b) DM is a variable
– instantiation error.

c) The lookup module of (M,Clause) cannot be
determined (7.1.1.3)
– instantiation error.

d) Head cannot be converted to a predication
– type error(callable, Head).

e) Body cannot be converted to a goal
– type error(callable, Body).

f) The predicate indicator Pred of Head is that of a
static procedure
– permission error(modify, static procedure,

Pred).

g) The procedure identified by Pred is imported or
re-exported by the module DM

– permission error(modify, implicit, Pred).

h) The module identified by DM does not exist
– existence error(module, DM).

8.4.1.4 Examples

mammals:asserta((moose(fred)).
succeeds adding moose(fred) to the
module mammals.

animals:asserta((elk(X) :- new_moose(X))).
permission_error(modify, implicit, elk).

animals:predicate_property(elk(_), defined_in(M)),
M:asserta(elk(joe)).

succeeds adding elk(joe) to
the module mammals,
M is unified with mammals.

nomodule:asserta(foo(3)).
existence_error(module, nomodule).

asserta(mammals:elk(anna)).
succeeds adding elk(anna) to
the module mammals.

mammals:asserta(animals:horns(X) :- moose(X)).
succeeds adding horns(X) :- mammals:moose(X)
to the module animals.

asserta(M:mammals:elk(joe)).
type_error(instantiation_error).

After these examples the complete database could have
been created from the following module text.

:- module(mammals).
:- export(dog/0, cat/0, elk/1).

:- end_modulee(mammals).

:- body(mammals).

:- dynamic(cat/0).
cat.

:- dynamic(dog/0).
dog :- true.

:- dynamic(elk/1).
elk(anna).
elk(joe).
elk(X) :- moose(X).

:- dynamic(moose/1).
:- moose(fred).
legs(4).

:- end_body(mammals).

:- module(insects)
:- export(ant/0, bee/0).

:- end_module(insects).

:- body(insects).

:- dynamic(ant/0).

27

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

ant.

:- dynamic(bee/0).
bee.

:- dynamic(legs/1).
legs(6).

body_type(segmented).

:- end_body(insects).

:- module(animals).
:- exports(limbs/1).

:- end_module(animals).

:- body(animals).
:- import(insects, [ant/0, bee/0]).
:- import(mammals, [dog/0, cat/0, elk/1]).

:- dynamic(horns/1).

horns(X) :- mammals:moose(X).

limbs(X) :- insects:legs(X).
limbs(X) :- mammals:legs(X).

:- end_body(animals).

8.4.2 assertz/1

8.4.2.1 Description

assertz(Clause) is true.

Procedurally, assertz(Clause) is executed in the calling
context of module M as follows:

a) Extracts the unqualified term C and associated
lookup module LM from (M, Clause) (7.1.1.3).

b) If C unifies with ’:-’(Head, Body) proceeds to
8.4.1.1 d,

c) Else unifies Head with C and true with Body.

d) Converts (7.5.1) the term Head to a head H and
lookup module DM in calling context LM.

e) Converts (7.5.3) the term Body to a body B in
calling context LM with defining module DM.

f) Constructs the clause with head H and body B.

g) Adds the clause to the selected module DM after all
existing clauses of the procedure in DM whose predicate
is equal to the functor of Head.

h) The goal succeeds.

8.4.2.2 Template and modes

assertz(@qualified or unqualified clause)

8.4.2.3 Errors

a) Head is a variable
– instantiation error.

b) DM is a variable
– instantiation error.

c) The lookup module of (M, Clause) cannot be
determined (7.1.1)
– instantiation error.

d) Head cannot be converted to a predication
– type error(callable, Head).

e) Body cannot be converted to a goal
– type error(callable, Body).

f) The predicate indicator Pred of Head is that of a
static procedure
– permission error(modify, static procedure,

Pred).

g) The procedure identified by Pred is imported or
re-exported by the module DM

– permission error(modify, implicit, Pred).

h) The module identified by DM does not exist
– existence error(module, DM).

8.4.3 retract/1

8.4.3.1 Description

retract(Clause) is true in the calling context of a
module M iff:

– The associated unqualified term of (M,Clause) is
C with lookup module DM (7.1.1.3),

– The complete database contains at least one dynamic
procedure with defining module DM and with a clause
Head :- Body which unifies with C.

Procedurally retract(Clause) is executed in the calling
context of a module M as follows:

28

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

a) Determines the lookup module DM associated with
(M, Clause) (7.1.1.3) to be searched for the clauses.

b) Determines the unqualified term C and lookup
module L1 associated with (M, Clause).

c) If C unifies with ’:-’(HH, BB) proceeds to
8.4.3.1 g,

d) Else unifies C with HH and true with BB.

e) Determines the unqualified term Head and lookup
module DM associated with (L1, HH).

f) Determines the unqualifed term Body and the lookup
module BM associated to (L1,BB.

g) Chooses the module DM as the defining module to
search.

h) Searches sequentially through each dynamic user-
defined open procedure in DM and creates a list L of
all the terms clause(H,B) such that: (1) the module
DM contains a clause whose head can be converted to a
term HH and whose body can be converted with context
module BM and defining module DM to a goal B, (2) H
unifies with Head, and (3) B unifies with Body.

i) If a non-empty list is found, then proceeds to
8.4.3.1 k,

j) Else the goal fails.

k) Chooses the first element of the list L, removes the
clause corresponding to it from the defining module DM,
and the goal succeeds.

l) If all the elements of the list L have been chosen,
then the goal fails,

m) Else chooses the first element of the list L which
has not already been chosen, removes the clause, if it
exists, corresponding to it from the defining module DM

and the goal succeeds.

retract/1 is re-executable. On backtracking, continue at
8.4.3.1 l.

8.4.3.2 Template and modes

retract(+qualified or unqualified clause)

8.4.3.3 Errors

a) Head is a variable
– instantiation error.

b) DM is a variable
– instantiation error.

c) The lookup module of (M,Clause) cannot be
determined (7.1.1)
– instantiation error.

d) Head is not a predication
– type error(callable, Head).

e) Body cannot be converted to a goal
– type error(callable, Body).

f) The predicate indicator Pred of Head is that of a
private procedure
– permission error(modify, static procedure,

Pred).

g) The procedure identified by Pred is imported or
re-exported by the module DM

–permission error(modify, implicit, Pred).

h) The module identified by DM does not exist
– existence error(module, DM).

8.4.3.4 Examples

The following examples assume that the complete database
has been created from the module text in subclause (8.4.1.4)

mammals:retract(cat).
succeeds.

animals:predicate_property(ant, defined_in(M)),
M:retract(ant).
succeeds.

retract(animals:dog).
succeeds.

retract(M:animals:cat).
type_error(instantiation_error).

retract(nomodule:foo(bar)).
existence_error(module, nomodule).

After these examples the complete database could have
been created from the following module text:

29

ISO/IEC FCD 13211-2 : 1998(E) c ISO/IEC 1998

:- module(mammals).
:- export(dog/0, cat/0, elk/1).

:- end_module(mammals).

:- body(mammals).

:- dynamic(cat/0).

:- dynamic(dog/0).

:- dynamic(elk/1).
elk(X) :- moose(X).

:- dynamic(moose/1).

legs(4).

:- end_body(mammals).

:- module(insects)
:- export(ant/0, bee/0).

:- end_module(insects).

:- dynamic(ant/0).

:- dynamic(bee/0).
bee.

:- dynamic(legs/1).

legs(6).

body_type(segmented).

:- end_body(insects).

:- module(animals).
:- exports(limbs/1).

:- end_module(animals).

:- body(animals).
:- import(insects, [ant/0, bee/0]).
:- import(mammals, [dog/0, cat/0, elk/1]).

:- dynamic(horns/1).

limbs(X) :- insects:legs(X).
limbs(X) :- mammals:legs(X).

:- end_body(animals).

8.4.4 abolish/1

8.4.4.1 Description

abolish(Pred) is true.

Procedurally, abolish(Pred) is executed in the calling
context of a module M as follows:

a) Determines the lookup module DM of (M, Pred).

b) Determines the unqualified term PI of (M,Pred).

c) If the module DM defines a dynamic procedure whose
predicate indicator is PI, then proceeds to 8.4.4.1 e,

d) Else the goal succeeds.

e) Removes from the module DM the procedure specified
by PI and all its clauses, and the goal succeeds.

8.4.4.2 Template and modes

abolish(@predicate indicator)

8.4.4.3 Errors

a) Pred is a variable
– instantiation error.

b) DM is a variable
– instantiation error.

c) The lookup module DM of (M,Pred) cannot be
determined (7.1.1).
–instantiation error.

d) PI is a term Name/Arity and at least one of Name,
or Arity is a variable,
– instantiation error.

e) PI is neither a term nor a predicate indicator
–type error(predicate indicator, PI).

f) PI is a term Name/Arity and Arity is neither a
variable nor an integer
– type error(integer, Arity).

g) PI is a term Name/Arity and Name is neither a
variable nor an atom
– type error(atom, Name).

h) PI is a term Name/Arity and Arity is an integer
less than zero
– domain error(not less than zero, Arity).

30

c ISO/IEC 1998 ISO/IEC FCD 13211-2 : 1998(E)

i) PI is a term Name/Arity and Arity is an
integer greater than the implementation defined integer
max arity

– representation error(max arity).

j) The predicate indicator PI is that of a prodedure
which is static
– permission error(modify, static procedure,

Pred).

k) PI is a term Name/Arity and the procedure
identified by Name is imported or re-exported by DM

– permission error(modify, implicit, Name).

l) The module identified by DM does not exist
– existence error(module, DM).

8.4.4.4 Examples

insects:abolish(bee/0).
succeeds removing insects:bee
from the complete database.

animals:abolish(dog/0).
permission_error(modify, implicit, dog/0).

insects:abolish(X:mammal:legs/2)
instantiation_error.

31

