
SC22/WG11 N443

INTERNATIONAL ISO/IEC
STANDARD 10967-2

Third Committee Draft

1998-09-18

Information technology |

Language independent arithmetic |

Part 2: Elementary numerical functions

Technologies de l'information |

Arithm�etique ind�ependante de langage |

Partie 2: Fonctions num�eriques �el�ementaires

THIRD COMMITTEE DRAFT
September 18, 1998 10:29

Editor:
Kent Karlsson
IMI, Industri-Matematik International
Kungsgatan 12
SE-411 19 G�oteborg
SWEDEN
Telephone: +46-31 10 22 44
Facsimile: +46-31 13 13 25
E-mail: keka@im.se

Reference number: ISO/IEC CD 10967-2.3:1998(E)

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

Contents

1 Scope 1
1.1 Speci�cations included in ISO/IEC 10967-2 . 1
1.2 Speci�cations not within the scope of ISO/IEC 10967-2 2

2 Conformity 2

3 Normative References 3

4 Symbols and de�nitions 3

4.1 Symbols . 3
4.2 De�nitions . 6

5 Speci�cations for the numerical functions 9

5.1 Additional basic integer operations . 9
5.1.1 The integer result and wrap helper functions 9
5.1.2 Integer maximum and minimum operations 10
5.1.3 Integer positive di�erence (monus, diminish) operation 10
5.1.4 Integer power and arithmetic shift operations 10
5.1.5 Integer square root (rounded to nearest integer) operation 10
5.1.6 Divisibility and even/odd test operations 11
5.1.7 Additional integer division and remainder operations 11
5.1.8 Greatest common divisor and least common multiple operations 12
5.1.9 Support operations for extended integer range 12

5.2 Additional basic
oating point operations . 13
5.2.1 The rounding and
oating point result helper functions 13
5.2.2 Floating point maximum and minimum operations 14
5.2.3 Floating point positive di�erence (monus, diminish) operation 16
5.2.4 Round,
oor, and ceiling operations . 17
5.2.5 Operation for remainder after division and round to integer (IEEE remainder) 18
5.2.6 Square root and reciprocal square root operations 18
5.2.7 Support operations for extended
oating point precision 19
5.2.8 Exact summation operation . 23

5.3 Elementary transcendental
oating point operations 24
5.3.1 Speci�cation format . 24

5.3.1.1 Maximum error requirements . 24
5.3.1.2 The trans result helper function 25
5.3.1.3 Sign requirements . 25
5.3.1.4 Monotonicity requirements . 26

5.3.2 Hypotenuse operation . 26
5.3.3 Operations for exponentiations and logarithms 27

5.3.3.1 Power-of e (natural exponentiation) operation 27

c
 ISO/IEC 1998

All rights reserved. No part of this publication may be reproduced or utilised in any form or by any means,
electronic or mechanical, including photocopying and micro�lm, without permission in writing from the publisher.

ISO/IEC Copyright O�ce � Case Postale 56 � CH-1211 Gen�eve 20 � Switzerland

Printed in Switzerland

ii

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.3.2 Operation for power-of e, minus one (natural exponentiation, mi-
nus one) . 27

5.3.3.3 Floating point power-of argument base operations 28
5.3.3.4 Operation for power-of argument base, minus one 30
5.3.3.5 Power-of 2 operation . 31
5.3.3.6 Power-of 10 operation . 31
5.3.3.7 Natural logarithm-of operation . 32
5.3.3.8 Operation for natural logarithm-of one plus the argument 32
5.3.3.9 Argument base logarithm-of operation 33
5.3.3.10 Operation for argument base logarithm-of one plus second argument 34
5.3.3.11 2-logarithm-of operation . 35
5.3.3.12 10-logarithm-of operation . 35

5.3.4 Operations for hyperbolics and inverse hyperbolics 35
5.3.4.1 Sinus hyperbolicus operation . 36
5.3.4.2 Cosinus hyperbolicus operation . 36
5.3.4.3 Tangentus hyperbolicus operation 37
5.3.4.4 Cotangentus hyperbolicus operation 37
5.3.4.5 Secantus hyperbolicus operation 38
5.3.4.6 Cosecantus hyperbolicus operation 38
5.3.4.7 Arcus sinus hyperbolicus operation 39
5.3.4.8 Arcus cosinus hyperbolicus operation 39
5.3.4.9 Arcus tangentus hyperbolicus operation 39
5.3.4.10 Arcus cotangentus hyperbolicus operation 40
5.3.4.11 Arcus secantus hyperbolicus operation 40
5.3.4.12 Arcus cosecantus hyperbolicus operation 41

5.3.5 Introduction to operations for trigonometrics 41
5.3.6 Operations for radian trigonometrics and inverse radian trigonometrics . . . 42

5.3.6.1 Radian angle normalisation operations 42
5.3.6.2 Radian sinus operation . 43
5.3.6.3 Radian cosinus operation . 44
5.3.6.4 Radian cosinus with sinus operation 44
5.3.6.5 Radian tangentus operation . 44
5.3.6.6 Radian cotangentus operation . 45
5.3.6.7 Radian secantus operation . 45
5.3.6.8 Radian cosecantus operation . 46
5.3.6.9 Radian arcus sinus operation . 46
5.3.6.10 Radian arcus cosinus operation . 47
5.3.6.11 Radian arcus operation . 47
5.3.6.12 Radian arcus tangentus operation 48
5.3.6.13 Radian arcus cotangentus operation 48
5.3.6.14 Radian arcus secantus operation 49
5.3.6.15 Radian arcus cosecantus operation 50

5.3.7 Operations for argument angular-unit trigonometrics and inverse argument
angular-unit trigonometrics . 50
5.3.7.1 Argument angular-unit angle normalisation operations 51
5.3.7.2 Argument angular-unit sinus operation 52
5.3.7.3 Argument angular-unit cosinus operation 53
5.3.7.4 Argument angular-unit cosinus with sinus operation 54
5.3.7.5 Argument angular-unit tangentus operation 54
5.3.7.6 Argument angular-unit cotangentus operation 55
5.3.7.7 Argument angular-unit secantus operation 55

iii

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

5.3.7.8 Argument angular-unit cosecantus operation 56
5.3.7.9 Argument angular-unit arcus sinus operation 57
5.3.7.10 Argument angular-unit arcus cosinus operation 57
5.3.7.11 Argument angular-unit arcus operation 58
5.3.7.12 Argument angular-unit arcus tangentus operation 59
5.3.7.13 Argument angular-unit arcus cotangentus operation 59
5.3.7.14 Argument angular-unit arcus secantus operation 61
5.3.7.15 Argument angular-unit arcus cosecantus operation 61

5.3.8 Operations for degree trigonometrics and inverse degree trigonometrics . . . 62
5.3.9 Operations for angular-unit conversions . 63

5.3.9.1 Converting radian angle to argument angular-unit angle 63
5.3.9.2 Converting argument angular-unit angle to radian angle 64
5.3.9.3 Converting argument angular-unit angle to (another) argument

angular-unit angle . 65
5.3.9.4 Degree angle conversions to and from other angular units 66

5.4 Conversion operations . 66
5.4.1 Integer to integer conversions . 66
5.4.2 Floating point to integer conversions . 67
5.4.3 Integer to
oating point conversions . 67
5.4.4 Floating point to
oating point conversions 68
5.4.5 Floating point to �xed point conversions . 69
5.4.6 Fixed point to
oating point conversions . 71

5.5 Numerals . 72
5.5.1 Numerals for integer types . 72
5.5.2 Numerals for
oating point types . 72

6 Noti�cation 73
6.1 Continuation values . 74

7 Relationship with language standards 75

8 Documentation requirements 76

Annexes

A Rationale 79
A.1 Scope . 79

A.1.1 Speci�cations included in ISO/IEC 10967-2 79
A.1.2 Speci�cations not within the scope of ISO/IEC 10967-2 79

A.2 Conformity . 79
A.3 Normative references . 80
A.4 Symbols and de�nitions . 80

A.4.1 Symbols . 80
A.4.2 De�nitions . 80

A.5 Speci�cations for the numerical functions . 80
A.5.1 Additional basic integer operations . 80

A.5.1.1 The integer result and wrap helper functions 80
A.5.1.2 Integer maximum and minimum operations 81
A.5.1.3 Integer positive di�erence (monus, diminish) operation 81
A.5.1.4 Integer power and arithmetic shift operations 81
A.5.1.5 Integer square root (rounded to nearest integer) operation 81
A.5.1.6 Divisibility and even/odd test operations 81

iv

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

A.5.1.7 Greatest common divisor and least common multiple operations . 81
A.5.1.8 Support operations for extended integer range 81

A.5.2 Additional basic
oating point operations 81
A.5.2.1 The rounding and
oating point result helper functions 81
A.5.2.2 Floating point maximum and minimum operations 81
A.5.2.3 Floating point positive di�erence (monus, diminish) operation . . 81
A.5.2.4 Round,
oor, and ceiling operations 81
A.5.2.5 Operation for remainder after division and round to integer (IEEE

remainder) . 81
A.5.2.6 Square root and reciprocal square root operations 82
A.5.2.7 Support operations for extended
oating point precision 82
A.5.2.8 Extended precision multiply . 83
A.5.2.9 Extended precision multiply and add 83
A.5.2.10 Exact summation operation . 83

A.5.3 Elementary transcendental
oating point operations 83
A.5.3.1 Speci�cation format . 83

A.5.3.1.1 Maximum error requirements 84
A.5.3.1.2 The trans result helper function 85
A.5.3.1.3 Sign requirements . 85
A.5.3.1.4 Monotonicity requirements 85
A.5.3.1.5 IEC 559 special values . 85

A.5.3.2 Hypotenuse operation . 86
A.5.3.3 Operations for exponentiations and logarithms 86
A.5.3.4 Operations for hyperbolics and inverse hyperbolics 87
A.5.3.5 Introduction to operations for trigonometrics 87
A.5.3.6 Operations for radian trigonometrics and inverse radian trigono-

metrics . 87
A.5.3.7 Operations for argument angular unit trigonometrics and inverse

argument angular unit trigonometrics 89
A.5.3.8 Operations for degree trigonometrics and inverse degree trigono-

metrics . 90
A.5.3.9 Operations for angular-unit conversions 90

A.5.4 Conversion operations . 90
A.6 Noti�cation . 90

A.6.1 Continuation values . 90
A.7 Relationship with language standards . 90
A.8 Documentation requirements . 90

B Partial conformity 91

C Example bindings for speci�c languages 93
C.1 General comments . 93
C.2 Ada . 94
C.3 BASIC . 99
C.4 C and C++ . 103
C.5 Fortran . 108
C.6 Java . 112
C.7 ISLisp and Common Lisp . 116
C.8 Modula 2 . 121
C.9 Pascal and Extended Pascal . 125

D Bibliography 131

v

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

vi

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

Foreword

ISO (the International Organisation for Standardisation) and IEC (the International Electrotech-
nical Commission) form the specialised system for world-wide standardisation. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organisation to deal with particular �elds of
technical activity. ISO and IEC technical committees collaborate in �elds of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

In the �eld of information technology, ISO and IEC have established a joint technical commit-
tee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee
are circulated to national bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 10967-2 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Sub-Committee SC 22, Programming languages.

ISO/IEC 10967 consists of the following parts, under the general title Information technology

{ Language independent arithmetic:

{ Part 1: Integer and
oating point arithmetic

{ Part 2: Elementary numerical functions

{ Part 3: Complex
oating point arithmetic and complex elementary numerical functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

Notes and annexes A to D of ISO/IEC 10967-2 are for information only.

vii

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

Introduction

Portability is a key issue for scienti�c and numerical software in today's heterogeneous computing
environment. Such software may be required to run on systems ranging from personal computers
to high performance pipelined vector processors and massively parallel systems.

Part 1 of ISO/IEC 10967, LIA-1, speci�es the basic properties of integer and
oating point
types that can be relied upon in writing portable software.

The aims for this part, part 2 of ISO/IEC 10967, LIA-2, are extensions of the aims for LIA-
1: i.e. to ensure accuracy adequate for numerical analysts, predictability, noti�cation on the
production of exceptional results, and compatibility with language standards.

The content of LIA-2 is based on LIA-1, and extends LIA-1's speci�cations to speci�cations for
operations approximating real elementary functions, operations often required (usually without
a detailed speci�cation) by the standards for programming languages widely used for scienti�c
software. LIA-2 also provides speci�cations for conversions between the \internal" values of an
arithmetic datatype, and a very close approximation in, e.g., the decimal radix. It does not
cover the further transformation to decimal string format, which is usually provided by language
standards. LIA-2 also includes speci�cations for a number of other functions deemed useful, even
though they may not be stipulated by language standards.

The numerical functions covered by LIA-2 are computer approximations to mathematical func-
tions of one or more real arguments. Accuracy versus performance requirements often vary with
the application at hand. LIA-2 recognises this by recommending that implementors support more
than one library of these numerical functions. Various documentation and (program available)
parameters requirements are speci�ed to assist programmers in the selection of the library best
suited to the application at hand.

Annex A is intended to be read in parallel with the standard.

viii

COMMITTEE DRAFT ISO/IEC CD 10967-2.3:1998(E)

Information technology {

Language independent arithmetic {
Part 2: Elementary numerical functions

1 Scope

ISO/IEC 10967-2 de�nes the properties of numerical approximations for many of the real ele-
mentary numerical functions available in standard libraries for a variety of languages in common
use for mathematical and numerical applications.

An implementor may choose any combination of hardware and software support to meet the
speci�cations of ISO/IEC 10967-2. It is the computing environment, as seen by the program-
mer/user, that does or does not conform to the speci�cations.

The term implementation of ISO/IEC 10967-2 denotes the total computing environment, in-
cluding hardware, language processors, subroutine libraries, exception handling facilities, other
software, and all pertinent documentation.

1.1 Speci�cations included in ISO/IEC 10967-2

The speci�cations of ISO/IEC 10967-1 are included by reference in ISO/IEC 10967-2.

ISO/IEC 10967-2 provides speci�cations for numerical functions for which all operand val-
ues are of integer or
oating point datatypes satisfying the requirements of ISO/IEC 10967-1.
Boundaries for the occurrence of exceptions and the maximum error allowed are prescribed for
each such operation. Also the result produced by a special value operand, such as an in�nity, a
NaN, or a (returnable) value in R is prescribed for each operation.

ISO/IEC 10967-2 covers most numerical functions required by the ISO standards for Ada,
Basic, C/C++, Fortran, Extended Pascal, ISLisp, and PL/I. In particular, speci�cations are
provided for

a) some additional integer operations,

b) some additional non-transcendental
oating point operations, including maximum and min-
imum operations,

c) exponentiations, logarithms, hyperbolics, and

d) trigonometrics.

ISO/IEC 10967-2 also provide speci�cations for

e) conversions between implemented datatypes (possibly based on di�erent radices) conforming
to the requirements of ISO/IEC 10967-1,

f) the radix conversion operations used, for example, in text input and output.

In addition, it provides speci�cations for

1

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

g) the results produced when one or more operand value is an IEC 559 special value, and

h) program-visible parameters that characterise the operations.

ISO/IEC 10967-2 uses the same procedures as ISO/IEC 10967-1 for reporting errors.

1.2 Speci�cations not within the scope of ISO/IEC 10967-2

This standard provides no speci�cations for:

a) Numerical functions whose operands are of more than one datatype (with one exception).
This standard neither requires nor excludes the presence of such \mixed operand" opera-
tions.

b) An interval data type, or the operations on such data. This standard neither requires nor
excludes such data or operations.

c) A �xed point data type, or the operations on such data. This standard neither requires nor
excludes such data or operations.

d) A rational data type, or the operations on such data. This standard neither requires nor
excludes such data or operations.

e) The properties of arithmetic data types that are not related to the numerical process, such
as the representation of values on physical media.

f) The properties of integer and
oating point data types that properly belong in language
standards. Examples include

1) the syntax of literals and expressions,

2) the precedence of operators,

3) the rules of assignment and parameter passing,

4) the presence or absence of automatic type coercions,

5) the consequences of applying an operation to values of improper type, or to uninitialised
data.

Nor does this part of ISO/IEC 10967 provide any speci�cations for

g) how numerical functions should be implemented,

h) which algorithms are to be used for the various operations,

i) the textual form used for input or output by any speci�c programming language,

j) complex, matrix, statistical, or symbolic operations.

2 Conformity

It is expected that the provisions of this part of ISO/IEC 10967 will be incorporated by reference
and further de�ned in other International Standards; speci�cally in language standards and in
language binding standards.

A binding standard speci�es the correspondence between one or more operations and pa-
rameters de�ned in ISO/IEC 10967-2 and the concrete language syntax of some programming
language. More generally, a binding standard speci�es the correspondence between certain oper-
ations and the elements of some arbitrary computing entity. A language standard that explicitly
provides such binding information can serve as a binding standard.

2

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

Conformity to ISO/IEC 10967-2 is always with respect to a speci�ed set of operations. Con-
formity to ISO/IEC 10967-2 implies conformity to ISO/IEC 10967-1 for the integer and
oating
point datatypes used.

When a binding standard for a language exists, an implementation shall be said to conform to
this part of ISO/IEC 10967 if and only if it conforms to the binding standard. In particular, in
the case of con
ict between a binding standard and this part of ISO/IEC 10967, the speci�cations
of the binding standard shall take precedence.

When a binding standard covers only a subset of the operations de�ned in ISO/IEC 10967-2,
an implementation remains free to conform to ISO/IEC 10967-2 with respect to other operations
independently of that binding standard.

When no binding standard for a language and some operations speci�ed in ISO/IEC 10967-2
exists, an implementation conforms to this part of ISO/IEC 10967 if and only if it provides one or
more operations that together satisfy all the requirements of clauses 5 through 8 that are relevant
to those operations.

An implementation is free to provide operations that do not conform to ISO/IEC 10967-2 or
that are beyond the scope of this Part. The implementation shall not claim or imply conformity
with respect to such operations.

An implementation is permitted to have modes of operation that do not conform to ISO/IEC
10967-2. A conforming implementation shall specify how to select the modes of operation that
ensure conformity.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See annex C for suggested language bindings.

2 A complete binding for ISO/IEC 10967-2 will include (explicitly or by reference) a binding
for ISO/IEC 10967-1 as well, which in turn includes (explicitly or by reference) a binding
for IEC 559 as well.

3 It is not possible to conform to ISO/IEC 10967-2 without specifying to which set of oper-
ations conformity is claimed.

3 Normative References

The following standards contain provisions which, through reference in this text, constitute pro-
visions of ISO/IEC 10967-2. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on ISO/IEC 10967-2 are
encouraged to investigate the possibility of applying the most recent edition of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

IEC 559:1989, Binary
oating-point arithmetic for microprocessor systems.

ISO/IEC 10967-1:1994, Information technology { Language independent arithmetic {

Part 1: Integer and
oating point arithmetic.

4 Symbols and de�nitions

4.1 Symbols

In ISO/IEC 10967-2, Z denotes the set of mathematical integers, R denotes the set of classical
real numbers, and C denotes the set of complex numbers. Note that Z � R � C.

3

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

]x; z] designates the interval fy 2 R j x < y � zg,
[x; z] designates the interval fy 2 R j x � y � zg,
[x; z[designates the interval fy 2 R j x � y < zg, and
]x; z[designates the interval fy 2 R j x < y < zg.

All pre�x and in�x operators have their conventional (exact) mathematical meaning. The
conventional notation for set de�nition and manipulation is also used. In particular ISO/IEC
10967-2 uses

) and () for logical implication and equivalence
+, �, �, =, xy, logx(y),

p
x, jxj, bxc, dxe, and round(x) on reals

<, �, =, 6=, �, and > between reals
[, \, �, 2, �, and = on sets
max and min on non-empty sets of integers and reals
! for a mapping between sets

ISO/IEC 10967-2 uses � for multiplication, and � for the Cartesian product of sets.
p
x 2 [0;1[,

when the function is de�ned. For x 2 R, the notation bxc designates the largest integer not
greater than x:

bxc 2 Z and x� 1 < bxc � x

the notation dxe designates the smallest integer not less than x:

dxe 2 Z and x � dxe < x+ 1

and the notation round(x) designates the integer closest to x:

round(x) 2 Z and x � 0:5 � round(x) � x+ 0:5

where in case x is exactly half-way between two integers, the even integer is the result.

The divides relation (j) on integers tests whether an integer i divides an integer j exactly:

ijj () (i 6= 0 and i � n = j for some n 2 Z)
The following ideal mathematical functions are de�ned in Chapter 4 of the Handbook of Math-

ematical Functions with Formulas, Graphs, and Mathematical Tables [27].

ex, xy ,
ln, logb,
sinh, cosh, tanh, coth, sech, csch,
arcsinh, arccosh, arctanh, arccoth, arcsech, arccsch,
sin, cos, tan, cot, sec, csc,
arcsin, arccos, arctan, arccot, arcsec, arccsc.

Many of the inverses are multi-valued. The selection of which value to return, so as to make the
inverses into functions, is done in the conventional way. The only one over which there is some
di�erence of conventions it the arccot function. Conventions there vary for negative arguments;
either a positive return value (giving a function that is continuous over zero), or a negative value
(giving a sign symmetric function). In this part of ISO/IEC 10967, arccot refers to the continuous
inverse function, and arcctg refers to the sign symmetric inverse function.

NOTE 1 { Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical

Tables [27] uses the notation arccot for what is called arcctg in LIA-2.

De�ne the following mathematical functions:

rad : R! R
axis rad : R! f(1; 0); (0; 1); (�1; 0); (0;�1)g� R
arc : R�R! R

The rad function is de�ned by

4

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

rad(x) = x� round(x=(2 � �)) � 2 � �

The axis rad function is de�ned by

axis rad(x) = ((1; 0); arcsin(sin(x))) if cos(x) � 1=
p
2

= ((0; 1); arcsin(cos(x))) if sin(x) > 1=
p
2

= ((�1; 0); arcsin(sin(x))) if cos(x) � �1=p2
= ((0;�1); arcsin(cos(x))) if sin(x) < �1=p2

The arc function is de�ned by

arc(x; y) = � arccos(x=
p
x2 + y2) if y < 0

= arccos(x=
p
x2 + y2) if y � 0

NOTES

2 rad(x) = arccos(cos(x)) if sin(x) > 0 and rad(x) = � arccos(cos(x)) if sin(x) < 0.

3 The �rst part of axis rad(x) indicates which axis is nearest to the angle x. The second part
of axis rad(x) is an angle o�set from the axis that is nearest to the angle x. The second
part of axis rad(x) is equal to rad(x) if cos(x) � 1=

p
2 (i.e. if the �rst part of axis rad(x)

is (1; 0)). More generally, the second part of axis rad(x) is equal to rad(4 � x)=4.
4 rad(x) returns the same angle as the angle value x, but the returned angle value is between

�� and �. The rad function is de�ned to be used as the basis for the angle normalisation
operations. The axis rad function is de�ned to be used as the basis for a numerically more
accurate radian angle normalisation operation. The arc function is de�ned to be used as
the basis for the arcus operations, which are used for conversion from Cartesian to polar
co-ordinates.

The datatype Boolean consists of the two values true and false.

fst((x; y)) = x, and snd((x; y)) = y.

Square brackets are used to write �nite sequences of values. [] is the sequence containing no
values. [s], is the sequence of one value, s. [s1; s2], is the sequence of two values, s1 and then s2.
Etc. The colon operator is used to prepend a value to a sequence: x : [x1; :::; xn] = [x; x1; :::; xn]

[S], where S is a set, denotes the set of �nite sequences, where each value in each sequence is
in S.

NOTE 5 { It should be clear from context if [X] is a sequence of one element, or the set of
sequences with values from X. It should also be clear from context if [x1; x2] is a sequence of
two values, or an interval.

Integer datatypes and
oating point datatypes are de�ned in ISO/IEC 10967-1.

The following symbols are de�ned in ISO/IEC 10967-1:1994, and used in this part.

Exceptional values:
integer over
ow,
oating over
ow, under
ow, and unde�ned.

Integer parameters:
boundedI , maxintI , and minintI .

Integer helper functions:
wrapI .

Integer operations:
negI , addI , subI , mulI , rem

f
I .

Floating point parameters:
rF , pF , eminF , emaxF , denormF , and iec 559 F .

Derived
oating point constants:

5

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

fmaxF , fminF , fminN F , fminDF , and epsilonF .
Floating point rounding constants:

rnd styleF , rnd errorF .
Floating point value sets related to F :

F �, FD, FN .
Floating point helper functions:

eF , resultF .
Floating point operations:

negF , addF , subF , mulF , divF , signF .
Floating point conversion operations:

cvtF!F 0 .

Three new exceptional values, invalid, pole, and angle too big, are introduced in ISO/IEC
10967-2 in addition to those in ISO/IEC 10967-1:1994. invalid and pole are in ISO/IEC 10967-
2 used instead of the unde�ned of ISO/IEC 10967-1:1994. angle too big is used when the

oating point angle value argument is so big that even an highly accurate result from a trigono-
metric operation is questionable, due to that the density of
oating point values has decreased
signi�cantly at these big angle values.

NOTE 6 { ISO/IEC 10967-2 provides speci�cations for angle normalisation operations that
can be used to transform a (not too big) angle value to an angle value within one cycle for
the same (or very close) angle.

The following symbols represent values de�ned in IEC 559:1989 and used in ISO/IEC 10967-2:

�0, +1, �1, qNaN, and sNaN.

These symbols are not part of the set F , but if iec 559 F has the value true, these values are
included in the
oating point datatype corresponding to F .

NOTE 7 { ISO/IEC 10967-2 uses the above four symbols for compatibility with IEC 559.
In particular, the symbol �0 is not the application of (mathematical) unary � to the value
0, and is a value logically distinct from 0.

4.2 De�nitions

For the purposes of ISO/IEC 10967-2, the following de�nitions apply:

accuracy: The closeness between a computed result and the corresponding true mathematical
result.

arithmetic datatype: A datatype whose values are members of Z , R, or C.
NOTE 1 { This standard speci�es requirements for integer and
oating point data
types. Complex numbers are not covered here, but will be included in a subsequent part
of ISO/IEC 10967 [15].

continuation value: A computational value used as the result of an arithmetic operation when
an exception occurs. Continuation values are intended to be used in subsequent arithmetic
processing. (Contrast with exceptional value. See 6.1.2 of ISO/IEC 10967-1:1994.)

datatype: A set of values and a set of operations that manipulate those values.

denormalisation loss: A larger than normal rounding error caused by the fact that subnormal
values have less than full precision. (See 5.2.5 of ISO/IEC 10967-1:1994, for a full de�nition.)

denormalised, denormal: The non-zero values of a
oating point type F that provide less than
the full precision allowed by that type. (See FD in 5.2 of ISO/IEC 10967-1:1994, for a full
de�nition.)

6

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

error: (1) The di�erence between a computed value and the correct value. (Used in phrases like
\rounding error" or \error bound".)

(2) A synonym for exception in phrases like \error message" or \error output". Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable numeric result. This might arise
because no such result exists mathematically, or because the mathematical result cannot
be represented with su�cient accuracy.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the
occurrence of an exception. Exceptional values are not used in subsequent arithmetic pro-
cessing. (See clause 5 of ISO/IEC 10967-1:1994.)

NOTES

2 Exceptional values are used as part of the de�ning formalism only. With respect to
ISO/IEC 10967, they do not represent values of any of the datatypes described. There
is no requirement that they be represented or stored in the computing system.

3 Exceptional values are not to be confused with the NaNs and in�nities de�ned in IEC
559. Contrast this de�nition with that of continuation value above.

helper function: A function used solely to aid in the expression of a requirement. Helper
functions are not visible to the programmer, and are not required to be part of an im-
plementation. However, some implementation de�ned helper functions are required to be
documented.

implementation (of this part of ISO/IEC 10967): The total arithmetic environment presented
to a programmer, including hardware, language processors, exception handling facilities,
subroutine libraries, other software, and all pertinent documentation.

literal: A syntactic entity denoting a value without having proper sub-entities that are expres-
sions.

monotonic approximation: An operation opF : :::� F � :::! F , where the other arguments
are kept constant, is a monotonic approximation of a predetermined mathematical function
h : R! R if, for every a 2 F and b 2 F ,

a) h is monotonic non-decreasing on [a; b] implies opF (:::; a; :::)� opF (:::; b; :::),

b) h is monotonic non-increasing on [a; b] implies opF (:::; a; :::)� opF (:::; b; :::).

monotonic non-decreasing: A function h : R ! R is monotonic non-decreasing on a real
interval [a; b] if for every x and y such that a � x � y � b, h(x) and h(y) are well-de�ned
and h(x) � h(y).

monotonic non-increasing: A function h : R ! R is monotonic non-increasing on a real
interval [a; b] if for every x and y such that a � x � y � b, h(x) and h(y) are well-de�ned
and h(x) � h(y).

normalised: The non-zero values of a
oating point type F that provide the full precision allowed
by that type. (See FN in 5.2 of ISO/IEC 10967-1:1994 for a full de�nition.)

noti�cation: The process by which a program (or that program's end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a noti�cation.
(See clause 6 of ISO/IEC 10967-1:1994 for details.)

numeral: A numeric literal. It may denote a value in R, an in�nity, or a NaN.

numerical function: A computer routine or other mechanism for the approximate evaluation
of a mathematical function.

7

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

operation: A function directly available to the user/programmer, as opposed to helper functions
or theoretical mathematical functions.

pole: A mathematical function f has a pole at x0 if x0 is �nite, f is de�ned, �nite, monotonous,
and continuous in at least one side of the neighbourhood of x0, and lim

x!x0
f(x) is in�nite.

precision: The number of digits in the fraction of a
oating point number. (See 5.2 of ISO/IEC
109671:1994.)

rounding: The act of computing a representable �nal result for an operation that is close to the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see 5.2.6 of ISO/IEC 10967-1:1994). (See also A.5.2.6 of ISO/IEC
10967-1:1994 for some examples.)

rounding function: Any function rnd : R ! X (where X is a given discrete and unlimited
subset of R) that maps each element of X to itself, and is monotonic non-decreasing.
Formally, if x and y are in R,

x 2 X) rnd(x) = x

x < y) rnd(x) � rnd(y)

Note that if u 2 R is between two adjacent values in X , rnd(u) selects one of those adjacent
values.

round to nearest: The property of a rounding function rnd that when u 2 R is between two
adjacent values in X , rnd(u) selects the one nearest u. If the adjacent values are equidistant
from u, either may be chosen deterministically.

round toward minus in�nity: The property of a rounding function rnd that when u 2 R is
between two adjacent values in X , rnd(u) selects the one less than u.

round toward plus in�nity: The property of a rounding function rnd that when u 2 R is
between two adjacent values in X , rnd(u) selects the one greater than u.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted. (Quoted from [2].)

should: A verbal form used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from [2].)

signature (of a function or operation): A summary of information about an operation or func-
tion. A signature includes the function or operation name; a subset of allowed argument
values to the operation; and a superset of results from the function or operation (including
exceptional values if any), if the argument is in the subset of argument values given in the
signature.

The signature

addI : I � I ! I [finteger over
owg
states that the operation named addI shall accept any pair of I values as input, and (when
given such input) shall return either a single I value as its output or the exceptional value
integer over
ow.

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will
actually be returned for some input. An operation given an argument outside the stipulated
argument domain may produce a result outside the stipulated results range.

8

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

The signature chosen in the speci�cations below is the one that allows all non-special values
as input, and gives all non-special, special, and exceptional values that may result. More
restrictive (for example, only the domain for which non-exceptional values result) or less
restrictive (for example, including IEC 559 special values as arguments) are not given in
the speci�cations below.

subnormal: A denormal value, the value 0, or the value �0.
ulp: The value of one \unit in the last place" of a
oating point number. This value depends on

the exponent, the radix, and the precision used in representing the number. Thus, the ulp
of a normalised value x (in F), with exponent t, precision p, and radix r, is rt�p, and the
ulp of a subnormal value is fminDF . (See 5.2 of ISO/IEC 10967-1:1994.)

5 Speci�cations for the numerical functions

5.1 Additional basic integer operations

Clause 5.1 of ISO/IEC 10967-1 speci�es integer datatypes and a number of operations on values
of an integer datatype. In this clause some additional operations on values of an integer datatype
are speci�ed.

I is an integer datatype conforming to ISO/IEC 10967-1. Integer datatypes conforming to
ISO/IEC 10967-1 usually do not contain any NaN or in�nity values, even though they may do
so. Therefore this clause has no speci�cations for such values as arguments. String formats for
integer values usually do contain (signalling) NaNs, however, when that string format is regarded
as an (non-ISO/IEC 10967-1) integer datatype. See clause 5.4 on conversions.

5.1.1 The integer result and wrap helper functions

The resultI helper function:

resultI : Z ! I [finteger over
owg
resultI(x) = x if x 2 I

= integer over
ow if x 62 I and x 2 Z
The wrapI helper function (also used in ISO/IEC 10967-1). maxintI and minintI are from

ISO/IEC 10967-1.

wrapI : Z ! I

wrapI(x) = x� (n � (maxintI �minintI + 1))
if x 2 Z and I 6= Z

= x otherwise

where n 2 Z is chosen such that the result is in I .

NOTES

1 n = b(x �minintI)=(maxintI �minintI + 1)c if x 2 Z and I 6= Z;
n = d(x �maxintI)=(maxintI �minintI + 1)e if x 2 Z and I 6= Z.

2 For some wrapping basic arithmetic operations this n is computed by the ` ov' operations
in clause 5.1.9.

9

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

5.1.2 Integer maximum and minimum operations

maxI : I � I ! I

maxI(x; y) = maxfx; yg if x; y 2 I

minI : I � I ! I

minI(x; y) = minfx; yg if x; y 2 I

max seqI : [I]! I [finvalidg
max seqI([x1; :::; xn])

= invalid if n = 0 and �1 is not available
= maxfx1; :::; xng if n � 1 and fx1; :::; xng � I

min seqI : [I]! I [finvalidg
min seqI([x1; :::; xn])

= invalid if n = 0 and +1 is not available
= minfx1; :::; xng if n � 1 and fx1; :::; xng � I

5.1.3 Integer positive di�erence (monus, diminish) operation

dimI : I � I ! I [finteger over
owg
dimI(x; y) = resultI(maxf0; x� yg) if x; y 2 I

NOTE { dimI cannot be implemented as maxI(0; subI(x; y)) for limited integer types, since
this latter expression has other over
ow properties.

5.1.4 Integer power and arithmetic shift operations

powerI : I � I ! I [finteger over
ow; invalidg
powerI(x; y) = resultI(x

y) if x; y 2 I and y > 0
= 1 if x 2 I and y = 0 and x 6= 0
= invalid(1) if y = 0 and x = 0
= invalid if x; y 2 I and y < 0

shift2 I : I � I ! I [finteger over
ow; invalidg
shift2 I(x; y) = resultI(bx � 2yc) if x; y 2 I

shift10 I : I � I ! I [finteger over
ow; invalidg
shift10 I(x; y) = resultI(bx � 10yc) if x; y 2 I

5.1.5 Integer square root (rounded to nearest integer) operation

sqrtI : I ! I [finvalidg
sqrtI (x) = round(

p
x) if x 2 I and x � 0

= invalid if x 2 I and x < 0

10

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.1.6 Divisibility and even/odd test operations

dividesI : I � I ! Boolean

dividesI(x; y) = true if x; y 2 I and xjy
= false if x; y 2 I and not xjy

NOTES

1 dividesI (0; 0) = false, since 0 does not divide anything, not even 0.

2 dividesI cannot be implemented as, e.g., eqI(0; rem
f
I (y; x)), since the remainder functions

are unde�ned for a zero second argument.

evenI : I ! Boolean

evenI(x) = true if x 2 I and 2jx
= false if x 2 I and not 2jx

oddI : I ! Boolean

oddI(x) = true if x 2 I and not 2jx
= false if x 2 I and 2jx

5.1.7 Additional integer division and remainder operations

quotI : I � I ! I [finteger over
ow; invalidg
quotI(x; y) = resultI(dx=ye) if x; y 2 I and y 6= 0

= invalid if x 2 I and y = 0

padI : I � I ! I [finvalidg
padI(x; y) = (dx=ye � y)� x if x; y 2 I and y 6= 0

= invalid if x 2 I and y = 0

remcI : I � I ! I [finteger over
ow; invalidg
remcI(x; y) = resultI(x� (dx=ye � y))if x; y 2 I and y 6= 0

= invalid if x 2 I and y = 0

divrI : I � I ! I [finteger over
ow; invalidg
divrI(x; y) = resultI(round(x=y)) if x; y 2 I and y 6= 0

= invalid if x 2 I and y = 0

remrI : I � I ! I [finteger over
ow; invalidg
remrI(x; y) = resultI(x� (round(x=y) � y))

if x; y 2 I and y 6= 0
= invalid if x 2 I and y = 0

NOTE { remcI and remrI can over
ow only for unsigned integer datatypes (minI = 0).

11

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

5.1.8 Greatest common divisor and least common multiple operations

gcdI : I � I ! I [finteger over
ow; invalidg
gcdI(x; y) = resultI(maxfv 2 Z j vjx and vjyg)

if x; y 2 I and (x 6= 0 or y 6= 0)
= invalid if x = 0 and y = 0 and +1 is not available

NOTES

1 Returning 0 for gcdI(0; 0), as is sometimes suggested, would be incorrect, since the greatest
common divisor for 0 and 0 is in�nity.

2 gcdI will over
ow only if boundedI = true, minintI = �maxintI �1, and both arguments
to gcdI are minintI . The greatest common divisor is then �minintI , which is then not in
I.

lcmI : I � I ! I [finteger over
owg
lcmI(x; y) = resultI(minfv 2 Z j xjv and yjv and v > 0g)

if x; y 2 I and x 6= 0 and y 6= 0
= 0 if x; y 2 I and (x = 0 or y = 0)

NOTE 3 { lcmI (x; y) over
ows for many arguments: e.g., if x and y are relative primes,
then the least common multiple is jx � yj, which may be greater than maxintI .

gcd seqI : [I]! I [finteger over
ow; invalidg
gcd seqI ([x1; :::; xn])

= resultI(maxfv 2 Z j vjxi for all i 2 f1; :::; ngg)
if fx1; :::; xng � I and f0g 6= fx1; :::; xng

= invalid if f0g = fx1; :::; xng and +1 is not available

lcm seqI : [I]! I [finteger over
owg
lcm seqI([x1; :::; xn])

= resultI(minfv 2 Z j xijv for all i 2 f1; :::; ng and v > 0g)
if fx1; :::; xng � I and 0 62 fx1; :::; xng

= 0 if fx1; :::; xng � I and 0 2 fx1; :::; xng

5.1.9 Support operations for extended integer range

These operations can be used to implement extended range integer datatypes, and unbounded
integer datatypes.

add wrapI : I � I ! I

add wrapI(x; y) = wrapI(x+ y) if x; y 2 I

add ovI : I � I ! f�1; 0; 1g
add ovI(x; y) = ((x+ y)� add wrapI(x; y))=(maxintI �minintI + 1)

if x; y 2 I and I 6= Z
= 0 if x; y 2 I and I = Z

sub wrapI : I � I ! I

12

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

sub wrapI(x; y) = wrapI(x� y) if x; y 2 I

sub ovI : I � I ! f�1; 0; 1g
sub ovI(x; y) = ((x� y)� sub wrapI(x; y))=(maxintI �minintI + 1)

if x; y 2 I and I 6= Z
= 0 if x; y 2 I and I = Z

mul wrapI : I � I ! I

mul wrapI(x; y) = wrapI(x � y) if x; y 2 I

mul ovI : I � I ! I

mul ovI (x; y) = ((x � y)�mul wrapI(x; y))=(maxintI �minintI + 1)
if x; y 2 I and I 6= Z

= 0 if x; y 2 I and I = Z

NOTE { The add ovI and sub ovI will only return �1 (for negative over
ow), 0 (no over
ow),
and 1 (for positive over
ow).

5.2 Additional basic
oating point operations

Clause 5.2 of ISO/IEC 10967-1 speci�es
oating point datatypes and a number of operations
on values of a
oating point datatype. In this clause some additional operations on values of a

oating point datatype are speci�ed.

NOTE { Further operations on values of a
oating point datatype, for elementary
oating
point numerical functions, are speci�ed in clause 5.3.

F is a
oating point type conforming to ISO/IEC 10967-1. Floating point datatypes con-
forming to ISO/IEC 10967-1 usually do contain �0, in�nity, and NaN values. Therefore, in this
clause there are speci�cations for such values as arguments.

5.2.1 The rounding and
oating point result helper functions

Floating point rounding helper functions:

downF : R! F �

is a rounding function. It rounds towards negative in�nity.

NOTE 1 { F � is de�ned in ISO/IEC 10967-1. It is the unbounded extension of F .

upF : R! F �

is a rounding function. It rounds towards positive in�nity.

nearestF : R! F �

is a rounding function, that is partially implementation de�ned. It rounds to nearest. The
handling of ties is implementation de�ned, but must be sign symmetric. If iec 559 F = true, the
semantics of nearestF is completely determined: ties are rounded to even last digit by nearestF .

resultF is a helper function that is partially implementation de�ned. The speci�cation from
ISO/IEC 10967-1 is repeated here, but here details regarding continuation values upon over
ow
and under
ow are given.

NOTE 2 { These details are intended to be in accordance with IEC 559 when iec 559F =
true.

13

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

resultF : R� (R! F �)! F [funder
ow;
oating over
owg
resultF (x; nearestF) =
oating over
ow(+1) if nearestF (x) > fmaxF
resultF (x; nearestF) =
oating over
ow(�1) if nearestF (x) < �fmax F
resultF (x; upF) =
oating over
ow(+1) if upF (x) > fmaxF
resultF (x; upF) =
oating over
ow(�fmaxF) if upF (x) < �fmaxF
resultF (x; downF) =
oating over
ow(fmaxF) if downF (x) > fmaxF
resultF (x; downF) =
oating over
ow(�1) if downF (x) < �fmaxF

resultF (x; rnd) = rnd(x) if fminN F � jxj and jrnd(x)j � fmaxF
= 0 if x = 0
= under
ow(rnd(x)) if denormF = true and

(rnd(x) < 0 or x > 0) and
jxj < fminN F and x 6= rnd(x)

= x if iec 559 F = true and x 6= 0
and jxj < fminN F and x = rnd(x)
and under
ow is only recorded in indicator

= under
ow(x) if iec 559 F = true and x 6= 0
and jxj < fminN F and x = rnd(x)
and under
ow is trapped

= rnd(x) or under
ow(rnd(x)) if iec 559 F = false and
denormF = true and x 6= 0
and jxj < fminN F and x = rnd(x)

= under
ow(�0) if denormF = true and �0 is available
and rnd(x) = 0 and x < 0

= under
ow(0) if denormF = true and �0 is not available
and rnd(x) = 0 and x < 0

= under
ow(0) if denormF = false and 0 < x
and x < fminN F

= under
ow(�0) if denormF = false and �0 is available
and �fminN F < x and x < 0

= under
ow(0) if denormF = false and �0 is not available
and �fminN F < x and x < 0

NOTE 3 { denormF = false implies iec 559F = false, and iec 559F = true implies
denormF = true.

5.2.2 Floating point maximum and minimum operations

What the maximum and minimum operations should return on one quiet NaN (qNaN) input
depends on the context. Sometimes qNaN is the appropriate result, sometimes the non-NaN
argument is the appropriate result. Therefore, two variants (each) of the
oating point maxi-
mum and minimum operations are speci�ed here, and the programmer can decide which one is
appropriate to use at each particular place of usage, if both are included in the ISO/IEC 10967-2
binding.

maxF : F � F ! F

maxF (x; y) = maxfx; yg if x; y 2 F
= +1 if x = +1 and y 2 F [f�1;�0g
= y if x = �0 and y 2 F and y � 0
= �0 if x = �0 and ((y 2 F and y < 0) or y = �0)
= y if x = �1 and y 2 F [f+1;�0g

14

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

= +1 if y = +1 and x 2 F [f+1;�0g
= x if y = �0 and x 2 F and x � 0
= �0 if y = �0 and x 2 F and x < 0
= x if y = �1 and x 2 F [f�1;�0g
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

minF : F � F ! F

minF (x; y) = minfx; yg if x; y 2 F
= y if x = +1 and y 2 F [f�1;�0g
= �0 if x = �0 and y 2 F and y � 0
= y if x = �0 and ((y 2 F and y < 0) or y = �0)
= �1 if x = �1 and y 2 F [f+1;�0g
= x if y = +1 and x 2 F [f+1;�0g
= �0 if y = �0 and x 2 F and x � 0
= x if y = �0 and x 2 F and x < 0
= �1 if y = �1 and x 2 F [f�1;�0g
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

mmaxF : F � F ! F

mmaxF (x; y) = maxF (x; y) if x; y 2 F [f+1;�0;�1g
= x if x 2 F [f+1;�0;�1g and y is a quiet NaN
= y if y 2 F [f+1;�0;�1g and x is a quiet NaN
= qNaN if x is a quiet NaN and y is a quiet NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

mminF : F � F ! F

mminF (x; y) = minF (x; y) if x; y 2 F [f+1;�0;�1g
= x if x 2 F [f+1;�0;�1g and y is a quiet NaN
= y if y 2 F [f+1;�0;�1g and x is a quiet NaN
= qNaN if x is a quiet NaN and y is a quiet NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

NOTE { If one of the arguments to mmaxF or mminF is a quiet NaN, that argument is
ignored.

max seqF : [F]! F [f�1; invalidg
max seqF ([x1; :::; xn])

= �1 if n = 0 and �1 is available
= invalid(qNaN) if n = 0 and �1 is not available
= x1 if n = 1 and x1 is not a NaN
= qNaN if n = 1 and x1 is a quiet NaN
= invalid(qNaN) if n = 1 and x1 is a signalling NaN
= maxF (max seqF ([x1; :::; xn�1]); xn)

15

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

if n � 2

min seqF : [F]! F [f+1; invalidg
min seqF ([x1; :::; xn])

= +1 if n = 0 and +1 is available
= invalid(qNaN) if n = 0 and +1 is not available
= x1 if n = 1 and x1 is not a NaN
= qNaN if n = 1 and x1 is a quiet NaN
= invalid(qNaN) if n = 1 and x1 is a signalling NaN
= minF (min seqF ([x1; :::; xn�1]); xn)

if n � 2

mmax seqF : [F]! F [f�1; invalidg
mmax seqF ([x1; :::; xn])

= �1 if n = 0 and �1 is available
= invalid(qNaN) if n = 0 and �1 is not available
= x1 if n = 1 and x1 is not a signalling NaN
= invalid(qNaN) if n = 1 and x1 is a signalling NaN
= mmaxF (mmax seqF ([x1; :::; xn�1]); xn)

if n � 2

mmin seqF : [F]! F [f+1; invalidg
mmin seqF ([x1; :::; xn])

= +1 if n = 0 and +1 is available
= invalid(qNaN) if n = 0 and +1 is not available
= x1 if n = 1 and x1 is not a signalling NaN
= invalid(qNaN) if n = 1 and x1 is a signalling NaN
= mminF (mmin seqF ([x1; :::; xn�1]); xn)

if n � 2

5.2.3 Floating point positive di�erence (monus, diminish) operation

dimF : F � F ! F [f
oating over
ow;under
owg
dimF (x; y) = resultF (maxf0; x� y)g; rndF)

if x; y 2 F
= dimF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= dimF (x; 0) if y = �0 and x 2 F [f�1;+1g
= +1 if x = +1 and y 2 F [f�1g
= invalid(qNaN) if x = +1 and y = +1
= 0 if x = �1 and y 2 F [f+1g
= invalid(qNaN) if x = �1 and y = �1
= 0 if y = +1 and x 2 F
= +1 if y = �1 and x 2 F

= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

NOTE { dimF cannot be implemented by maxF (0; subF (x; y)), since this latter expression
has other over
ow properties.

16

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.2.4 Round,
oor, and ceiling operations

roundingF : F ! F [f�0g
roundingF (x) = round(x) if x 2 F and (x � 0 or round(x) 6= 0)

= negF (0) if x 2 F and x < 0 and round(x) = 0
= �0 if x = �0
= +1 if x = +1
= �1 if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

oorF : F ! F

oorF (x) = bxc if x 2 F
= �0 if x = �0
= +1 if x = +1
= �1 if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

ceilingF : F ! F [f�0g
ceilingF (x) = dxe if x 2 F and (x � 0 or dxe 6= 0)

= negF (0) if x 2 F and x < 0 and dxe = 0
= �0 if x = �0
= +1 if x = +1
= �1 if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 The result in the second case for roundingF and ceilingF is 0, if �0 is not in the type
corresponding to F , otherwise it is �0.

2
oorF (x) = negF (ceilingF (negF (x))),
ceilingF (x) = negF (
oorF (negF (x))), and
roundingF (x) = negF (roundingF (negF (x))).
Negative zeroes, if available, are handed in such a way as to maintain these identites.

3 Truncate to integer is speci�ed in ISO/IEC 10967-1:1994, by the name intpartF .

rounding restF : F ! F

rounding restF (x)
= x� round(x) if x 2 F
= 0 if x = �0
= invalid(qNaN) if x = +1
= invalid(qNaN) if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

oor restF : F ! F

17

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

oor restF (x) = x� bxc if x 2 F
= 0 if x = �0
= invalid(qNaN) if x = +1
= invalid(qNaN) if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

ceiling restF : F ! F

ceiling restF (x)
= x� dxe if x 2 F
= 0 if x = �0
= invalid(qNaN) if x = +1
= invalid(qNaN) if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE 4 { The rest after truncation is speci�ed in ISO/IEC 10967-1:1994, by the name
fractpartF .

5.2.5 Operation for remainder after division and round to integer (IEEE remainder)

iremF : F � F ! F [f�0;under
ow; invalidg
iremF (x; y) = resultF (x� (round(x=y) � y); nearestF)

if x; y 2 F and y 6= 0 and
(x � 0 or x� (round(x=y) � y) 6= 0)

= �0 if x; y 2 F and y 6= 0 and
x < 0 and x� (round(x=y) � y) = 0

= �0 if x = �0 and y 2 F [f�1;+1g and y 6= 0
= x if x 2 F and y 2 f�1;+1g
= invalid(qNaN) if x 2 F [f�1;�0;+1g and y = �0
= invalid(qNaN) if x 2 F [f�0g and y = 0
= invalid(qNaN) if x 2 f�1;+1g and y 2 F [f�1;+1g
= qNaN if x is a quiet NaN and yis not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

5.2.6 Square root and reciprocal square root operations

sqrtF : F ! F [finvalidg
sqrtF (x) = nearestF (

p
x) if x 2 F and x � 0

= �0 if x = �0
= invalid(qNaN) if (x 2 F and x < 0) or x = �1
= +1 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

rec sqrtF : F ! F [finvalid;poleg

18

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

rec sqrtF (x) = rndF (1=
p
x) if x 2 F and x > 0

= pole(+1) if x 2 F and x = 0
= pole(+1) if x = �0
= 0 if x = +1
= invalid(qNaN) if (x 2 F and x < 0) or x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.2.7 Support operations for extended
oating point precision

add loF : F � F ! F [f
oating over
ow;under
owg
add loF (x; y) = resultF ((x+ y)� rndF (x+ y); rndF)

if x; y; addF(x; y) 2 F

= under
ow(0)? if addF (x; y) = under
ow(u)
= 0? if addF (x; y) =
oating over
ow(+1)
= 0? if addF (x; y) =
oating over
ow(�1)
= add loF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= add loF (x; 0) if y = �0 and x 2 F [f�1;+1g
= invalid(qNaN)? if x 2 f�1;+1g and y 2 F [f�1;+1g
= invalid(qNaN)? if y 2 f�1;+1g and x 2 F

= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

sub loF : F � F ! F [f
oating over
ow;under
owg
sub loF (x; y) = resultF ((x� y)� rndF (x� y); rndF)

if x; y; subF (x; y) 2 F

= under
ow(0)? if subF (x; y) = under
ow(u)
=
oating over
ow(�1)?0?

if subF (x; y) =
oating over
ow(+1)
=
oating over
ow(+1)?0?

if subF (x; y) =
oating over
ow(�1)
= sub loF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= sub loF (x; 0) if y = �0 and x 2 F [f�1;+1g
= invalid(qNaN)? if x 2 f�1;+1g and y 2 F [f�1;+1g
= invalid(qNaN)? if y 2 f�1;+1g and x 2 F

= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

NOTES

1 If rnd styleF = nearest, then, in the absence of noti�cations, add loF and sub loF returns
exact results.

2 sub loF (x; y) = add loF (x; negF (y)).

mul loF : F � F ! F [f
oating over
ow;under
owg
mul loF (x; y) = resultF ((x � y)� rndF (x � y); rndF)

if x; y;mulF(x; y) 2 F

= under
ow(0)? if mulF (x; y) = under
ow(u)

19

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= 0 if x; y 2 F and mulF (x; y) = �0
=
oating over
ow(�1)?0?

if mulF (x; y) =
oating over
ow(+1)
=
oating over
ow(+1)?0?

if mulF (x; y) =
oating over
ow(�1)
= mul loF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= mul loF (x; 0) if y = �0 and x 2 F [f�1;+1g
= invalid(qNaN)? if x 2 f�1;+1g and y 2 F [f�1;+1g
= invalid(qNaN)? if y 2 f�1;+1g and x 2 F

= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

NOTE 3 { In the absence of noti�cations, mul loF returns an exact result.

div restF : F � F ! F [f
oating over
ow;under
ow; invalidg
div restF (x; y)= resultF (x� (y � rndF (x=y)); rndF)

if x; y; divF(x; y) 2 F
= resultF (x� (y � u); rndF)

if divF (x; y) = under
ow(u) and z 2 F
= x if x; y 2 F and

(divF (x; y) = �0 or divF (x; y) = under
ow(�0))
= invalid(qNaN) if x 2 F and y = 0
=
oating over
ow(�1)?0?

if divF (x; y) =
oating over
ow(+1)
=
oating over
ow(+1)?0?

if divF (x; y) =
oating over
ow(�1)
= div restF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= invalid(qNaN) if y = �0 and x 2 F [f�1;+1g
= invalid(qNaN)? if x 2 f�1;+1g and y 2 F [f�1;+1g
= invalid(qNaN)? if y 2 f�1;+1g and x 2 F
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

sqrt restF : F ! F [funder
ow; invalidg
sqrt restF (x) = resultF (x� (sqrtF (x) � sqrtF (x)); rndF)

if x 2 F and x � 0
= �0 if x = �0
= invalid(qNaN) if (x 2 F and x < 0) or x = �1
= invalid(qNaN)?0? if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE 4 { sqrt restF (x) is exact when there is no under
ow.

add3 F : F � F � F ! F [f
oating over
ow;under
owg
add3 F (x; y; z) = resultF ((x+ y) + z; rndF)

if x; y; z 2 F

20

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

= addF (addF (x; y); z) if x 2 f�1;�0;+1g and y; z 2 F [f�1;�0;+1g
= addF (addF (x; y); z) if y 2 f�1;�0;+1g and x 2 F and

z 2 F [f�1;�0;+1g
= addF (addF (x; y); z) if z 2 f�1;�0;+1g and x; y 2 F

= qNaN if x is a quiet NaN and
not y nor z is a signalling NaN

= qNaN if y is a quiet NaN and
not x nor z is a signalling NaN

= qNaN if z is a quiet NaN and
not x nor y is a signalling NaN

= invalid(qNaN) if x is a signalling NaN or
y is a signalling NaN or
z is a signalling NaN

NOTE 5 { add3 F (x; y; z) = addF (addF (x; y); z) if x 62 F or y 62 F or z 62 F , thus
add3F (�0;�0;�0) = �0.

add3 midF : F � F � F ! F [f
oating over
ow;under
owg
add3 midF (x; y; z)

= resultF (((x+ y) + z)� rndF ((x+ y) + z); rndF)
if x; y; z; add3F (x; y; z) 2 F

= under
ow(0)? if add3 F (x; y; z) = under
ow(u)
=
oating over
ow(�1)?0?

if add3 F (x; y; z) =
oating over
ow(+1)
=
oating over
ow(+1)?0?

if add3 F (x; y; z) =
oating over
ow(�1)
= add3 midF (0; y; z) if x = �0 and y; z 2 F [f�1;�0;+1g
= add3 midF (x; 0; z) if y = �0 and x 2 F [f�1;+1g and

z 2 F [f�1;�0;+1g
= add3 midF (x; y; 0) if z = �0 and x; y 2 F [f�1;+1g
= invalid(qNaN)? if x 2 f�1;+1g and y; z 2 F [f�1;+1g
= invalid(qNaN)? if y 2 f�1;+1g and x 2 F and

z 2 F [f�1;+1g
= invalid(qNaN)? if z 2 f�1;+1g and x; y 2 F

= qNaN if x is a quiet NaN and
not y nor z is a signalling NaN

= qNaN if y is a quiet NaN and
not x nor z is a signalling NaN

= qNaN if z is a quiet NaN and
not x nor y is a signalling NaN

= invalid(qNaN) if x is a signalling NaN or
y is a signalling NaN or
z is a signalling NaN

mul addF : F � F � F ! F [f
oating over
ow;under
owg
mul addF (x; y; z)

= resultF ((x � y) + z; rndF)
if x; y; z 2 F and x 6= 0 and y 6= 0 and z 6= 0

= addF (mulF (x; y); z) if x 2 f�1;�0; 0;+1g and
y; z 2 F [f�1;�0;+1g

21

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= addF (mulF (x; y); z) if y 2 f�1;�0; 0;+1g and x 2 F and
x 6= 0 and z 2 F [f�1;�0;+1g

= addF (mulF (x; y); z) if z 2 f�1;�0; 0;+1g and x; y 2 F and
x 6= 0 and y 6= 0

= qNaN if x is a quiet NaN and
not y nor z is a signalling NaN

= qNaN if y is a quiet NaN and
not x nor z is a signalling NaN

= qNaN if z is a quiet NaN and
not x nor y is a signalling NaN

= invalid(qNaN) if x is a signalling NaN or
y is a signalling NaN or
z is a signalling NaN

NOTE 6 { mul addF (x; y; z) = addF (mulF (x; y); z) if x 62 F or y 62 F or z 62 F or x = 0 or
y = 0 or z = 0. E.g., mul addF (�0; 1;�0) = �0.

mul add midF : F � F � F ! F [f
oating over
ow;under
owg
mul add midF (x; y; z)

= resultF (((x � y) + z)�mul addF (x; y; z); rndF)
if x; y; z;mul addF (x; y; z) 2 F

= under
ow(0)? if mul addF (x; y; z) = under
ow(u)
=
oating over
ow(�1)?0?

if mul addF (x; y; z) =
oating over
ow(+1)
=
oating over
ow(+1)?0?

if mul addF (x; y; z) =
oating over
ow(�1)
= mul add midF (0; y; z) if x = �0 and y; z 2 F [f�1;�0;+1g
= mul add midF (x; 0; z) if y = �0 and x 2 F [f�1;+1g and

z 2 F [f�1;�0;+1g
= mul add midF (x; y; 0) if z = �0 and x; y 2 F [f�1;+1g
= invalid(qNaN)? if x 2 f�1;+1g and y; z 2 F [f�1;+1g
= invalid(qNaN)? if y 2 f�1;+1g and x 2 F and

z 2 F [f�1;+1g
= invalid(qNaN)? if z 2 f�1;+1g and x; y 2 F

= qNaN if x is a quiet NaN and
not y nor z is a signalling NaN

= qNaN if y is a quiet NaN and
not x nor z is a signalling NaN

= qNaN if z is a quiet NaN and
not x nor y is a signalling NaN

= invalid(qNaN) if x is a signalling NaN or
y is a signalling NaN or
z is a signalling NaN

For the following operation F 0 is a
oating point type conforming to ISO/IEC 10967-1.

NOTE 7 { It is expected that pF 0 > pF , i.e. F 0 has higher precision than F , but that is not
required.

mulF!F 0 : F � F ! F 0 [f�0;
oating over
ow;under
owg

22

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

mulF!F 0(x; y) = resultF 0(x � y; rndF 0) if x; y 2 F and x 6= 0 and y 6= 0
= cvtF!F 0(mulF (x; y)) if x 2 f�1;�0; 0;+1g and

y 2 F [f�1;�0;+1g
= cvtF!F 0(mulF (x; y)) if y 2 f�1;�0; 0;+1g and x 2 F and x 6= 0
= cvtF!F 0(qNaN) if x is a quiet NaN and y is not a signalling NaN
= cvtF!F 0(qNaN) if y is a quiet NaN and x is not a signalling NaN
= cvtF!F 0(sNaN) if x is a signalling NaN or y is a signalling NaN

NOTE 8 { Converting a signalling NaN results in a noti�cation of invalid. See clause 5.4.

5.2.8 Exact summation operation

An exact summation operation is useful for computing high accuracy sums, even if only the �rst
element of the resulting list is ultimately kept.

In order to be able to specify the exact sum operation, which sums a sequence of
oating
point numbers returning a sequence of
oating point numbers of decreasing magnitude, by pF , a
number of helper functions are needed.

The extended real addition helper function:

add : (R[f�1;�0;+1;qNaN; sNaNg)� (R[f�1;�0;+1;qNaN; sNaNg)!
(R[f�1;�0;+1;qNaN; sNaNg)

add(x; y) = x+ y if x; y 2 R
= �0 if x = �0 and y = �0
= add(0; y) if x = �0 and y 2 R [f�1;+1g
= add(x; 0) if y = �0 and x 2 R [f�1;+1g
= +1 if x = +1 and y 2 R[f+1g
= +1 if y = +1 and x 2 R
= �1 if x = �1 and y 2 R[f�1g
= �1 if y = �1 and x 2 R
= sNaN if x = +1 and y = �1
= sNaN if x = �1 and y = +1
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= sNaN if x is a signalling NaN or y is a signalling NaN

The extended real summation helper function:

sum : [R[f�1;�0;+1;qNaN; sNaNg]! (R[f�1;�0;+1;qNaN; sNaNg)
sum([x1; :::; xn])

= �0 if n = 0
= add(sum([x1; :::; xn�1]); xn)

if n � 1

The seq resultF helper function:

seq resultF : R� (R! F �)! [F] [f
oating over
owg
seq resultF (x; rnd)

= [0] if x = 0 or (x > 0 and rnd(x) = 0 and denormF = true)
= [�0] if x < 0 and rnd(x) = 0 and denormF = true
=
oating over
ow([+1])

if rnd(x) > fmaxF
=
oating over
ow([�1])

if rnd(x) < �fmaxF

23

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= rnd(x) : seq resultF (x� rnd(x); rnd)
if rnd(x) 6= 0 and rnd(x) 2 F and
(denormF = true or jxj � fminN F)

= [rnd(x� fminN F); fminNF]
if �fminN F < x and x < 0 and denormF = false

= [rnd(x+ fminN F);�fminNF]
if 0 < x and x < fminN F and denormF = false

The exact summation operation:

sumF : [F]! [F] [f
oating over
owg
sumF ([x1; :::; xn])

= seq resultF (sum([x1; :::; xn]); nearestF)
if sum([x1; :::; xn]) 2 R and n � 1

= [sum([x1; :::; xn])] if sum([x1; :::; xn]) 2 f�1;�0;+1g and n � 1
= [�0] if n = 0 and �0 is available
= [0] if n = 0 and �0 is not available
= [qNaN] if sum([x1; :::; xn]) is a quiet NaN
= invalid([qNaN]) if sum([x1; :::; xn]) is a signalling NaN

NOTE { sumF (sumF (a)) = sumF (a), and sumF (sumF (a)++sumF (b)) = sumF (a++b) if
there is no noti�cation (where ++ is sequence concatenation). Thus sumF ([]) = sumF ([�0]).

5.3 Elementary transcendental
oating point operations

5.3.1 Speci�cation format

5.3.1.1 Maximum error requirements

The speci�cations for each of the transcendental operations use an approximation helper function.
The approximation helper functions are ideally identical to the true mathematical functions.
However, that would imply that the maximum error for the corresponding operation was merely
0.5 ulp. This part of ISO/IEC 10967 does not require that the maximum error is only 0.5 ulp, but
may be a bit bigger. To express this, the approximation helper functions need not be identical
to the mathematical elementary transcendental functions, but are allowed to be approximate.

The approximation helper functions for the individual operations in this subclause have maxi-
mum error parameters that describe the maximum relative error of the helper function composed
with nearestF , for normalised results. The maximum error parameter also describe the maximum
absolute error for subnormal continuation values if denormF = true. The relevant maximum er-
ror parameters shall be available to programs.

That for a helper function hF , approximating f , the maximum error is max error opF means
that for all arguments x; ::: 2 F � � ::: the following inequality is true:

jf(x; :::)� nearestF (hF (x; :::))j � max error opF � reF (f(x;:::))�pF
NOTES

1 Partially conforming implementations may have greater values for maximum error param-
eters than stipulated below. See annex B.

2 For most positive (and not too small) return values t, the true result is thus claimed to
be in the interval [t � (max error opF � ulpF (t)); t + (max error opF � ulpF (t))]. But if
the return value is exactly rnF for some n 2 Z, then the true result is claimed to be in the
interval [t � (max error opF � ulpF (t)=rF); t + (max error opF � ulpF (t))], Similarly for
negative return values.

24

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

The results of the approximating helper functions in this clause must be exact for certain
arguments as detailed below, and may be exact for all arguments. If the approximating helper
function is exact for all arguments, then the corresponding maximum error parameter should be
0.5, the minimum value.

5.3.1.2 The trans result helper function

The trans resultF helper function is similar to the resultF helper function extended with spec-
i�cations for the continuation value on over
ow, and it also returns �0 for negative under
ows
that round (or are
ushed) to zero, if possible. (Those extentions are implied in ISO/IEC 10967-1
for IEC 559 conforming implementations.) But trans resultF is simpli�ed compared to resultF
concerning under
ow: trans resultF always under
ows for nonzero arguments that have an
absolute value less than fminN F , whereas resultF does not always under
ow then.

In addition, the rounding is �xed to nearestF , rather than being parameterised. This is user
visible only in the cases where the operation's approximation helper function is (required to be)
exact, but where that value is not representable in F , e.g. e or �.

trans resultF : R! F [funder
ow;
oating over
owg
trans resultF (x)

= nearestF (x) if fminN F � jxj and jnearestF (x)j � fmaxF
= 0 if x = 0
=
oating over
ow(+1)

if nearestF (x) > fmaxF
=
oating over
ow(�1)

if nearestF (x) < �fmaxF
= under
ow(nearestF (x))

if denormF = true and (nearestF (x) < 0 or x > 0)
and jxj < fminNF

= under
ow(�0) if denormF = true and �0 is available and
nearestF (x) = 0 and x < 0

= under
ow(0) if denormF = true and �0 is not available and
nearestF (x) = 0 and x < 0

= under
ow(0) if denormF = false and
0 < x and x < fminNF

= under
ow(�0) if denormF = false and �0 is available and
�fminN F < x and x < 0

= under
ow(0) if denormF = false and �0 is not available and
�fminN F < x and x < 0

5.3.1.3 Sign requirements

The approximation helper functions are required to be zero exactly at the points where the
approximated mathematical function is exactly zero. At points where the approximation helper
functions are not zero, they are required to have the same sign as the approximated mathematical
function at that point.

For the radian trigonometric helper functions, this sign requirement is imposed only for argu-
ments, x, such that jxj � big angle rF (see clause 5.3.6).

NOTE { For the operations, the continuation value after an under
ow may be zero (or
negative zero) as given by trans resultF , even though the approximation helper function is
not zero at that point. Such zero results are required to be accompanied by an under
ow

25

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

noti�cation. When appropriate, zero may also be returned for IEC 559 in�nities arguments.
See the individual speci�cations.

5.3.1.4 Monotonicity requirements

When the maximum error is tight, i.e. 0.5 ulp, that implies that the approximation helper func-
tions must be monotonous on the same intervals as the corresponding exact function is strictly
monotonous. When the maximum error is greater than 0.5 ulp, and the rounding is not directed,
a numerical function is not automatically monotonous where the corresponding exact function is.

The approximation helper functions in this clause are required to be monotonous on the
same intervals as the mathematical functions they are approximating are monotonous. There is
no general requirement that the approximation helper functions are strictly monotonous on the
same intervals as the corresponding exact function is strictly monotonous, however, since such a
requirement cannot be made due to that all
oating point types are discrete, not continuous.

For the radian trigonometric helper functions, this monotonicity requirement is imposed only
for arguments, x, such that jxj � big angle rF (see clause 5.3.6).

The unit argument trigonometric and unit argument inverse trigonometric approximating
helper functions are excepted from the monotonicity requirement for the angular unit argument.

5.3.2 Hypotenuse operation

Maximum error parameter for the hypotF operation:

max error hypotF 2 F

The max error hypotF parameter is required to be in the interval [0:5; 1].

The hypot�F approximation helper function:

hypot�F : F � F ! R
hypot�F (x; y) returns a close approximation to

p
x2 + y2 inR, with maximum errormax error hypotF .

Further requirements on the hypot�F approximation helper function:

hypot�F (x; y) = hypot�F (y; x)
hypot�F (�x; y) = hypot�F (x; y)
hypot�F (x; y) � maxfjxj; jyjg
hypot�F (x; y) � jxj+ jyj
hypot�F (x; y) � 1 if

p
x2 + y2 � 1

hypot�F (x; y) � 1 if
p
x2 + y2 � 1

The hypotF operation:

hypotF : F � F ! F [funder
ow;
oating over
owg
hypotF (x; y) = trans resultF (hypot�F (x; y))

if x; y 2 F

= hypotF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= hypotF (x; 0) if y = �0 and x 2 F [f�1;+1g
= +1 if x 2 f�1;+1g and y 2 F [f�1;+1g
= +1 if y 2 f�1;+1g and x 2 F

= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

26

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.3 Operations for exponentiations and logarithms

There are two maximum error parameters for approximate exponentiations and logarithms:

max error expF 2 F
max error powerF 2 F

The max error expF parameter is required to be in the interval [0:5; 1:5 � rnd errorF].

The max error powerF parameter is required to be in the interval [max error expF ; 2 �
rnd errorF].

NOTE 1 { The \exp" operations are thus required to be at least as accurate as the \power"
operations.

e is the Napierian base.

NOTE 2 { e = 2:71828:::. e is not in F .

5.3.3.1 Power-of e (natural exponentiation) operation

The exp�F approximation helper function:

exp�F : F ! R
exp�F (x) returns a close approximation to ex in R, with maximum error max error expF .

Further requirements on the exp�F approximation helper function:

exp�F (1) = e
exp�F (x) = 1 if x 2 F and exp�F (x) 6= ex and

ln(1� (epsilonF =(2 � rF))) < x < ln(1 + (epsilonF=2))

exp�F (x) < fminDF =2 if x 2 F and x < ln(fminDF)� 3

The expF operation:

expF : F ! F [funder
ow;
oating over
owg
expF (x) = trans resultF (exp

�
F (x))if x 2 F

= 1 if x = �0
= +1 if x = +1
= 0 if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 expF (1) = nearestF (e).

2 expF (x) will over
ow approximately when x > ln(fmaxF).

5.3.3.2 Operation for power-of e, minus one (natural exponentiation, minus one)

The expm1 �F approximation helper function:

expm1 �F : F ! R
expm1 �F (x) returns a close approximation to e

x�1 inR, with maximum errormax error expF .

NOTE 1 { There are two advantages with the expm1 F operation: Firstly, expm1F (x)is
much more accurate than subF (expF (x); 1) when the exponent argument is close to zero.
Secondly, the expm1F operation does not under
ow for \very" negative exponent arguments.
Something which may be advantageous if under
ow handling is slow, and high accuracy for
\very" negative arguments is not needed.

27

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

Further requirements on the expm1 �F approximation helper function:

expm1 �F (1) = e� 1
expm1 �F (x) = x if x 2 F and expm1 �F (x) 6= ex � 1 and

�epsilonF =rF � x < 0:5 � epsilonF =rF
expm1 �F (x) = �1 if x 2 F and expm1 �F (x) 6= ex � 1 and

x < ln(epsilonF =(3 � rF))
expm1 �F (x) � exp�F (x) if x 2 F

The expm1 F operation:

expm1 F : F ! F [funder
ow;
oating over
owg
expm1 F (x) = trans resultF (expm1

�
F (x))
if x 2 F and jxj � 0:5 � epsilonF =rF

= x if x 2 F and jxj < 0:5 � epsilonF =rF
= �0 if x = �0
= +1 if x = +1
= �1 if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

2 under
ow is explicitly avoided, when possible. ISO/IEC 10967-1:1994 requires that
fminN F � epsilonF , but does not require that fminN F � epsilonF =rF . A requirement
that expm1 F (x) = x if x 2 F and jxj � fminN F , would thus be requiring results for some
arguments of some (very rare)
oating point type that are more than 0.5 ulp in error.

3 expm1 F (1) = nearestF (e � 1).

4 expm1 F (x) will over
ow approximately when x > ln(fmaxF).

5.3.3.3 Floating point power-of argument base operations

The power�F approximation helper function:

power�F : F � F ! R
power�F (x; y) returns a close approximation to x

y inR, with maximum errormax error powerF .
The power�F helper function need be de�ned only for �rst arguments that are greater than or
equal to 0, and need not be de�ned when both of the arguments are zero.

Further requirements on the power�F approximation helper function:

power�F (1; y) = 1 if y 2 F
power�F (x; 0) = 1 if x 2 F and x > 0
power�F (x; 1) = x if x 2 F and x � 0
power�F (x; y) < fminDF =2 if x 2 F and x > 0 and y 2 F and xy < fminDF =3

The powerF operation:

powerF : F � F ! F [finvalid;under
ow;
oating over
ow;poleg
powerF (x; y) = trans resultF (power�F (x; y))

if x 2 F and x > 0 and y 2 F
= powerF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= powerF (x; 0) if y = �0 and x 2 F [f�1;+1g
= 0 if x = 0 and y 2 F and y > 0
= invalid(1) if x = 0 and y = 0
= pole(+1) if x = 0 and y 2 F and y < 0
= 0 if x 2 F and 0 � x < 1 and y = +1

28

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

= +1 if x 2 F and 0 � x < 1 and y = �1
= invalid(1) if x = 1 and (y = +1 or y = �1)
= +1 if x 2 F and x > 1 and y = +1
= 0 if x 2 F and x > 1 and y = �1
= +1 if x = +1 and ((y 2 F and y > 0) or y = +1)
= invalid(1) if x = +1 and y = 0
= 0 if x = +1 and ((y 2 F and y < 0) or y = �1)
= invalid(qNaN) if ((x 2 F and x < 0) or x = �1) and

y 2 F [f+1;�1g
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

NOTE 1 { powerF (x; y) will over
ow approximately when xy > fmaxF , i.e., if x > 1,
approximatelywhen y > logx(fmaxF), and if 0 < x < 1, approximately when y < logx(fmaxF)
(which is a negative number). It will not over
ow when x 2 f0; 1g.

The power�FI approximation helper function:

power�FI : F � I ! R
power�FI(x; y) returns a close approximation to x

y inR, with maximum errormax error powerF .

Further requirements on the power�FI approximation helper function:

power�FI(1; y) = 1 if y 2 I
power�FI(x; 0) = 1 if x 2 F and x 6= 0
power�FI(x; 1) = x if x 2 F
power�FI(x; y) < fminDF =2 if x 2 F and x > 0 and y 2 I and xy < fminDF =3
power�FI(x; y) = power�FI(�x; y) if x 2 F and x < 0 and y 2 I and 2jy
power�FI(x; y) = �power�FI(�x; y) if x 2 F and x < 0 and y 2 I and not 2jy
power�FI(x; y) = power�F (x; y) if x 2 F and x > 0 and y 2 I \ F

The powerFI operation:

powerFI : F � I ! F [finvalid;under
ow;
oating over
ow;poleg
powerFI(x; y) = trans resultF (power�FI(x; y))

if x 2 F and x 6= 0 and y 2 I
= 0 if x = 0 and y 2 I and y > 0
= invalid(1) if x = 0 and y = 0
= pole(+1) if x = 0 and y 2 I and y < 0
= 0 if x = �0 and y 2 I and y > 0 and 2jy
= �0 if x = �0 and y 2 I and y > 0 and not 2jy
= invalid(1) if x = �0 and y = 0
= pole(+1) if x = �0 and y 2 I and y < 0 and 2jy
= pole(�1) if x = �0 and y 2 I and y < 0 and not 2jy
= +1 if x = +1 and y 2 I and y > 0
= invalid(1) if x = +1 and y = 0
= 0 if x = +1 and y 2 I and y < 0
= +1 if x = �1 and y 2 I and y > 0 and 2jy
= �1 if x = �1 and y 2 I and y > 0 and not 2jy
= invalid(1) if x = �1 and y = 0
= 0 if x = �1 and y 2 I and y < 0 and 2jy
= �0 if x = �1 and y 2 I and y < 0 and not 2jy
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

29

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

NOTES

2 powerFI (x; y) will over
ow approximately when xy > fmaxF , i.e., if x > 1, approximately
when y > logx(fmaxF), and if 0 < x < 1, approximately when y < logx(fmaxF) (which is
then negative). It will not over
ow when x = 0 or when x = 1.

3 powerI (in clause 5.1.4) does not allow negative exponents since the exact result then is
not in Z. powerF does not allow any negative bases since the (exact) result is not in R
unless the exponent is integer. powerFI takes care of this latter case, where all exponents
are ensured to be integers that have not arisen from implicit
oating point rounding.

5.3.3.4 Operation for power-of argument base, minus one

The powerm1 �F approximation helper function:

powerm1 �F : F � F ! R
powerm1 �F (x; y) returns a close approximation to x

y�1 inR, with maximum errormax error powerF .
The powerm1 �F helper function need be de�ned only for �rst arguments that are greater than or
equal to 0, and need not be de�ned when both of the arguments are zero.

NOTE 1 { There are two advantages with the powerm1F operation below: Firstly, powerm1F (b; x)
are much more accurate than subF (powerF (b; x); 1) when the exponent argument is close to
zero. Secondly, the powerm1F operation does not under
ow for \very" negative exponent
arguments (when the base is greater than 1). Something which may be advantageous if un-
der
ow handling is slow, and high accuracy for \very" negative arguments is not needed.

Further requirements on the powerm1 �F approximation helper function:

powerm1 �F (0; y) = �1 if y 2 F and y > 0
powerm1 �F (x; y) = �1 if x 2 F and x > 0 and y 2 F and

powerm1 �F (x; y) 6= xy � 1 and
xy < epsilonF =(3 � rF)

powerm1 �F (x; 1) = x � 1 if x 2 F and x � 0
powerm1 �F (x; y) � power�F (x; y) if x 2 F and x > 0 and y 2 F

NOTE 2 { powerm1�F (x; y) � y � ln(x) if x 2 F and x > 0 and y 2 F and jy � ln(x)j <
epsilonF =rF .

The powerm1 F operation:

powerm1 F : F � F ! F [f�0; invalid;under
ow;
oating over
ow;poleg
powerm1 F (x; y)

= trans resultF (powerm1
�
F (x; y))
if x 2 F and x > 0 and y 2 F and y 6= 0

= powerm1 F (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= �0 if y = 0 and x 2 F and 0 < x < 1
= 0 if y = 0 and x 2 F and 1 � x
= 0 if y = 0 and x = +1
= 0 if y = �0 and x 2 F and 0 < x < 1
= �0 if y = �0 and x 2 F and 1 � x
= �0 if y = �0 and x = +1
= �1 if x = 0 and y 2 F and y > 0
= invalid(�0) if x = 0 and y = 0
= invalid(0) if x = 0 and y = �0
= pole(+1) if x = 0 and y 2 F and y < 0
= �1 if x 2 F and 0 � x < 1 and y = +1
= +1 if x 2 F and 0 � x < 1 and y = �1

30

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

= invalid(0) if x = 1 and (y = +1 or y = �1)
= +1 if x 2 F and x > 1 and y = +1
= �1 if x 2 F and x > 1 and y = �1
= +1 if x = +1 and ((y 2 F and y > 0) or y = +1)
= invalid(0) if x = +1 and y = 0
= �1 if x = +1 and ((y 2 F and y < 0) or y = �1)
= invalid(qNaN) if ((x 2 F and x < 0) or x = �1) and

y 2 F [f+1;�0;�1g
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

NOTE 3 { powerm1F (x; y) will over
ow approximately when xy > fmaxF , i.e., if x > 1, ap-
proximately when y > logx(fmaxF), and if 0 < x < 1, approximately when y < logx(fmaxF).
It will not over
ow when x 2 f0; 1g.

5.3.3.5 Power-of 2 operation

The exp2 �F approximation helper function:

exp2 �F : F ! R
exp2 �F (x) returns a close approximation to 2x in R, with maximum error max error expF .

Further requirements on the exp2 �F approximation helper function:

exp2 �F (x) = 1 if x 2 F and exp2 �F (x) 6= 2x and
log2(1� (epsilonF=(2 � rF))) < x and
x < log2(1 + (epsilonF =2))

exp2 �F (x) = 2x if x 2 (F \ Z) and 2x 2 F
exp2 �F (x) < fminDF =2 if x 2 F and x < log2(fminDF)� 3

The exp2F operation:

exp2F : F ! F [funder
ow;
oating over
owg
exp2F (x) = trans resultF (exp2 �F (x))

if x 2 F
= 1 if x = �0
= +1 if x = +1
= 0 if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { exp2 F (x) will over
ow approximately when x > log
2
(fmaxF).

5.3.3.6 Power-of 10 operation

The exp10 �F approximation helper function:

exp10 �F : F ! R
exp10 �F (x) returns a close approximation to 10x in R, with maximum error max error expF .

Further requirements on the exp10 �F approximation helper function:

31

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

exp10 �F (x) = 1 if x 2 F and exp10 �F (x) 6= 10x and
log10(1� (epsilonF =(2 � rF))) < x and
x < log10(1 + (epsilonF =2))

exp10 �F (x) = 10x if x 2 (F \ Z) and 10x 2 F

exp10 �F (x) < fminDF =2 if x 2 F and x < log10(fminDF)� 3

The exp10 F operation:

exp10 F : F ! F [funder
ow;
oating over
owg
exp10 F (x) = trans resultF (exp10

�
F (x))

if x 2 F

= 1 if x = �0
= +1 if x = +1
= 0 if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { exp10 F (x)will over
ow approximately when x > log
10
(fmaxF).

5.3.3.7 Natural logarithm-of operation

The ln�F approximation helper function:

ln�F : R! R
ln�F (x) returns a close approximation to ln(x) in R, with maximum error max error expF .

Further requirements on the ln�F approximation helper function:

ln�F (e) = 1

The lnF operation:

lnF : F ! F [finvalid;poleg
lnF (x) = trans resultF (ln�F (x)) if x 2 F and x > 0

= pole(�1) if x = 0
= pole(�1) if x = �0
= +1 if x = +1
= invalid(qNaN) if (x 2 F and x < 0) or x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.3.8 Operation for natural logarithm-of one plus the argument

The ln1p�F approximation helper function:

ln1p�F : R! R
ln1p�F (x) returns a close approximation to ln(1+x) inR, with maximum errormax error expF .

Further requirements on the ln1p�F approximation helper function:

ln1p�F (e� 1) = 1
ln1p�F (x) = x if x 2 F and ln1p�F (x) 6= ln(1 + x) and

�0:5 � epsilonF =rF < x � epsilonF =rF
ln1p�F (x) � ln�F (x) if x 2 F and x > 0

The ln1pF operation:

ln1pF : F ! F [finvalid;pole;under
owg

32

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

ln1pF (x) = trans resultF (ln1p
�
F (x))

if x 2 F and x > �1 and jxj � 0:5 � epsilonF =rF
= x if x 2 F and jxj < 0:5 � epsilonF =rF
= �0 if x = �0
= pole(�1) if x = �1
= +1 if x = +1
= invalid(qNaN) if (x 2 F and x < �1) or x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { under
ow is explicitly avoided, when possible. LIA-1 requires that fminN F �
epsilonF , but does not require that fminNF � epsilonF =rF . A requirement that ln1pF (x) = x
if x 2 F and jxj � fminN F would thus be requireing results for some arguments of some
(very rare)
oating point type that are more than 0.5 ulp in error. For such arguments in
such
oating point types, under
ow is still appropriate, and it is always appropriate to allow
results that are at most 0.5 ulp in error.

5.3.3.9 Argument base logarithm-of operation

The logbase�F approximation helper function:

logbase�F : F � F ! R
logbase�F (x; y) returns a close approximation to logx(y) inR, with maximum errormax error powerF .

Further requirements on the logbase�F approximation helper function:

logbase�F (x; x) = 1 if x 2 F and x > 0 and x 6= 1

The logbaseF operation:

logbaseF : F � F ! F [finvalid;poleg
logbaseF (x; y) = trans resultF (logbase�F (x; y))

if x 2 F and x > 0 and x 6= 1 and
y 2 F and y > 0

= logbaseF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= logbaseF (x; 0) if y = �0 and x 2 F [f�1;+1g
= pole(+1) if x 2 F and 0 < x < 1 and y = 0
= pole(�1) if x 2 F and 1 < x and y = 0
= �1 if x 2 F and 0 < x < 1 and y = +1
= +1 if x 2 F and 1 < x and y = +1
= invalid(1) if x = +1 and y = +1
= 0 if x = +1 and y 2 F and y � 1
= �0 if x = +1 and y 2 F and 0 < y < 1
= invalid(�1) if x = +1 and y = 0
= +1 if x = 1 and y = +1
= pole(+1) if x = 1 and y 2 F and y > 1
= invalid(qNaN) if x = 1 and y = 1
= pole(�1) if x = 1 and y 2 F and 0 � y < 1
= invalid(qNaN) if ((x 2 F and x � 0) or x = �1) and

y 2 F [f+1;�1g
= invalid(qNaN) if ((y 2 F and y < 0) or y = �1) and

x 2 F [f+1;�1g
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN

33

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

5.3.3.10 Operation for argument base logarithm-of one plus second argument

The logbase1p�F approximation helper function:

logbase1p�F : F � F ! R
logbase1p�F (x; y) returns a close approximation to logx(1 + y) in R, with maximum error

max error powerF .

Further requirements on logbase1p�F approximating helper function:

logbase1p�F (x; x� 1) = 1 if x; x� 1 2 F and x > 0 and x 6= 1
logbase1p�F (x; y) � logbase�F (x; y) if x 2 F and 0 < x < 1 and y 2 F and y > 0
logbase1p�F (x; y) � logbase�F (x; y) if x 2 F and 1 < x and y 2 F and y > 0

NOTE { logbase1p
�

F (x; y) � y= ln(x) if x 2 F and x > 0 and x 6= 1 and y 2 F and
jy= ln(x)j < epsilonF =rF .

The logbase1pF operation:

logbase1pF : F � F ! F [f�0; invalid;under
ow;poleg
logbase1pF (x; y)

= trans resultF (logbase1p
�
F (x; y))
if x 2 F and x > 0 and x 6= 1 and
y 2 F and y > �1 and y 6= 0

= logbase1pF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= �0 if y = 0 and x 2 F and 0 < x < 1
= 0 if y = 0 and x 2 F and 1 < x

= 0 if y = 0 and x = +1
= 0 if y = �0 and x 2 F and 0 < x < 1
= �0 if y = �0 and x 2 F and 1 < x
= �0 if y = �0 and x = +1
= invalid(qNaN) if (y = �0 or y = 0) and x = 1
= pole(+1) if x 2 F and 0 < x < 1 and y = �1
= pole(�1) if x 2 F and 1 < x and y = �1
= �1 if x 2 F and 0 < x < 1 and y = +1
= +1 if x 2 F and 1 < x and y = +1
= invalid(1) if x = +1 and y = +1
= 0 if x = +1 and y 2 F and y � 0
= �0 if x = +1 and y 2 F and �1 < y < 0
= invalid(�1) if x = +1 and y = �1
= +1 if x = 1 and y = +1
= pole(+1) if x = 1 and y 2 F and y > 0
= invalid(qNaN) if x = 1 and y = 0
= pole(�1) if x = 1 and y 2 F and �1 � y < 0
= invalid(qNaN) if ((x 2 F and x(0) or x = �1) and

y 2 F [f+1;�0;�1g
= invalid(qNaN) if ((y 2 F and y < �1) or y = �1) and

x 2 F [f+1;�1g
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

34

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.3.11 2-logarithm-of operation

The log2�F approximation helper function:

log2 �F : F ! R
log2 �F (x) returns a close approximation to log2(x) in R, with maximum errormax error expF .

Further requirements on the log2�F approximation helper function:

log2 �F (x) = log2(x) if x 2 F and log2(x) 2 Z
The log2F operation:

log2F : F ! F [finvalid;poleg
log2F (x) = trans resultF (log2

�
F (x))

if x 2 F and x > 0
= pole(�1) if x = 0
= pole(�1) if x = �0
= +1 if x = +1
= invalid(qNaN) if (x 2 F and x < 0) or x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.3.12 10-logarithm-of operation

The log10 �F approximation helper function:

log10 �F : F ! R
log10 �F (x) returns a close approximation to log10(x) inR, with maximum errormax error expF .

Further requirements on the log10 �F approximation helper function:

log10 �F (x) = log10(x) if x 2 F and log10(x) 2 Z
The log10F operation:

log10F : F ! F [finvalid;poleg
log10F (x) = trans resultF (log10

�
F (x))

if x 2 F and x > 0
= pole(�1) if x = 0
= pole(�1) if x = �0
= +1 if x = +1
= invalid(qNaN) if (x 2 F and x < 0) or x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.4 Operations for hyperbolics and inverse hyperbolics

There are two maximum error parameters for operations corresponding to the hyperbolic and
inverse hyperbolic functions:

max error sinhF 2 F
max error tanhF 2 F

The max error sinhF parameter is required to be in the interval [0:5; 2 � rnd errorF]. The
max error tanhF parameter is required to be in the interval [max error sinhF ; 2 � rnd errorF].

35

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

5.3.4.1 Sinus hyperbolicus operation

The sinh�F approximation helper function:

sinh�F : F ! R
sinh�F (x) returns a close approximation to sinh(x) inR, with maximum errormax error sinhF .

Further requirements on the sinh�F approximation helper function:

sinh�F (x) = x if x 2 F and sinh�F (x) 6= sinh(x) and
jxj < p2 � epsilonF =rF

sinh�F (�x) = �sinh�F (x) if x 2 F

sinh�F (x) � cosh�F (x) if x 2 F

The sinhF operation:

sinhF : F ! F [f
oating over
owg
sinhF (x) = trans resultF (sinh

�
F (x))

if x 2 F and jxj > fminN F

= x if x 2 F and jxj � fminN F

= �0 if x = �0
= �1 if x = �1
= +1 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 under
ow is explicitly avoided.

2 sinhF (x) will over
ow approximately when jxj > ln(2 � fmaxF).

5.3.4.2 Cosinus hyperbolicus operation

The cosh�F approximation helper function:

cosh�F : F ! R
cosh�F (x) returns a close approximation to cosh(x) inR, with maximum errormax error sinhF .

Further requirements on the cosh�F approximation helper function:

cosh�F (x) = 1 if x 2 F and cosh�F (x) 6= cosh(x) and jxj < p
epsilonF

cosh�F (�x) = cosh�F (x) if x 2 F
cosh�F (x) � sinh�F (x) if x 2 F

The coshF operation:

coshF : F ! F [f
oating over
owg
coshF (x) = trans resultF (cosh�F (x))

if x 2 F
= 1 if x = �0
= +1 if x = �1
= +1 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { coshF (x) over
ows approximately when jxj > ln(2 � fmaxF).

36

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.4.3 Tangentus hyperbolicus operation

The tanh�F approximation helper function:

tanh�F : F ! R
tanh�F (x) returns a close approximation to tanh(x) inR, with maximum errormax error tanhF .

Further requirements on the tanh�F approximation helper function:

tanh�F (x) = x if x 2 F and tanh�F (x) 6= tanh(x) and
jxj � p1:5 � epsilonF =rF

tanh�F (x) = 1 if x 2 F and tanh�F (x) 6= tanh(x) and
x > arctanh(1� (epsilonF =(3 � rF)))

tanh�F (�x) = �tanh�F (x) if x 2 F

The tanhF operation:

tanhF : F ! F

tanhF (x) = trans resultF (tanh
�
F (x))

if x 2 F and jxj > fminN F

= x if x 2 F and jxj � fminN F

= �0 if x = �0
= �1 if x = �1
= 1 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { under
ow is explicitly avoided.

5.3.4.4 Cotangentus hyperbolicus operation

The coth�F approximation helper function:

coth�F : F ! R
coth�F (x) returns a close approximation to coth(x) inR, with maximum errormax error tanhF .

Further requirements on the coth�F approximation helper function:

coth�F (x) = 1 if x 2 F and coth�F (x) 6= coth(x) and
x > arccoth(1 + (epsilonF =4))

coth�F (�x) = �coth�F (x) if x 2 F

The cothF operation:

cothF : F ! F [fpole;
oating over
owg
cothF (x) = trans resultF (coth�F (x))

if x 2 F and x 6= 0
= pole(+1) if x = 0
= pole(�1) if x = �0
= �1 if x = �1
= 1 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { cothF (x) over
ow approximately when j1=xj > fmaxF .

37

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

5.3.4.5 Secantus hyperbolicus operation

The sech�F approximation helper function:

sech�F : F ! R
sech�F (x) returns a close approximation to sech(x) inR, with maximum errormax error tanhF .

Further requirements on the sech�F approximation helper function:

sech�F (x) = 1 if x 2 F and sech�F (x) 6= sech(x) and jxj < pepsilonF =rF
sech�F (�x) = sech�F (x) if x 2 F
sech�F (x) � csch�F (x) if x 2 F and x > 0
sech�F (x) < fminDF =2 if x 2 F and x > 2� ln(fminDF =4)

The sechF operation:

sechF : F ! F [funder
owg
sechF (x) = trans resultF (sech

�
F (x))

if x 2 F

= 1 if x = �0
= 0 if x = �1
= 0 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.4.6 Cosecantus hyperbolicus operation

The csch�F approximation helper function:

csch�F : F ! R
csch�F (x) returns a close approximation to csch(x) inR, with maximum errormax error tanhF .

Further requirements on the csch�F approximation helper function:

csch�F (�x) = �csch�F (x) if x 2 F
csch�F (x) � sech�F (x) if x 2 F and x > 0
csch�F (x) < fminDF =2 if x 2 F and x > 2� ln(fminDF =4)

The cschF operation:

cschF : F ! F [funder
ow;
oating over
ow;poleg
cschF (x) = trans resultF (csch

�
F (x))

if x 2 F and x 6= 0
= pole(+1) if x = 0
= pole(�1) if x = �0
= �0 if x = �1
= 0 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { cschF (x) over
ows approximately when j1=xj > fmaxF .

38

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.4.7 Arcus sinus hyperbolicus operation

The arcsinh�F approximation helper function:

arcsinh�F : F ! R
arcsinh�F (x) returns a close approximation to arcsinh(x) inR, with maximum errormax error sinhF .

Further requirements on the arcsinh�F approximation helper function:

arcsinh�F (x) = x if x 2 F and arcsinh�F (x) 6= arcsinh(x) and
jxj � p3 � epsilonF =rF

arcsinh�F (�x) = �arcsinh�F (x) if x 2 F

The arcsinhF operation:

arcsinhF : F ! F

arcsinhF (x) = trans resultF (arcsinh�F (x))
if x 2 F and jxj > fminN F

= x if x 2 F and jxj � fminN F

= �0 if x = �0
= �1 if x = �1
= +1 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { under
ow is explicitly avoided.

5.3.4.8 Arcus cosinus hyperbolicus operation

The arccosh�F approximation helper function:

arccosh�F : F ! R
arccosh�F (x) returns a close approximation to arccosh(x) inR, with maximum errormax error sinhF .

The arccoshF operation:

arccoshF : F ! F [finvalidg
arccoshF (x) = trans resultF (arccosh

�
F (x))
if x 2 F and x � 1

= +1 if x = +1
= invalid(qNaN) if x 2 F and x < 1
= invalid(qNaN) if x = �0
= invalid(qNaN) if x = �1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.4.9 Arcus tangentus hyperbolicus operation

The arctanh�F approximation helper function:

arctanh�F : F ! R

arctanh�F (x) returns a close approximation to arctanh(x) inR, with maximum errormax error tanhF .

Further requirements on the arctanh�F approximation helper function:

39

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arctanh�F (x) = x if x 2 F and arctanh�F (x) 6= arctanh(x) and
jxj < p1 � epsilonF =rF

arctanh�F (�x) = �arctanh�F (x) if x 2 F

The arctanhF operation:

arctanhF : F ! F [finvalid;poleg
arctanhF (x) = trans resultF (arctanh�F (x))

if x 2 F and fminNF < jxj < 1
= x if x 2 F and jxj � fminN F

= pole(+1) if x = 1
= pole(�1) if x = �1
= �0 if x = �0
= invalid(qNaN) if x 2 F and jxj > 1
= invalid(qNaN) if x = �1 or x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { under
ow is explicitly avoided.

5.3.4.10 Arcus cotangentus hyperbolicus operation

The arccoth�F approximation helper function:

arccoth�F : F ! R
arccoth�F (x) returns a close approximation to arccoth(x) inR, with maximum errormax error tanhF .

Further requirements on the arccoth�F approximation helper function:

arccoth�F (�x) = �arccoth�F (x) if x 2 F

The arccothF operation:

arccothF : F ! F [finvalid;under
ow;poleg
arccothF (x) = trans resultF (arccoth

�
F (x))
if x 2 F and jxj > 1

= pole(+1) if x = 1
= pole(�1) if x = �1
= �0 if x = �1
= 0 if x = +1
= invalid(qNaN) if x 2 F and �1 < x < 1
= invalid(qNaN) if x = �0
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { There is no under
ow for this operation for most kinds of
oating point types,
e.g. IEC 559 ones.

5.3.4.11 Arcus secantus hyperbolicus operation

The arcsech�F approximation helper function:

arcsech�F : F ! R

40

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

arcsech�F (x) returns a close approximation to with maximum error max error tanhF .

The arcsechF operation:

arcsechF : F ! F [finvalid;poleg
arcsechF (x) = trans resultF (arcsech

�
F (x))
if x 2 F and 0 < x � 1

= pole(+1) if x = 0
= pole(+1) if x = �0
= invalid(qNaN) if x 2 F and (x < 0 or x > 1)
= invalid(qNaN) if x = �1 or x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.4.12 Arcus cosecantus hyperbolicus operation

The arccsch�F approximation helper function:

arccsch�F : F ! R
arccsch�F (x) returns a close approximation to arccsch(x) inR, with maximum errormax error tanhF .

Further requirements on the arccsch�F approximation helper function:

arccsch�F (1) = arcsinh�F (1)
arccsch�F (�x) = �arccsch�F (x) if x 2 F

The arccschF operation:

arccschF : F ! F [funder
ow;poleg
arccschF (x) = trans resultF (arccsch�F (x))

if x 2 F and x � 0
= pole(+1) if x = 0
= pole(�1) if x = �0
= �0 if x = �1
= 0 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { There is no under
ow for this operation for most kinds of
oating point types,
e.g. IEC 559 ones.

5.3.5 Introduction to operations for trigonometrics

The mathematical trigonometric functions are perfectly cyclic. Their numerical counterparts are
not that perfect, for two reasons.

Firstly, the radian normalisation cannot be exact, even though it can be made very good
given very many digits for the approximation(s) of � used in the angle normalisation, returning
an o�set from the nearest axis, and including guard digits. The unit argument normalisation,
however, can be made exact regardless of the (non-zero and, in case denormF = false, not too
small) unit and the original angle, returning only a plain angle in F . ISO/IEC 10967-2 requires
unit argument angle normalisation to be exact.

Secondly, the length of one revolution is of course constant, but the density of
oating point
values gets sparser (in absolute spacing rather than relative) the larger the magnitude of the values
are. This means that the number of
oating point values gets sparser per revolution the larger

41

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

the magnitude of the angle value. For this reason the noti�cation angle too big is introduced.
This noti�cation is given when the magnitude of the angle value is \too big". Exactly when the
representable angle values get too sparse may depend upon the application at hand, and it may
be possible for the programmer to tighten the big-angle parameters below.

The continuation value upon an angle too big noti�cation shall be qNaN.

Three di�erent operations for each the `conventional textbook' trigonometric functions are
speci�ed. One version for radians, one version where the angular unit is given as a parameter,
and one where the angular unit is degrees.

5.3.6 Operations for radian trigonometrics and inverse radian trigonometrics

There shall be one radian big-angle parameter:

big angle rF 2 F

It shall have the following default value:

big angle rF = r
dpF =2e
F

NOTE { The user may be allowed to narrow this value, but should not be allowed to widen
it beyond the value given here.

The radian trigonometric approximation helper functions (including those for normalisation
and conversion from radians) are required to have the same zero points as the approximated math-
ematical function only if the absolute value of the argument is less than or equal to big angle rF .
Likewise, the radian trigonometric approximation helper functions are required to have the same
sign as the approximated mathematical function only if the absolute value of the argument is less
than or equal to big angle rF .

There shall be two maximum error parameters for radian trigonometric operations:

max error sinF 2 F
max error tanF 2 F

The max error sinF parameter shall be in the interval [0:5; 1:5 � rnd errorF].

The max error tanF parameter shall be in the interval [max error sinF ; 2 � rnd errorF].

5.3.6.1 Radian angle normalisation operations

The rad�F and axis rad�F approximation helper functions have the signatures:

rad�F : R! R
axis rad�F : R! f(1; 0); (0; 1); (�1; 0); (0;�1)g� R

rad�F (x) returns a close approximation to rad(x) in R, if jxj � big angle rF , with maximum
error max error sinF .

axis rad�F (x) returns a close approximation to axis rad(x), if x � big angle rF . The ap-
proximation consists of that the second part of the result (the o�set from the indicated axis) is
approximate.

Further requirements on the rad�F and axis rad�F approximation helper functions:

rad�F (x) = x if jxj < �
snd(axis rad�F (x)) = rad�F (x) if fst(axis rad�F (x)) = (1; 0)

The radF operation:

radF : F ! F [funder
ow; angle too bigg

42

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

radF (x) = trans resultF (rad
�
F (x))if x 2 F and jxj > fminN F and jxj � big angle rF

= x if (x 2 F and jxj � fminNF) or x = �0
= angle too big(qNaN) if x 2 F and jxj > big angle rF
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

The axis radF operation:

axis radF : F ! ((F � F) � F) [fangle too bigg
axis radF (x) = (fst(axis rad�F (x)); trans resultF (snd(axis rad

�
F (x))))

if x 2 F and jxj > fminN F and jxj � big angle rF
= ((1; 0); x) if (x 2 F and jxj � fminNF) or x = �0
= angle too big((qNaN;qNaN);qNaN)

if x 2 F and jxj > big angle rF
= invalid((qNaN;qNaN);qNaN)

if x 2 f�1;+1g
= ((qNaN;qNaN);qNaN)

if x is a quiet NaN
= invalid((qNaN;qNaN);qNaN)

if x is a signalling NaN

NOTE { radF is simpler, easier to use, but less accurate than axis radF . The latter
may still not be su�cient for implementing the radian trigonometric operations to less than
the maximum error stated by the parameters. Hence these operations are not used in the
speci�cations for the radian trigonometric operations.

5.3.6.2 Radian sinus operation

The sin�F approximation helper function:

sin�F : R! R
sin�F (x) returns a close approximation to sin(x) in R if jxj � big angle rF , with maximum

error max error sinF .

Further requirements on the sin�F approximation helper function:

sin�F (n � 2 � � + �=6) = 1=2 if n 2 Z and jn � 2 � � + �=6j � big angle rF
sin�F (n � 2 � � + �=4) = 1 if n 2 Z and jn � 2 � � + �=4j � big angle rF
sin�F (n � 2 � � + 5 � �=6) = 1=2 if n 2 Z and jn � 2 � � + 5 � �=6j � big angle rF
sin�F (x) = x if sin�F (x) 6= sin(x) and jxj � p3 � epsilonF =rF
sin�F (�x) = �sin�F (x)

The sinF operation:

sinF : F ! F [funder
ow; angle too bigg
sinF (x) = trans resultF (sin

�
F (x)) if x 2 F and fminN F < jxj and jxj � big angle rF

= x if x 2 F and jxj � fminN F

= �0 if x = �0
= angle too big(qNaN) if jxj > big angle rF
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

43

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

NOTE { under
ow is here explicitly avoided for denormal arguments, but the operation
may under
ow for other arguments.

5.3.6.3 Radian cosinus operation

The cos�F approximation helper function:

cos�F : R ! R
cos�F (x) returns a close approximation to cos(x) in R if jxj � big angle rF , with maximum

error max error sinF .

Further requirements on the cos�F approximation helper function:

cos�F (n � 2 � �) = 1 if n 2 Z and jn � 2 � �j � big angle rF
cos�F (n � 2 � � + �=3) = 1=2 if n 2 Z and jn � 2 � � + �=3j � big angle rF
cos�F (n � 2 � � + 2 � �=3) = �1=2 if n 2 Z and jn � 2 � � + 2 � �=3j � big angle rF
cos�F (n � 2 � � + �) = �1 if n 2 Z and jn � 2 � � + �j � big angle rF
cos�F (x) = 1 if cos�F (x) 6= cos(x) and jxj < pepsilonF =rF
cos�F (�x) = cos�F (x)

The cosF operation:

cosF : F ! F [funder
ow; angle too bigg
cosF (x) = trans resultF (cos

�
F (x)) if x 2 F and jxj � big angle rF

= 1 if x = �0
= angle too big(qNaN) if jxj > big angle rF
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.6.4 Radian cosinus with sinus operation

cossinF : F ! (F � F) [funder
ow; angle too bigg
cossinF (x) = (cosF (x); sinF (x))

5.3.6.5 Radian tangentus operation

The tan�F approximation helper function:

tan�F : R! R
tan�F (x) returns a close approximation to tan(x) in R if jxj � big angle rF , with maximum

error max error tanF .

Further requirements on the tan�F approximation helper function:

tan�F (n � 2 � � + �=4) = 1 if n 2 Z and jn � 2 � � + �=4j � big angle rF
tan�F (n � 2 � � + 3 � �=4) = �1 if n 2 Z and jn � 2 � � + 3 � �=4j � big angle rF
tan�F (x) = x if tan�F (x) 6= tan(x) and jxj < pepsilonF =rF
tan�F (�x) = �tan�F (x)

The tanF operation:

tanF : F ! F [funder
ow;
oating over
ow; angle too bigg

44

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

tanF (x) = trans resultF (tan
�
F (x)) if x 2 F and fminN F < jxj and jxj � big angle rF

= x if x 2 F and jxj � fminN F

= �0 if x = �0
= angle too big(qNaN) if jxj > big angle rF
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { under
ow is explicitly avoided for denormal arguments, but the operation may
under
ow for other arguments.

5.3.6.6 Radian cotangentus operation

The cot�F approximation helper function:

cot�F : R! R
cot�F (x) returns a close approximation to cot(x) in R if jxj � big angle rF , with maximum

error max error tanF .

Further requirements on the cot�F approximation helper function:

cot�F (n � 2 � � + �=4) = 1 if n 2 Z and jn � 2 � � + �=4j � big angle rF
cot�F (n � 2 � � + 3 � �=4) = �1 if n 2 Z and jn � 2 � � + 3 � �=4j � big angle rF
cot�F (�x) = �cot�F (x)

The cotF operation:

cotF : F ! F [funder
ow;
oating over
ow;pole; angle too bigg
cotF (x) = trans resultF (cot�F (x)) if x 2 F and x 6= 0 and jxj � big angle rF

= pole(+1) if x = 0
= pole(�1) if x = �0
= angle too big(qNaN) if jxj > big angle rF
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.6.7 Radian secantus operation

The sec�F approximation helper function:

sec�F : R! R
sec�F (x) returns a close approximation to sec(x) in R if jxj � big angle rF , with maximum

error max error tanF .

Further requirements on the sec�F approximation helper function:

sec�F (n � 2 � �) = 1 if n 2 Z and jn � 2 � �j � big angle rF
sec�F (n � 2 � � + �=3) = 2 if n 2 Z and jn � 2 � � + �=3j � big angle rF
sec�F (n � 2 � � + 2 � �=3) = �2 if n 2 Z and jn � 2 � � + 2 � �=3j � big angle rF
sec�F (n � 2 � � + �) = �1 if n 2 Z and jn � 2 � � + �j � big angle rF
sec�F (x) = 1 if sec�F (x) 6= sec(x) and jxj < p

epsilonF
sec�F (�x) = sec�F (x)

The secF operation:

secF : F ! F [f
oating over
ow; angle too bigg

45

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

secF (x) = trans resultF (sec
�
F (x)) if x 2 F and jxj � big angle rF

= 1 if x = �0
= angle too big(qNaN) if jxj > big angle rF
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.6.8 Radian cosecantus operation

The csc�F approximation helper function:

csc�F : R! R
csc�F (x) returns a close approximation to csc(x) in R if jxj � big angle rF , with maximum

error max error tanF .

Further requirements on the csc�F approximation helper function:

csc�F (n � 2 � � + �=6) = 2 if n 2 Z and jn � 2 � � + �=6j � big angle rF
csc�F (n � 2 � � + �=2) = 1 if n 2 Z and jn � 2 � � + �=2j � big angle rF
csc�F (n � 2 � � + 5 � �=6) = 2 if n 2 Z and jn � 2 � � + 5 � �=6j � big angle rF
csc�F (�x) = �csc�F (x)

The cscF operation:

cscF : F ! F [f
oating over
ow;pole; angle too bigg
cscF (x) = trans resultF (csc�F (x)) if x 2 F and x 6= 0 and jxj � big angle rF

= pole(+1) if x = 0
= pole(�1) if x = �0
= angle too big if jxj > big angle rF
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.6.9 Radian arcus sinus operation

The arcsin�F approximation helper function:

arcsin�F : F ! R
arcsin�F (x) returns a close approximation to arcsin(x) inR, with maximum errormax error sinF .

Further requirements on the arcsin�F approximation helper function:

arcsin�F (1=2) = �=6
arcsin�F (1) = �=2
arcsin�F (x) = x if arcsin�F (x) 6= arcsin(x) and jxj < p2 � epsilonF =rF
arcsin�F (�x) = �arcsin�F (x)

The arcsinF operation:

arcsinF : F ! F [finvalidg
arcsinF (x) = trans resultF (arcsin�F (x))

if x 2 F and fminNF < jxj � 1
= x if x 2 F and jxj � fminN F

= �0 if x = �0
= invalid(qNaN) if x 2 F and (x < �1 or x > 1)
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN

46

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

= invalid(qNaN) if x is a signalling NaN

NOTE { under
ow is explicitly avoided.

5.3.6.10 Radian arcus cosinus operation

The arccos�F approximation helper function:

arccos�F : F ! R
arccos�F (x) returns a close approximation to arccos(x) inR, with maximum errormax error sinF .

Further requirements on the arccos�F approximation helper function:

arccos�F (1=2) = �=3
arccos�F (0) = �=2
arccos�F (�1=2) = 2 � �=3
arccos�F (�1) = �

The arccosF operation:

arccosF : F ! F [finvalidg
arccosF (x) = trans resultF (arccos�F (x))

if x 2 F and �1 � x � 1
= arccosF (0) if x = �0
= invalid(qNaN) if x 2 F and (x < �1 or x > 1)
= invalid(qNaN) if x 2 f�1;+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.6.11 Radian arcus operation

The arc�F approximation helper function:

arc�F : F � F ! R
arc�F (x; y) returns a close approximation to arc(x; y) inR, with maximum errormax error tanF .

NOTES

1 The mathematical arc function is de�ned in section 4.

2 The arc operations are often called arctan2 (with the co-ordinate arguments swapped), or
arccot2.

Further requirements on the arc�F approximation helper function:

arc�F (x; 0) = 0 if x > 0
arc�F (x; x) = �=4 if x > 0
arc�F (0; y) = �=2 if y > 0
arc�F (x;�x) = 3 � �=4 if x < 0
arc�F (x; 0) = � if x < 0
arc�F (x;�y) = �arc�F (x; y) if y 6= 0 or x > 0

The arcF operation:

arcF : F � F ! F [funder
ow; invalidg

47

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arcF (x; y) = trans resultF (arc
�
F (x; y))

if x; y 2 F and (x 6= 0 or y 6= 0)
= invalid(0) if x = 0 and y = 0
= arcF (0; y) if x = �0 and y 2 F [f�1;�0;+1g
= negF (arcF (x; 0)) if y = �0 and x 2 F [f�1;+1g

= 0 if x = +1 and y 2 F and y � 0
= negF (0) if x = +1 and y 2 F and y < 0
= nearestF (�=4)?inval? if x = +1 and y = +1
= nearestF (�=2) if x 2 F and y = +1
= nearestF (3 � �=4)?inval?if x = �1 and y = +1
= nearestF (�) if x = �1 and y 2 F and y � 0
= nearestF (��) if x = �1 and y 2 F and y < 0
= nearestF (�3 � �=4)?inval?if x = �1 and y = �1
= nearestF (��=2) if x 2 F and y = �1
= nearestF (��=4)?inval? if x = +1 and y = �1

= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

5.3.6.12 Radian arcus tangentus operation

The arctan�F approximation helper function:

arctan�F : F ! R
arctan�F (x) returns a close approximation to arctan(x) inR, with maximum errormax error tanF .

Further requirements on the arctan�F approximation helper function:

arctan�F (1) = �=4
arctan�F (x) = x if arctan�F (x) 6= arctan(x) and jxj �p1:5 � epsilonF =rF
arctan�F (x) = �=2 if arctan�F (x) 6= arctan(x) and x > 3 � rF =epsilonF
arctan�F (�x) = �arctan�F (x)

The arctanF operation:

arctanF : F ! F

arctanF (x) = trans resultF (arctan
�
F (x))
if x 2 F and fminNF < jxj

= x if x 2 F and jxj � fminN F

= �0 if x = �0
= trans resultF (��=2) if x = �1
= trans resultF (�=2) if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 arctanF (x) � arcF (1; x)

2 under
ow is explicitly avoided.

5.3.6.13 Radian arcus cotangentus operation

The arccot�F and arcctg�F approximation helper functions:

48

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

arccot�F : F ! R
arcctg�F : F ! R

arccot�F (x) returns a close approximation to arccot(x) inR, with maximum errormax error tanF .

arcctg�F (x) returns a close approximation to arcctg(x) inR, with maximum errormax error tanF .

Further requirements on the arccot�F and arcctg�F approximation helper functions:

arccot�F (1) = �=4
arccot�F (0) = �=2
arccot�F (�1) = 3 � �=4
arccot�F (x) = � if arccot�F (x) 6= arccot(x) and x < �3 � rF =epsilonF

arcctg�F (x) = arccot�F (x) if x � 0
arcctg�F (�x) = �arcctg�F (x)

The arccotF operation:

arccotF : F ! F [funder
owg
arccotF (x) = trans resultF (arccot

�
F (x))

if x 2 F

= trans resultF (�=2) if x = �0
= trans resultF (�) if x = �1
= 0 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 arccotF (x) � arcF (x; 1).

2 There is no \jump" at zero for arccotF .

The arcctgF operation:

arcctgF : F ! F [funder
owg
arcctgF (x) = trans resultF (arcctg�F (x))

if x 2 F
= trans resultF (��=2) if x = �0
= �0 if x = �1
= 0 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE 3 { arcctgF (negF (x)) = negF (arcctgF (x)).

5.3.6.14 Radian arcus secantus operation

The arcsec�F approximation helper function:

arcsec�F : F ! R
arcsec�F (x) returns a close approximation to arcsec(x) inR, with maximum errormax error tanF .

Further requirements on the arcsec�F approximation helper function:

49

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arcsec�F (2) = �=3
arcsec�F (�2) = 2 � �=3
arcsec�F (�1) = �
arcsec�F (x) � �=2 if x > 0
arcsec�F (x) � �=2 if x < 0
arcsec�F (x) = �=2 if arcsec�F (x) 6= arcsec(x) and jxj > 3 � rF =epsilonF

The arcsecF operation:

arcsecF : F ! F [finvalidg
arcsecF (x) = trans resultF (arcsec

�
F (x))

if x 2 F and (x � �1 or x � 1)
= invalid(qNaN) if x 2 F and �1 < x < 1
= invalid(qNaN) if x = �0
= trans resultF (�=2) if x = �1
= trans resultF (�=2) if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.6.15 Radian arcus cosecantus operation

The arccsc�F approximation helper function:

arccsc�F : F ! R
arccsc�F (x) returns a close approximation to arccsc(x) inR, with maximum errormax error tanF .

Further requirements on the arccsc�F approximation helper function:

arccsc�F (2) = �=6
arccsc�F (1) = �=2
arccsc�F (�x) = �arccsc�F (x)

The arccscF operation:

arccscF : F ! F [funder
ow; invalidg
arccscF (x) = trans resultF (arccsc�F (x))

if x 2 F and jxj � 1
= invalid(qNaN) if x 2 F and �1 < x < 1
= invalid(qNaN) if x = �0
= �0 if x = �1
= 0 if x = +1
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.7 Operations for argument angular-unit trigonometrics and inverse argument

angular-unit trigonometrics

There shall be one big-angle parameter for argument angular-unit trigonometric operations:

big angle uF 2 F

It is required to have the following default value:

big angle uF = drdpF =2eF =6e
NOTE 1 { The user may be allowed to narrow this value, but should not be allowed to widen
it beyond the value given here.

50

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

There shall be one derived parameter signifying the minimum allowed angular unit:

min angular unitF = rF � fminN F =epsilonF = r
(eminF�1+pF)
F

It is speci�ed for two reasons. Firstly, if the type F has no denormal values (denormF = false),
some angle values in F are not representable after normalisation if the angular unit is too small
(this gives the �rm limit above). Secondly, even if F has denormal values (denormF = true),
very tiny angular units do not allow the representable angles to be particularly dense, not even
if the angular value is within the �rst cycle. This does in itself not give rise to a particular limit
value, but the limit value de�ned here is reasonable.

To make the requirements a bit easier to express, let GF = fx 2 F j jxj � min angular unitF g.
NOTE 2 { Negative angular units have not been included since this simpli�es the speci�cation
of the inverse trigonometric argument angular unit operations somewhat, and the exclusion
is not judged to be signi�cant.

There shall be two parameterised maximum error parameters for angular-unit argument
trigonometric operations.

max error sinuF : F ! F [finvalidg
max error tanuF : F ! F [finvalidg

Let T = f1; 2; 360; 400; 6400g. T consists of angle values for exactly one revolution for some
common non-radian angular units: cycles, half-cycles, arc degrees, grades, and mils.

For u 2 GF , the max error sinuF (u) parameter shall be in the interval [max error sinF ; 2].
The max error sinuF (u) parameter shall be equal to max error sinF if u 2 T .

For u 2 GF , the max error tanuF (u) parameter shall be in the interval [max error tanF ; 4].
The max error tanuF (u) parameter shall be equal to max error tanF if u 2 T .

The max error sinuF (u) and max error tanuF (u) parameters return invalid if u 62 GF .

All of the argument angular unit trigonometric, and argument angular unit inverse trigonomet-
ric, approximation helper functions, including those for normalisation, angular unit conversion,
and arc, are exempted from the monotonicity requirement for the angular unit argument.

5.3.7.1 Argument angular-unit angle normalisation operations

The argument angular-unit normalisation computes exactly rad(2 � � � x=u) � u=(2 � �), where x
is the angular value, and u is the angular unit.

The cycleF operation:

cycleF : F � F ! F [f�0; angle too big; invalidg
cycleF (u; x) = x� (round(x=u) � u) if u 2 GF and x 2 F and

(x � 0 or x� (round(x=u) � u) 6= 0) and
jx=uj � big angle uF

= �0 if u 2 GF and x 2 F and
x < 0 and x� (round(x=u) � u) = 0 and
jx=uj � big angle uF

= �0 if u 2 GF and x = �0
= angle too big(qNaN) if u 2 GF and x 2 F and jx=uj > big angle uF
= invalid(qNaN) if u 2 F and juj < min angular unitF and x 2 F [f�0g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 F and x 2 f�1;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN

51

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

The axis cycleF operation:

axis cycleF : F � F ! ((F � F) � (F [f�0g))[fangle too big; invalidg
axis cycleF (u; x)

= (axis(u; x); resultF(x� ((round(x=(u=4)) � u=4); rndF))
if u 2 GF and x 2 F and
(x=u � 0 or x� ((round(x � 4=u) � u=4)) 6= 0) and
jx=uj � big angle uF

= (axis(u; x);�0) if u 2 GF and x 2 F and
x=u < 0 and x� (round(x � 4=u) � u=4) = 0 and
jx=uj � big angle uF

= ((1; 0);�0) if u 2 GF and x = �0 and u > 0
= ((1; 0); 0) if u 2 GF and x = �0 and u < 0

= angle too big((qNaN;qNaN);qNaN)
if u 2 GF and x 2 F and jx=uj > big angle uF

= invalid((qNaN;qNaN);qNaN)
if u 2 F and juj < min angular unitF and x 2 F [f�0g

= invalid((qNaN;qNaN);qNaN)
if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g

= invalid((qNaN;qNaN);qNaN)
if u 2 F and x 2 f�1;+1g

= ((qNaN;qNaN);qNaN)
if x is a quiet NaN and u is not a signalling NaN

= ((qNaN;qNaN);qNaN)
if u is a quiet NaN and x is not a signalling NaN

= invalid((qNaN;qNaN);qNaN)
if x is a signalling NaN or u is a signalling NaN

where

axis(u; x) = (1; 0) if round(x � 4=u) mod 4 = 0
= (0; 1) if round(x � 4=u) mod 4 = 1
= (�1; 0) if round(x � 4=u) mod 4 = 2
= (0;�1) if round(x � 4=u) mod 4 = 3

NOTES

1 axis cycleF (u; x) is exact when divF (u; 4) = u=4.

2 cycleF is an exact operation.

3 cycleF (u; x) has a result in the interval [�u=2; u=2] if u > 0.

4 A zero resulting angle is negative if the original angle value is negative.

5 The cycleF operation is used also in the speci�cations of the unit argument trigonometric
operations.

5.3.7.2 Argument angular-unit sinus operation

The sinu�F approximation helper function:

sinu�F : F �R! R

52

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

sinu�F (u; x) returns a close approximation to sin(x � 2 � �=u) in R if u 6= 0, with maximum
error max error sinuF (u).

Further requirements on the sinu�F approximation helper function:

sinu�F (u; n � u + x) = sinu�F (u; x) if n 2 Z and u 2 F and u 6= 0
sinu�F (u; u=12) = 1=2 if u 2 F and u 6= 0
sinu�F (u; u=4) = 1 if u 2 F and u 6= 0
sinu�F (u; 5 � u=12) = 1=2 if u 2 F and u 6= 0
sinu�F (u;�x) = �sinu�F (u; x) if u 2 F and u 6= 0
sinu�F (�u; x) = �sinu�F (u; x) if u 2 F and u 6= 0

NOTE { sinu�F (u; x) � x � 2 � �=u if jx � 2 � �=uj < fminNF .

The sinuF operation:

sinuF : F � F ! F [f�0;under
ow; invalid; angle too bigg
sinuF (u; x) = trans resultF (sinu

�
F (u; x))

if cycleF (u; x) 2 F and cycleF (u; x) 6= �u=2
= �0 if cycleF (u; x) 2 F and cycleF (u; x) = �u=2
= �0 if cycleF (u; x) = �0

= angle too big(qNaN) if u 2 GF and x 2 F and jx=uj > big angle uF
= invalid(qNaN) if u 2 F and juj < min angular unitF and x 2 F [f�0g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 F and x 2 f�1;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.3 Argument angular-unit cosinus operation

The cosu�F approximation helper function:

cosu�F : F �R! R
cosu�F (u; x) returns a close approximation to cos(x � 2 � �=u) in R if u 6= 0, with maximum

error max error sinuF (u).

Further requirements on the cosu�F approximation helper function:

cosu�F (u; n � u+ x) = cosu�F (u; x) if n 2 Z and u 2 F and u 6= 0
cosu�F (u; 0) = 1 if u 2 F and u 6= 0
cosu�F (u; u=6) = 1=2 if u 2 F and u 6= 0
cosu�F (u; u=3) = �1=2 if u 2 F and u 6= 0
cosu�F (u; u=2) = �1 if u 2 F and u 6= 0
cosu�F (u;�x) = cosu�F (u; x) if u 2 F and u 6= 0
cosu�F (�u; x) = cosu�F (u; x) if u 2 F and u 6= 0

NOTE { cosu�F (u; x) = 1 should hold if jx � 2 � �=uj <pepsilonF =rF

The cosuF operation:

cosuF : F � F ! F [funder
ow; invalid; angle too bigg
cosuF (u; x) = trans resultF (cosu�F (u; x))

if cycleF (u; x) 2 F
= 1 if cycleF (u; x) = �0

53

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= angle too big(qNaN) if u 2 GF and x 2 F and jx=uj > big angle uF
= invalid(qNaN) if u 2 F and juj < min angular unitF and x 2 F [f�0g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 F and x 2 f�1;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.4 Argument angular-unit cosinus with sinus operation

cossinuF : F � F ! (F � (F [f�0g))[funder
ow; invalid; angle too bigg
cossinuF (u; x) = (cosuF (u; x); sinuF (u; x))

5.3.7.5 Argument angular-unit tangentus operation

The tanu�F approximation helper function:

tanu�F : F �R! R
tanu�F (u; x) returns a close approximation to tan(x � 2 � �=u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the tanu�F approximation helper function:

tanu�F (u; n � u + x) = tanu�F (u; x) if n 2 Z and u 2 F and u 6= 0
tanu�F (u; u=8) = 1 if u 2 F and u 6= 0
tanu�F (u; 3 � u=8) = �1 if u 2 F and u 6= 0
tanu�F (u;�x) = �tanu�F (u; x) if u 2 F and u 6= 0
tanu�F (�u; x) = �tanu�F (u; x) if u 2 F and u 6= 0

NOTE 1 { tanu�F (u; x) � x � 2 � �=u if jx � 2 � �=uj < fminNF .

The tanuF operation:

tanuF : F � F ! F [f�0;pole;
oating over
ow;under
ow; invalid; angle too bigg
tanuF (u; x) = trans resultF (tanu�F (u; x))

if cycleF (u; x) 2 F and cycleF (u; x) 62 f�u=2;�u=4; u=4g
= �0 if cycleF (u; x) 2 F and cycleF (u; x) = �u=2
= �0 if cycleF (u; x) = �0
= pole(+1) if cycleF (u; x) = u=4
= pole(�1) if cycleF (u; x) = �u=4

= angle too big(qNaN) if u 2 GF and x 2 F and jx=uj > big angle uF
= invalid(qNaN) if u 2 F and juj < min angular unitF and x 2 F [f�0g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 F and x 2 f�1;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

NOTE 2 { The pole noti�cation can arise for tanuF (u; x) only when u=4 is in F .

54

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.7.6 Argument angular-unit cotangentus operation

The cotu�F approximation helper function:

cotu�F : F �R! R
cotu�F (u; x) returns a close approximation to cot(x � 2 � �=u) in R if u 6= 0, with maximum

error max error tanuF (u).

Further requirements on the cotu�F approximation helper function:

cotu�F (u; n � u+ x) = cotu�F (u; x) if n 2 Z and u 2 F and u 6= 0
cotu�F (u; u=8) = 1 if u 2 F and u 6= 0
cotu�F (u; 3 � u=8) = �1 if u 2 F and u 6= 0
cotu�F (u;�x) = �cotu�F (u; x) if u 2 F and u 6= 0
cotu�F (�u; x) = �cotu�F (u; x) if u 2 F and u 6= 0

The cotuF operation:

cotuF : F � F ! F [f�0;pole;
oating over
ow;under
ow; invalid; angle too bigg
cotuF (u; x) = trans resultF (cotu

�
F (u; x))

if cycleF (u; x) 2 F and cycleF (u; x) 62 f�u=2;�u=4; 0; u=2g
= �0 if cycleF (u; x) 2 F and cycleF (u; x) = �u=4
= pole(+1) if cycleF (u; x) = 0
= pole(�1) if cycleF (u; x) = �0
= pole(+1) if cycleF (u; x) = u=2
= pole(�1) if cycleF (u; x) = �u=2

= angle too big(qNaN) if u 2 GF and x 2 F and jx=uj > big angle uF
= invalid(qNaN) if u 2 F and juj < min angular unitF and x 2 F [f�0g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 F and x 2 f�1;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.7 Argument angular-unit secantus operation

The secu�F approximation helper function:

secu�F : F �R! R
secu�F (u; x) returns a close approximation to sec(x � 2 � �=u) in R if u 6= 0, with maximum

error max error tanuF (u).

Further requirements on the secu�F approximation helper function:

secu�F (u; n � u+ x) = secu�F (u; x) if n 2 Z and u 2 F and u 6= 0
secu�F (u; 0) = 1 if u 2 F and u 6= 0
secu�F (u; u=6) = 2 if u 2 F and u 6= 0
secu�F (u; u=3) = �2 if u 2 F and u 6= 0
secu�F (u; u=2) = �1 if u 2 F and u 6= 0
secu�F (u;�x) = secu�F (u; x) if u 2 F and u 6= 0
secu�F (�u; x) = secu�F (u; x) if u 2 F and u 6= 0
secu�F (u; x) = 1 if jx � 2 � �=uj < 0:5 � pepsilonF

The secuF operation:

55

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

secuF : F � F ! F [fpole;
oating over
ow; invalid; angle too bigg
secuF (u; x) = trans resultF (secu

�
F (u; x))

if cycleF (u; x) 2 F and cycleF (u; x) 62 f�u=4; u=4g
= 1 if cycleF (u; x) = �0
= pole(+1) if cycleF (u; x) = u=4
= pole(+1) if cycleF (u; x) = �u=4

= angle too big(qNaN) if u 2 GF and x 2 F and jx=uj > big angle uF
= invalid(qNaN) if u 2 F and juj < min angular unitF and x 2 F [f�0g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 F and x 2 f�1;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.8 Argument angular-unit cosecantus operation

The cscu�F approximation helper function:

cscu�F : F �R! R
cscu�F (u; x) returns a close approximation to csc(x � 2 � �=u) in R if u 6= 0, with maximum

error max error tanuF (u).

Further requirements on the cscu�F approximation helper function:

cscu�F (u; n � u+ x) = cscu�F (u; x) if n 2 Z and u 2 F and u 2 0
cscu�F (u; u=12) = 2 if u 2 F and u 6= 0
cscu�F (u; u=4) = 1 if u 2 F and u 6= 0
cscu�F (u; 5 � u=12) = 2 if u 2 F and u 6= 0
cscu�F (u;�x) = �cscu�F (u; x) if u 2 F and u 6= 0
cscu�F (�u; x) = �cscu�F (u; x) if u 2 F and u 6= 0

The cscuF operation:

cscuF : F � F ! F [fpole;
oating over
ow; invalid; angle too bigg
cscuF (u; x) = trans resultF (cscu�F (u; x))

if cycleF (u; x) 2 F and cycleF (u; x) 62 f�u=2; 0; u=2g
= pole(+1) if cycleF (u; x) = 0
= pole(�1) if cycleF (u; x) = �0
= pole(+1) if cycleF (u; x) = u=2
= pole(�1) if cycleF (u; x) = �u=2

= angle too big(qNaN) if u 2 GF and x 2 F and jx=uj > big angle uF
= invalid(qNaN) if u 2 F and juj < min angular unitF and x 2 F [f�0g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 F and x 2 f�1;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

56

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.7.9 Argument angular-unit arcus sinus operation

The arcsinu�F approximation helper function:

arcsinu�F : F � F ! R
arcsinu�F (u; x) returns a close approximation to arcsin(x) � u=(2 � �) in R, with maximum

error max error sinuF (u).

Further requirements on the arcsinu�F approximation helper function:

arcsinu�F (u; 1=2) = u=12
arcsinu�F (u; 1) = u=4
arcsinu�F (u;�x) = �arcsinu�F (u; x)
arcsinu�F (�u; x) = �arcsinu�F (u; x)
NOTE { arcsinu�F (u; x) � u=(2 � �) if jxj < fminNF .

The arcsinuF operation:

arcsinuF : F � F ! F [f�0;under
ow; invalidg
arcsinuF (u; x)

= trans resultF (arcsinu
�
F (u; x))
if u 2 GF and x 2 F and jxj � 1 and x 6= 0

= 0 if u 2 GF and u > 0 and x = 0
= �0 if u 2 GF and u > 0 and x = �0
= �0 if u 2 GF and u < 0 and x = 0
= 0 if u 2 GF and u < 0 and x = �0
= invalid(qNaN) if u 2 GF and x 2 F and jxj > 1
= invalid(qNaN) if u 2 GF and x 2 f�1;+1g

= invalid(qNaN) if u 2 F and juj < min angular unitF and
x 2 F [f�1;�0;+1g

= invalid(qNaN) if u 2 f�1;�0;+1g and
x 2 F [f�1;�0;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.10 Argument angular-unit arcus cosinus operation

The arccosu�F approximation helper function:

arccosu�F : F � F ! R
arccosu�F (u; x) returns a close approximation to arccos(x) � u=(2 � �) in R, with maximum

error max error sinuF (u).

Further requirements on the arccosu�F approximation helper function:

arccosu�F (u; 1=2) = u=6
arccosu�F (u; 0) = u=4
arccosu�F (u;�1=2) = u=3
arccosu�F (u;�1) = u=2
arccosu�F (�u; x) = �arccosu�F (u; x)

The arccosuF operation:

arccosuF : F � F ! F [funder
ow; invalidg

57

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arccosuF (u; x)
= trans resultF (arccosu

�
F (u; x))
if u 2 GF and x 2 F and jxj � 1

= trans resultF (u=4) if u 2 GF and x = �0
= invalid(qNaN) if u 2 GF and x 2 F and jxj > 1
= invalid(qNaN) if u 2 GF and x 2 f�1;+1g

= invalid(qNaN) if u 2 F and juj < min angular unitF and
x 2 F [f�1;�0;+1g

= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.11 Argument angular-unit arcus operation

The arcu�F approximation helper function:

arcu�F : F � F � F ! R
arcu�F (u; x; y) returns a close approximation to arc(x; y)�u=(2��) in R, with maximum error

max error tanuF (u).

Further requirements on the arcu�F approximation helper function:

arcu�F (u; x; x) = u=8 if x > 0
arcu�F (u; 0; y) = u=4 if y > 0
arcu�F (u; x;�x) = 3 � u=8 if x < 0
arcu�F (u; x; 0) = u=2 if x < 0
arcu�F (u; x;�y) = �arcu�F (u; x; y) if y 6= 0 or x > 0
arcu�F (�u; x; y) = �arcu�F (u; x; y)

The arcuF operation:

arcuF : F � F � F ! F [f�0;under
ow; invalidg
arcuF (u; x; y) = trans resultF (arcu

�
F (u; x; y))

if u 2 GF and x; y 2 F and (x < 0 or y 6= 0)
= mulF (u; 0) if u 2 GF and x 2 F and x > 0 and y = 0
= invalid(0) if u 2 GF and x = 0 and y = 0
= arcuF (u; 0; y) if u 2 GF and x = �0 and y 2 F [f�1;�0;+1g
= negF (arcuF (u; x; 0)) if u 2 GF and y = �0 and x 2 F [f�1;+1g

= mulF (0; u) if u 2 GF and x = +1 and y 2 F and y � 0
= mulF (negF (0); u) if u 2 GF and x = +1 and y 2 F and y < 0
= nearestF (u=8)?inval? if u 2 GF and x = +1 and y = +1
= nearestF (u=4) if u 2 GF and x 2 F and y = +1
= nearestF (3 � u=8)?inval?if u 2 GF and x = �1 and y = +1
= nearestF (u=2) if u 2 GF and x = �1 and y 2 F and y � 0
= nearestF (�u=2) if u 2 GF and x = �1 and y 2 F and y < 0
= nearestF (�3 � u=8)?inval?if u 2 GF and x = �1 and y = �1
= nearestF (�u=4) if u 2 GF and x 2 F and y = �1
= nearestF (�u=8)?inval? if u 2 GF and x = +1 and y = �1

= invalid(qNaN) if u 2 F and juj < min angular unitF and

58

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 f�1;�0;+1g and x; y 2 F [f�1;�0;+1g
= qNaN if u is a quiet NaN and not x nor y is a signalling NaN
= qNaN if x is a quiet NaN and not u nor y is a signalling NaN
= qNaN if y is a quiet NaN and not u nor x is a signalling NaN
= invalid(qNaN) if u is a signalling NaN or x is a signalling NaN or

y is a signalling NaN

5.3.7.12 Argument angular-unit arcus tangentus operation

The arctanu�F approximation helper function:

arctanu�F : F � F ! R
arctanu�F (u; x) returns a close approximation to arctan(x) � u=(2 � �) in R, with maximum

error max error tanuF (u).

Further requirements on the arctanu�F approximation helper function:

arctanu�F (u; 1) = u=8
arctanu�F (u; x) = u=4 if arctanu�F (u; x) 6= arctan(x) � u=(2 � �) and

x > 3 � rF =epsilonF
arctanu�F (u;�x) = �arctanu�F (u; x)
arctanu�F (�u; x) = �arctanu�F (u; x)
NOTE 1 { arctanu�F (u; x) � u=(2 � �) if jxj < fminNF

The arctanuF operation:

arctanuF : F � F ! F [f�0; invalid;under
owg
arctanuF (u; x)

= trans resultF (arctanu�F (u; x))
if u 2 GF and x 2 F and x 6= 0

= 0 if u 2 GF and u > 0 and x = 0
= �0 if u 2 GF and u > 0 and x = �0
= �0 if u 2 GF and u < 0 and x = 0
= 0 if u 2 GF and u < 0 and x = �0
= trans resultF (�u=4) if u 2 GF and x = �1
= trans resultF (u=4) if u 2 GF and x = +1

= invalid(qNaN) if u 2 F and juj < min angular unitF and
x 2 F [f�1;�0;+1g

= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

NOTE 2 { arctanuF (u; x) � arcuF (u; 1; x).

5.3.7.13 Argument angular-unit arcus cotangentus operation

The arccotu�F and arcctgu�F approximation helper functions:

arccotu�F : F � F ! R
arcctgu�F : F � F ! R

59

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arccotu�F (u; x) returns a close approximation to arccot(x) � u=(2 � �) in R, with maximum
error max error tanuF (u).

arcctgu�F (u; x) returns a close approximation to arcctg(x) � u=(2 � �) in R, with maximum
error max error tanuF (u).

There are two reasonable ways of selecting the principle value for the inverse of the cot oper.
It is best to leave it to the user/programmer to decide which one is the most appropriate in a
particular application. LIA-2 speci�es both of them. Selecting just one is premature at the LIA
level.

Further requirements on the arccotu�F and arccotu�F approximation helper functions:

arccotu�F (u; 1) = u=8
arccotu�F (u; 0) = u=4
arccotu�F (u;�1) = 3 � u=8
arccotu�F (u; x) � u=2 if u > 0
arccotu�F (u; x) � u=2 if u < 0
arccotu�F (u; x) = u=2 if arccotu�F (u; x) 6= arccot(x) � u=(2 � �) and

x < �3 � rF =epsilonF
arccotu�F (�u; x) = �arccotu�F (u; x)
arcctgu�F (u; x) = arccotu�F (u; x) if x � 0
arcctgu�F (u;�x) = �arcctgu�F (u; x)

The arccotuF operation:

arccotuF : F � F ! F [finvalid;under
owg
arccotuF (u; x) = trans resultF (arccotu

�
F (u; x))
if u 2 GF and x 2 F

= trans resultF (u=4) if u 2 GF and x = �0
= trans resultF (u=2) if u 2 GF and x = �1
= 0 if u 2 GF and u > 0 and x = +1
= �0 if u 2 GF and u < 0 and x = +1

= invalid(qNaN) if u 2 F and juj < min angular unitF and
x 2 F [f�1;�0;+1g

= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

NOTE { arccotuF (u; x) � arcuF (u; x; 1).

The arcctguF operation:

arcctguF : F � F ! F [finvalid;under
owg
arcctguF (u; x) = trans resultF (arcctgu�F (u; x))

if u 2 GF and x 2 F
= trans resultF (�u=4) if u 2 GF and x = �0
= �0 if u 2 GF and u > 0 and x = �1
= 0 if u 2 GF and u > 0 and x = +1
= 0 if u 2 GF and u < 0 and x = �1
= �0 if u 2 GF and u < 0 and x = +1

= invalid(qNaN) if u 2 F and juj < min angular unitF and

60

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

x 2 F [f�1;�0;+1g
= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.14 Argument angular-unit arcus secantus operation

The arcsecu�F approximation helper function:

arcsecu�F : F � F ! R
arcsecu�F (u; x) returns a close approximation to arcsec(x) � u=(2 � �) in R, with maximum

error max error tanuF (u).

Further requirements on the arcsecu�F approximation helper function:

arcsecu�F (u; 2) = u=6
arcsecu�F (u;�2) = u=3
arcsecu�F (u;�1) = u=2
arcsecu�F (u; x) � u=4 if x > 0 and u > 0
arcsecu�F (u; x) � u=4 if x < 0 and u > 0
arcsecu�F (u; x) = u=4 if arcsecu�F (u; x) 6= arcsec(x) � u=(2 � �) and

jxj > 3 � rF=epsilonF
arcsecu�F (�u; x) = �arcsecu�F (u; x)

The arcsecuF operation:

arcsecuF : F � F ! F [funder
ow; invalidg
arcsecuF (u; x) = trans resultF (arcsecu

�
F (u; x))
if u 2 GF and x 2 F and (x � �1 or x � 1)

= invalid(qNaN) if u 2 GF and x 2 F and �1 < x < 1
= invalid(qNaN) if u 2 GF and x = �0
= trans resultF (u=4) if u 2 GF and x = �1
= trans resultF (u=4) if u 2 GF and x = +1

= invalid(qNaN) if u 2 F and juj < min angular unitF and
x 2 F [f�1;�0;+1g

= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.7.15 Argument angular-unit arcus cosecantus operation

The arccscu�F approximation helper function:

arccscu�F : F � F ! R
arccscu�F (u; x) returns a close approximation to arccsc(x) � u=(2 � �) in R, with maximum

error max error tanuF (u).

Further requirements on the arccscu�F approximation helper function:

61

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arccscu�F (u; 2) = u=12
arccscu�F (u; 1) = u=4
arccscu�F (u;�x) = �arccscu�F (u; x)
arccscu�F (�u; x) = �arccscu�F (u; x)

The arccscuF operation:

arccscuF : F � F ! F [funder
ow; invalidg
arccscuF (u; x) = trans resultF (arccscu

�
F (u; x))
if u 2 GF and x 2 F and (x � 1 or x � �1)

= invalid(qNaN) if u 2 GF and x 2 F and �1 < x < 1
= invalid(qNaN) if u 2 GF and x = �0
= �0 if u 2 GF and u > 0 and x = �1
= 0 if u 2 GF and u > 0 and x = +1
= 0 if u 2 GF and u < 0 and x = �1
= �0 if u 2 GF and u < 0 and x = +1

= invalid(qNaN) if u 2 F and u < min angular unitF and
x 2 F [f�1;�0;+1g

= invalid(qNaN) if u 2 f�1;�0;+1g and x 2 F [f�1;�0;+1g

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or u is a signalling NaN

5.3.8 Operations for degree trigonometrics and inverse degree trigonometrics

degF : F ! F [f�0; angle too bigg
degF (x) = unitF (360; x)

sindF : F ! F [f�0;under
ow; angle too bigg
sindF (x) = sinuF (360; x)

cosdF : F ! F [funder
ow; angle too bigg
cosdF (x) = cosuF (360; x)

cossindF : F ! F � (F [f�0g)[funder
ow; angle too bigg
cossindF (x) = cossinuF (360; x)

tandF : F ! F [f�0;pole;
oating over
ow;under
ow; angle too bigg
tandF (x) = tanuF (360; x)

cotdF : F ! F [fpole;
oating over
ow;under
ow; angle too bigg
cotdF (x) = cotuF (360; x)

secdF : F ! F [fpole;
oating over
ow; angle too bigg
secdF (x) = secuF (360; x)

cscdF : F ! F [fpole;
oating over
ow; angle too bigg
cscdF (x) = cscuF (360; x)

arcsindF : F ! F [funder
ow; invalidg
arcsindF (x) = arcsinuF (360; x)

arccosdF : F ! F [finvalidg
arccosdF (x) = arccosuF (360; x)

arcdF : F � F ! F [funder
ow; invalidg
arcdF (x; y) = arcuF (360; x; y)

62

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

arctandF : F ! F [funder
owg
arctandF (x) = arctanuF (360; x)

arccotdF : F ! F [funder
owg
arccotdF (x) = arccotuF (360; x)

arcctgdF : F ! F [funder
owg
arcctgdF (x) = arcctguF (360; x)

arcsecdF : F ! F [finvalidg
arcsecdF (x) = arcsecuF (360; x)

arccscdF : F ! F [funder
ow; invalidg
arccscdF (x) = arccscuF (360; x)

5.3.9 Operations for angular-unit conversions

5.3.9.1 Converting radian angle to argument angular-unit angle

De�ne the mathematical function:

rad to cycle : R�R! R
rad to cycle(x; v)

= arccos(cos(x)) � v=(2 � �)
if sin(x) � 0 and v 6= 0

= � arccos(cos(x)) � v=(2 � �)
if sin(x) < 0 and v 6= 0

The rad to cycle�F approximation helper function:

rad to cycle�F : R� F ! R
rad to cycle�F (x; v) returns a close approximation to rad to cycle(x; v) in R, with maximum

error max error radF , if jxj � big angle rF .

Further requirements on the rad to cycle�F approximation helper function:

rad to cycle�F (n � 2 � � + �=6; v) = v=12 if n 2 Z and jn � 2 � � + �=6j � big angle rF
rad to cycle�F (n � 2 � � + �=4; v) = v=8 if n 2 Z and jn � 2 � � + �=4j � big angle rF
rad to cycle�F (n � 2 � � + �=3; v) = v=6 if n 2 Z and jn � 2 � � + �=3j � big angle rF
rad to cycle�F (n � 2 � � + �=2; v) = v=4 if n 2 Z and jn � 2 � � + �=2j � big angle rF
rad to cycle�F (n � 2 � � + 2 � �=3; v) = v=3

if n 2 Z and jn � 2 � � + 2 � �=3j � big angle rF
rad to cycle�F (n � 2 � � + 3 � �=4; v) = 3 � v=8

if n 2 Z and jn � 2 � � + 3 � �=4j � big angle rF
rad to cycle�F (n � 2 � � + 5 � �=6; v) = 5 � v=12

if n 2 Z and jn � 2 � � + 5 � �=6j � big angle rF
rad to cycle�F (n � 2 � � + �; v) = v=2 if n 2 Z and jn � 2 � � + �j � big angle rF
rad to cycle�F (�x; v) = �rad to cycle�F (x; v)

if rad to cycle(x; v) 6= v=2
rad to cycle�F (x;�v) = �rad to cycle�F (x; v)

if rad to cycle(x; v) 6= v=2

The rad to cycleF operation:

rad to cycleF : F � F ! F [funder
ow; angle too big; invalidg

63

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

rad to cycleF (x; v)
= trans resultF (rad to cycle�F (x; v))

if v 2 GF and x 2 F and jxj � big angle rF
= �0 if v 2 GF and x = �0
= angle too big(qNaN) if v 2 GF and x 2 F and jxj > big angle rF
= invalid(qNaN) if v 2 GF and x 2 f�1;+1g
= invalid(qNaN) if v 2 F and jvj < min angular cycleF and

x 2 F [f�1;�0;+1g
= invalid(qNaN) if v 2 f�1;�0;+1g and

x 2 F [f�1;�0;+1g
= qNaN if x is a quiet NaN and v is not a signalling NaN
= qNaN if v is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) if x is a signalling NaN or v is a signalling NaN

5.3.9.2 Converting argument angular-unit angle to radian angle

De�ne the mathematical function:

cycle to rad : R�R! R
cycle to rad(u; x)

= arccos(cos(x � 2 � �=u)) if sin(x � 2 � �=u) � 0
= � arccos(cos(x � 2 � �=u))

if sin(x � 2 � �=u) < 0

The cycle to rad�F approximation helper function:

cycle to rad�F : F �R! R
cycle to rad�F (u; x) returns a close approximation to cycle to rad(u; x) in R, if u 6= 0, with

maximum error max error radF .

Further requirements on the cycle to rad�F approximation helper function:

cycle to rad�F (u; n � u+ x) = cycle to rad�F (u; x)
if n 2 Z

cycle to rad�F (u; u=12) = �=6
cycle to rad�F (u; u=8) = �=4
cycle to rad�F (u; u=6) = �=3
cycle to rad�F (u; u=4) = �=2
cycle to rad�F (u; u=3) = 2 � �=3
cycle to rad�F (u; 3 � u=8) = 3 � �=4
cycle to rad�F (u; 5 � u=12) = 5 � �=6
cycle to rad�F (u; u=2) = �
cycle to rad�F (u;�x) = �cycle to rad�F (u; x)

if cycle to rad(u; x) 6= �

The cycle to radF operation:

cycle to radF : F � F ! F [f�0;under
ow; angle too big; invalidg
cycle to radF (u; x)

= trans resultF (cycle to rad�F (u; x))
if cycleF (u; x) 2 F

= �0 if cycleF (u; x) = �0
= angle too big if cycleF (u; x) = angle too big
= invalid(qNaN) if cycleF (u; x) = invalid
= qNaN if cycleF (u; x) is a quiet NaN

64

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.3.9.3 Converting argument angular-unit angle to (another) argument angular-
unit angle

De�ne the mathematical function:

cycle to cycle : R�R�R! R
cycle to cycle(u; x; v)

= arccos(cos(x � 2 � �=u)) � v=(2 � �)
if u 6= 0 and v 6= 0 and sin(x � 2 � �=u) � 0

= � arccos(cos(x � 2 � �=u)) � v=(2 � �)
if u 6= 0 and v 6= 0 and sin(x � 2 � �=u) < 0

The cycle to cycle�F approximation helper function:

cycle to cycle�F : F �R� F ! R
cycle to cycle�F (u; x; v) returns a close approximation to cycle to cycle(u; x; v) in R if u 6= 0

and jx=uj � big angle uF , with maximum error max error radF .

Further requirements on the cycle to cycle�F approximation helper function:

cycle to cycle�F (u; n � u+ x; v) = cycle to cycle�F (u; x; v)
if n 2 Z

cycle to cycle�F (u; u=12; v) = v=12
cycle to cycle�F (u; u=8; v) = v=8
cycle to cycle�F (u; u=6; v) = v=6
cycle to cycle�F (u; u=4; v) = v=4
cycle to cycle�F (u; u=3; v) = v=3
cycle to cycle�F (u; 3 � u=8; v) = 3 � v=8
cycle to cycle�F (u; 5 � u=12; v) = 5 � v=12
cycle to cycle�F (u; u=2; v) = v=2
cycle to cycle�F (u;�x; v) = �cycle to cycle�F (u; x; v)

if cycle to cycle(u; x; v) 6= v=2
cycle to cycle�F (�u; x; v) = �cycle to cycle�F (u; x; v)

if cycle to cycle(u; x; v) 6= v=2
cycle to cycle�F (u; x;�v) = �cycle to cycle�F (u; x; v)

if cycle to cycle(u; x; v) 6= v=2

The cycle to cycleF operation:

cycle to cycleF : F � F � F ! F [f�0;under
ow; angle too big; invalidg
cycle to cycleF (u; x; v)

= trans resultF (cycle to cycle�F (u; x; v))
if v 2 GF and cycleF (u; x) 2 F

= �0 if v 2 GF and cycleF (u; x) = �0
= angle too big if v 2 GF and cycleF (u; x) = angle too big
= invalid(qNaN) if v 2 GF and cycleF (u; x) = invalid

= invalid(qNaN) if v 2 F and v < min angular cycleF and
u; x 2 F [f�1;�0;+1g

= invalid(qNaN) if v 2 f�1;�0;+1g and u; x 2 F [f�1;�0;+1g
= qNaN if cycleF (u; x) is a quiet NaN and

v is not a signalling NaN
= qNaN if v is a quiet NaN and

cycleF (u; x) 6= invalid

= invalid(qNaN) if v is a signalling NaN

65

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

5.3.9.4 Degree angle conversions to and from other angular units

rad to degF : F ! F [funder
ow; angle too bigg
rad to degF (x)= rad to cycleF (x; 360)

deg to radF : F ! F [f�0;under
ow; angle too bigg
deg to radF (x) = cycle to radF (360; x)

cycle to degF : F � F ! F [f�0;under
ow; angle too big; invalidg
cycle to degF (u; x) = cycle to cycleF (u; x; 360)

deg to cycleF : F � F ! F [f�0;under
ow; angle too big; invalidg
deg to cycleF (x; v) = cycle to cycleF (360; x; v)

5.4 Conversion operations

Fixed point string formats and
oating point string formats should have formats for �0, +1,
�1, quiet and signalling NaNs. Integer string formats may have formats for such values.

NOTES

1 In ordinary string formats for numerals, the string \Hello world!" is an example of a
signalling NaN.

2 This part of ISO/IEC 10967does not specify any string formats, not even for the special
values �0, +1, �1, and quiet NaN, but possibilities include the strings used in the text of
this part of ISO/IEC 10967, as well as strings like \+in�nity" or \positiva o�andligheten",
etc, and the strings used may depend on preference settings. String formats for numerical
values, and if and how they may depend on preference settings, is also an issue for bindings
or programming language speci�cations. It is not an issue for this part of ISO/IEC 10967.

5.4.1 Integer to integer conversions

I and I 0 represent di�erent integer data types (even if the sets I and I 0 are the same). At least
one of I and I 0 conform to LIA-1.

NOTE 1 { If both are I and I0 are conforming to ISO/IEC 10967-1, then this conversion
is covered by ISO/IEC 10967-1. This operation generalises the cvtI!I0 of ISO/IEC 10967-
1:1994, with respect to that one of the integer types in the conversion need not be conforming
to ISO/IEC 10967-1.

convertI!I 0 : I ! I 0 [finteger over
owg
convertI!I 0(x)= resultI 0(x) if x 2 I

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= integer over
ow if x = �1 and �1 is not available in the target type
= integer over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

NOTE 2 { This covers, among other things, \input" and \output" of integer type values,
including the possibility of over
ow (for either input or output).

66

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

5.4.2 Floating point to integer conversions

I is an ISO/IEC 10967-1 conforming integer type. F is an ISO/IEC 10967-1 conforming
oating
point type.

NOTE { The operations in this clause are more speci�c than the
oating point to integer
conversion in ISO/IEC 10967-1:1994 which allows any rounding.

roundingF!I : F ! I [finteger over
owg
roundingF!I(x)

= resultI(round(x)) if x 2 F
= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= integer over
ow if x = �1 and �1 is not available in the target type
= integer over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

oorF!I : F ! I [finteger over
owg

oorF!I(x) = resultI(bxc) if x 2 F

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= integer over
ow if x = �1 and �1 is not available in the target type
= integer over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

ceilingF!I : F ! I [finteger over
owg
ceilingF!I(x) = resultI(dxe) if x 2 F

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= integer over
ow if x = �1 and �1 is not available in the target type
= integer over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

5.4.3 Integer to
oating point conversions

convertnearestI!F : I ! F [f
oating over
owg
convertnearestI!F (x)= resultF (x; nearestF) if x 2 I

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type

67

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
=
oating over
ow if x = �1 and �1 is not available in the target type
=
oating over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

The following two operations are to support interval arithmetic.

convertdownI!F : I ! F [f
oating over
owg
convertdownI!F (x)= resultF (x; downF) if x 2 I

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
=
oating over
ow if x = �1 and �1 is not available in the target type
=
oating over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

convertupI!F : I ! F [f
oating over
owg
convertupI!F (x)= resultF (x; upF) if x 2 I

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
=
oating over
ow if x = �1 and �1 is not available in the target type
=
oating over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

NOTE { Integer to nearest
oating point conversions are covered by ISO/IEC 10967-1. I.e.
cvtI!F = convertnearestI!F , when both I and F conform to LIA-1.

5.4.4 Floating point to
oating point conversions

F and F 0 represent di�erent
oating point data types (even if the sets F and F 0 are the same).
At least one of F and F 0 conform to LIA-1.

convertnearestF!F 0 : F ! F 0 [f
oating over
ow;under
owg
convertnearestF!F 0 (x)

= resultF 0(x; nearestF 0) if x 2 F [gen. cvtF!F 0 of LIA-1]
= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
=
oating over
ow if x = �1 and �1 is not available in the target type
=
oating over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

68

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

The following two operations are to support interval arithmetic.

convertdownF!F 0 : F ! F 0 [f
oating over
ow;under
owg
convertdownF!F 0(x)

= resultF 0(x; downF 0) if x 2 F
= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
=
oating over
ow if x = �1 and �1 is not available in the target type
=
oating over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

convertupF!F 0 : F ! F 0 [f
oating over
ow;under
owg
convertupF!F 0(x)

= resultF 0(x; upF 0) if x 2 F
= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
=
oating over
ow if x = �1 and �1 is not available in the target type
=
oating over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

NOTES

1 Floating point to nearest
oating point conversions are covered by ISO/IEC 10967-1 when
both types conform to ISO/IEC 10967-1.

2 This covers, among other things, \input" and \output" of
oating point type values, for

oating point string formats.

5.4.5 Floating point to �xed point conversions

D is a �xed point type (essentially LID scaled, but it may be limited). A �xed point type D shall
be a subset of R, characterised by a radix, rD 2 Z (� 2), a density, dD 2 Z (� 0), and if it is
limited a maximum positive value, dmaxD 2 D� (� 1). Given these values, the following sets are
de�ned:

D� = fn=(rdDD) j n 2 Zg

D = D� if D is unlimited
= D� \ [�dmaxD; dmaxD] if D is limited

Fixed point rounding helper functions:

downD : R! D� is a rounding function that rounds towards negative in�nity.

upD : R! D� is a rounding function that rounds towards positive in�nity.

69

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

nearestD : R ! D� is a rounding function that rounds to nearest, ties round to even last
digit.

The �xed point result helper function, resultD, is like resultF , but for a �xed point type. It
will return over
owif the rounded result is not representable:

resultD : R� (R! D�)! D [fover
owg
resultD(x; rnd)= rnd(x) if rnd(x) 2 D and (rnd(x) 6= 0 or x � 0)

= �0 if rnd(x) = 0 and x < 0 and �0 available
= 0 if rnd(x) = 0 and x < 0 and �0 not available
= over
ow if xinR and rnd(x) 62 D

F is a
oating point type conforming to LIA-1. D is a �xed point type, it cannot conform to
LIA-1, since �xed point types are not covered by LIA-1.

convertnearestF!D : F ! D [f�0; over
owg
convertnearestF!D (x)

= resultD(x; nearestD) if x 2 F

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= over
ow if x = �1 and �1 is not available in the target type
= over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

convertdownF!D : F ! D [fover
owg
convertdownF!D(x)

= resultD(x; downD) if x 2 F

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= over
ow if x = �1 and �1 is not available in the target type
= over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN

is available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

convertupF!D : F ! D [f�0; over
owg
convert

up
F!D(x)

= resultD(x; upD) if x 2 F
= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= over
ow if x = �1 and �1 is not available in the target type
= over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type

70

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

NOTES

1 The type D need not be visible in the programming language. D may be a subtype of
strings, according to some format. Even so, no type for strings need be present in the
programming language.

2 This covers, among other things, \output" of
oating point type values, to �xed point
string formats. E.g. a binding may say that float to fixed string(x, m, n) is bound
to convertnearestF (Sm; n(x) where Sm;n is strings of length m, representing �xed point
values in (LID) scaled(10, n). The binding should also detail how NaNs, signed zeroes and
in�nities are represented in Sm;n, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may
over
ow.)

5.4.6 Fixed point to
oating point conversions

F is a
oating point type conforming to ISO/IEC 10967-1. D is a �xed point type, it cannot
conform to ISO/IEC 10967-1, since �xed point types are not covered by ISO/IEC 10967-1.

convertnearestD!F : D! F [f
oating over
ow;under
owg
convertnearestD!F (x)

= resultF (x; nearestF) if x 2 D

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= over
ow if x = �1 and �1 is not available in the target type
= over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaNwithout noti�cation?]

convertdownD!F : D ! F [f
oating over
ow;under
owg
convertdownD!F (x)

= resultF (x; downF) if x 2 D

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type
= 0 if x = �0 and �0 is not available in the target type
= over
ow if x = �1 and �1 is not available in the target type
= over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaN without noti�cation?]

convertupD!F : D ! F [f
oating over
ow;under
owg
convertupD!F (x)

= resultF (x; upF) if x 2 D

= �0 if x = �0 and �0 is available in the target type
= �1 if x = �1 and �1 is available in the target type
= +1 if x = +1 and +1 is available in the target type

71

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

= 0 if x = �0 and �0 is not available in the target type
= over
ow if x = �1 and �1 is not available in the target type
= over
ow if x = +1 and +1 is not available in the target type
= qNaN if x is a quiet NaN and quiet NaN is

available in the target type
= invalid(qNaN) if x is a signalling NaN [sNaN without noti�cation?]

NOTE { This covers, among other things, \input" of
oating point type values, from
�xed point string formats. E.g. a binding may say that string to float(s) is bound to
convertnearestSm;n!F (s) where Sm;n is strings of length m, where m is the length of s, and n is the
number of digits after the \decimal symbol" in s. The binding should also detail how NaNs,
signed zeroes and in�nities are represented in Sm;n, as well as the precise format of the strings
representing ordinary values.

5.5 Numerals

Each numeral is an operation. Thus, this clause introduces a very large number of operations,
since the number of numerals is in principle in�nite.

5.5.1 Numerals for integer types

A numeral, denoting a mathematical value n in Z , for an integer type, I , results in

resultI(n)

For each ISO/IEC 10967-1 conforming integer type there shall be integer numerals for all
non-negative values of I . Integer numeral representations using radix 10 should be available.

NOTES

1 Negative values (except minintI if minintI = �maxintI � 1) can be obtained by using
the negation operation (negI).

2 Other radices may also be available for integer numerals, and the radix used may be part
of determining the goal integer type. E.g., radix 10 may be for signed integer types, and
radix 8 or 16 may be for unsigned integer types.

3 Syntaxes for numerals for di�erent integer types need not be di�erent, nor need they be
the same. LIA-2 does not further specify the format for integer numerals. That is an issue
for bindings.

4 Over
ow for numerals can be detected at \compile time", and warned about.

5.5.2 Numerals for
oating point types

A fractional numeral, denoting a mathematical value x in R, for a
oating point type, F , shall
normally result in:

resultF (x; nearestF)

shall in a round towards negative in�nity circumstance result in:

resultF (x; downF)

shall in a round towards positive in�nity circumstance result in:

resultF (x; upF)

72

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

If iec 559F = true then the directed roundings shall be available also for
oating point
numerals. The rounding circumstance should be statically determined, if other than the normal
is at all available.

For each ISO/IEC 10967-1 conforming
oating point type, F , there shall be fractional numerals
for all radix 10 limited precision and limited range expressible non-negative values of R. The
precision and range for the numerals shall be large enough to allow all non-negative values of F
to be reachable.

There shall be a numeral for positive in�nity. There shall be numerals for quiet and signalling
NaNs.

NOTES

1 Negative values (including negative 0, �0) can be obtained by using the negation operation
(negF).

2 Other radices may also be available for
oating point numerals.

3 Integer numerals may also be fractional numerals, i.e. their syntaxes need not be di�erent.
Nor need syntaxes for numerals for di�erent
oating point types be di�erent, nor need they
be the same. ISO/IEC 10967-2 does not specify the syntax for numerals. That is an issue
for bindings or programming language speci�cations.

6 Noti�cation

Noti�cation is the process by which a user or program is informed that a arithmetic opera-
tion cannot be performed so that a result within the error bounds is returned. Speci�cally, a
noti�cation shall occur when any such operation returns one of the exceptional values: inte-

ger over
ow, unde�ned, invalid, pole, under
ow,
oating over
ow, and angle too big.
The exceptional value involved is called the kind of noti�cation that occurs.

Noti�cation shall be performed according to the requirements of clause 6 of ISO/IEC 10967-1.
If noti�cations are handled by a recording of indicators (see clause 6.1.2 of ISO/IEC 10967-1),
the implementation shall provide (and document) a continuation value for the result of the failed
operation, if that value di�ers from what is speci�ed in ISO/IEC 10967-2.

An implementation shall suppress spurious noti�cations.

NOTE 1 { E.g., an intermediate over
ow on computing approximations to x2 or y2 during the
calculation of hypotF (x; y) �

p
x2 + y2). This is clear from the ISO/IEC 10967-2 speci�cation

of the hypotF operation.

2 If an operation opF , for the corresponding mathematical function f , is such that f(x) very
closely approximates x, when jxj � fminNF , then opF (x) returns x for jxj � fminNF , and
does not signal an exception if there is no denormalisation loss. For details, see the individ-
ual operation speci�cations for expm1F , ln1pF , sinhF , arcsinhF , tanhF , arctanhF , sinF ,
arcsinF , tanF , and arctanF .

Floating point datatypes that satisfy the requirements of IEC 559 have special values in
addition to the values in F . These are: �0, +1, �1, signaling NaNs (sNaN), and quiet
NaNs (qNaN). Such values may be passed as arguments to operations, and used as results or
continuation values. Floating point types that do not fully conform to IEC 559 might also have
values corresponding to �0, +1, �1, or NaN.

Most operations speci�ed in ISO/IEC 10967-2 return invalid(qNaN) when passed a signaling
NaN (sNaN) as an argument. Most operations speci�ed in ISO/IEC 10967-2 return qNaN,
without any noti�cation when passed a quiet NaN (qNaN) as an argument.

The results of passing special values to operations is found in the operation speci�cations.

NOTES

73

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

3 The di�erent kinds of noti�cations occur under the following circumstances:

a) invalid: when an argument is not valid for the operation, and no value in F � or any
special value result makes mathematical sense.

b) pole: when the input operand corresponds to a pole of the mathematical function
approximated by the operation.

c) integer over
ow: when the (integer) result is outside of the range of the result
datatype.

d)
oating over
ow: when a su�ciently closely approximating result of the operation
has a magnitude that is too large to be accurately represented in the result datatype.

e) under
ow: when a su�ciently closely approximating result of the operation has a
magnitude that is too small to be accurately represented in the result datatype.

f) angle too big: when the magnitude of the angle argument of a trigonometric oper-
ation exceeds the maximum value of the argument for which the density of
oating
point values is deemed su�cient for the operation to make sense. See clause 5.3.5 and
the detailed discussion in clause A.5.3.5.

4 See A.6 for a discussion of the omission of an under
ow noti�cation under the circum-
stances mentioned above.

5 The di�erence between the pole and
oating over
ow noti�cations is that the �rst
corresponds to a true mathematical singularity, and the second corresponds to a well-
de�ned mathematical result that happens to lie outside the range of F .

6 Signalling NaNs are not produced by any operation in ISO/IEC 10967-2.

6.1 Continuation values

Continuation values of �0, +1, �1, and NaN are required only if the parameter iec 559 F has
the value true. If the implementation can represent such special values in the result datatype,
they should be used according to the speci�cations in ISO/IEC 10967-2. The distinction between
signaling and quiet NaNs is required only if the implementation is capable of making such a
distinction.

When the noti�cation process requires a continuation value, the following requirements (or-
ganized by noti�cation kind) shall be satis�ed for operations with
oating point result.

For a invalid noti�cation, the continuation value shall be a quiet NaN, unless speci�ed
explicitly otherwise.

If there are quiet NaNs among the arguments, a quiet NaN shall be used as the continuation
value, unless speci�ed explicitly otherwise.

For a
oating over
ow noti�cation, the continuation value shall be as given in parentheses
following the exception value in the speci�cation.

For a pole noti�cation, the continuation value shall be as given in parentheses following the
exception value in the speci�cation.

For an under
ow noti�cation, the continuation value shall be one of fminN , �fminN , or a
subnormal value.

For a angle too big noti�cation, the continuation value shall be a NaN.

NOTES

1 The prescribed continuation values for
oating over
ow and pole are +1 or �1.

2 In order to avoid angle too big noti�cations, and to maintain a high accuracy, implemen-
tors are encouraged to provide, and programmers encouraged to use, the angle normalisa-
tion operations speci�ed in 5.3.6.1, 5.3.7.1, and 5.3.8.

74

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

7 Relationship with language standards

A computing system often provides some of the operations speci�ed in ISO/IEC 10967-2 within
the context of a standard programming language. The requirements of the present standard shall
be in addition to those imposed by the relevant programming language standards.

This standard does not de�ne the syntax of arithmetic expressions. However, programmers
need to know how to reliably access the operations de�ned in this standard.

NOTE 1 { Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation used to invoke each operation speci�ed in
this part of ISO/IEC 10967.

NOTE 2 { For example, the radian arc sine operation (arcsinF (x)) might be invoked as

arcsin(x) in Pascal [5] and Ada [6]
asin(x) in C [9] and Fortran [3]
(asin x) in Common Lisp and ISLisp

An implementation shall document the semantics of arithmetic expressions in terms of com-
positions of the operations speci�ed in clause 5 of this part of ISO/IEC 10967and of clause 5 of
ISO/IEC 10967-1.

NOTE 3 { For example, if x is declared to be single precision (SP)
oating point, and
calculation is done in single precision, then the expression

arcsin(x)

might translate to

arcsinSP (x)

If the language in question did all computations in double precision (DP)
oating point, the
above expression might translate to

cvtDP!SP (arcsinDP (cvtSP!DP (x)))

Alternatively, if x was declared to be an integer, and the expected result datatype is single
precision
oat, the above expression might translate to

cvtDP!SP (arcsinDP (cvtI!DP (x)))

Compilers often \optimize" code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include

a) Insertion of operations, such as data type conversions or changes in precision.

b) Replacing operations (or entire subexpressions) with others, such as \cos(-x)"! \cos(x)"
(exactly the same result) or \pi - arccos(x)"! \arccos(-x)" (more accurate result) or
\exp(x)-1"! \expm1(x)" (more accurate result if x > �1, less accurate result if x < �1,
di�erent noti�cation behaviour).

c) Evaluating constant subexpressions.

d) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced, and the
noti�cations generated) need be documented. Only the range of permitted transformations need
be documented. It is not necessary to describe the speci�c choice of transformations that will be
applied to a particular expression. (See the Fortran standard [3], particularly clauses 7.1.2 and
7.1.7, for an example of documentation in this area.)

75

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 4 { It is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.
Control over changes of precision is particularly useful.

8 Documentation requirements

In order to conform to ISO/IEC 10967-2, an implementation shall include documentation pro-
viding the following information to programmers.

NOTE 1 { Much of the documentation required in this clause is properly the responsibility
of programming language or binding standards. An individual implementation would only
need to provide details if it could not cite an appropriate clause of the language or binding
standard.

a) A list of the provided operations that conform to ISO/IEC 10967-2.

b) For each maximum error parameter, the value of that parameter. Only parameters that are
relevant to the provided operations need be given.

c) The value of the parameter big angle rF and the de�nition of the parameter function
big angle uF .

d) For the nearestF function, the rule used for rounding halfway cases.

e) For each conforming operation, the continuation value provided for each noti�cation con-
dition. Speci�c continuation values that are required by ISO/IEC 10967-2 need not be
documented. If the noti�cation mechanism does not make use of continuation values (see
clause 6), continuation values need not be documented.

NOTE 2 { Implementations that do not provide in�nities orNaNs will have to document
any continuation values used in place of such values.

f) For each conforming operation, how the results depend on the rounding mode, if rounding
modes are provided. Operations may be insensitive to the rounding mode, or sensitive to
it, but even then need not heed the rounding mode.

g) For each conforming operation, the notation to be used for invoking that operation.

h) For each maximum error parameter, the notation to be used to access that parameter.

i) The notation to be used to access the parameters big angle rF and big angle uF (u).

Since the integer and
oating point types used in conforming operations shall satisfy the
requirements of ISO/IEC 10967-1, the following information shall also be provided by any con-
forming implementation.

j) The translation of arithmetic expressions into combinations of the operations provided by
any part of ISO/IEC 10967, including any use made of higher precision. (See clause 7 of
ISO/IEC 10967-1.)

k) The methods used for noti�cation, and the information made available about the violation.
(See clause 6 of ISO/IEC 10967-1.)

l) The means for selecting among the noti�cation methods, and the noti�cation method used
in the absence of a user selection. (See 6.3 of ISO/IEC 10967-1.)

m) The means for selecting the modes of operation that ensure conformity.

76

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

n) When \recording of indicators" is the method of noti�cation, the datatype used to represent
Ind, the method for denoting the values of Ind (the association of these values with the
subsets ofE must be clear), and the notation for invoking each of the \indicator" operations.
(See 6.1.2 of ISO/IEC 10967-1.)

In interpreting 6.1.2 of ISO/IEC 10967-1, the set of indicators E shall be interpreted as
including all exceptional values listed in the signatures of conforming operations. In partic-
ular, E need to contain pole and angle too big.

77

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

78

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

Annex A

(informative)

Rationale

This annex explains and clari�es some of the ideas behind Information technology { Lan-

guage independent arithmetic { Part 2: Elementary numerical functions (LIA-2). This allows the
standard itself to be concise.

A.1 Scope

A.1.1 Speci�cations included in ISO/IEC 10967-2

This part of ISO/IEC 10967(LIA-2) is intened to de�ne the meaning of some additional operations
on integer and
oating point types as speci�ed in ISO/IEC 10967-1. ISO/IEC 10967-2 does not
specify any additional arithmetic datatypes, though �xed point datatypes are used in some of the
speci�cations for conversion operations.

The speci�cations for the operations covered by ISO/IEC 10967-2 are given in Su�cient detail
to

a) support detailed and accurate numerical analysis of arithmetic algorithms, enable a precise
determination of conformity or non-conformity,

b) prevent exceptions (like over
ow) from going undetected.

A.1.2 Speci�cations not within the scope of ISO/IEC 10967-2

ISO/IEC 10967-2 is not concerned with techniques for the implementation of portable numerical
functions.

ISO/IEC 10967-2 does not provide speci�cations for operations which involve no arithmetic
processing. It also omits operations for the support of specialised mathematical domains such as
linear algebra, statistics, and symbolic processing. Such domains deserve separate standardisa-
tion.

A.2 Conformity

Conformanity to this standard is dependent on the existence of language binding standards.
Each language committee is encouraged to produce a binding standard covering at least those
operations already required by the language standard and also speci�ed in ISO/IEC 10967-2.

The term \language standard" in the previous paragraph is used in a generalised sense to
include other computing entities such as calculators, spread sheets, and database query languages
to the extent that they provide the operations covered in ISO/IEC 10967-2.

Suggestions for bindings are provided in Annex C. Annex C has partial binding examples for
a number of existing languages and ISO/IEC 10967-2.

In addition to the bindings for the operations in ISO/IEC 10967-2, it is also necessary to
provide bindings for the maximum error parameters and big angle parameters. Annex C contains
suggestions for these bindings.

To conform to this standard, in the absence of a binding standard, an implementation should
create a binding, following the suggestions in Annex C.

79

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

A.3 Normative references

A.4 Symbols and de�nitions

A.4.1 Symbols

The sequence types [I] and [F] appear as input to a few operations. In e�ect, a sequence is a
�nite linearly ordered collection of elements which can be indexed from 1 to the length of the
sequence. Equality of two or more elements with di�erent indices is possible.

A helper function from ISO/IEC 10967-1 is used in the conversion of input data into internal
form. This function, resultF , is de�ned in clause 5.2.6 of ISO/IEC 10967-1, has the following
signature:

resultF : R� (R! F �)! F [f
oating over
ow;under
owg
The �rst input to resultF is the computed result before rounding, and the second input is the
rounding function to be used.

For all values x 2 R, and any rounding function rnd in (R! F �), the following shall apply:

For x = 0 or fminN � jxj � fmax :

resultF (x; rnd)= rnd(x)

For jxj > fmax :

resultF (x; rnd)= rnd(x) if jrnd(x)j = fmax

=
oating over
ow otherwise

For 0 < jxj < fminN :

resultF (x; rnd)= rnd(x) or under
ow if jrnd(x)j = fminN

= rnd(x) or under
ow if jrnd(x)j 2 FD, denorm = true, and
rnd has no denormalization loss at x

= under
ow otherwise

An implementation is allowed to choose between rnd(x) and under
ow in the region between 0
and fminN . However, a denormalised value for rnd(x) can be chosen only if denorm is true and
no denormalisation loss occurs at x. An implementation shall document how the choice between
rnd(x) and under
ow is made.

A second helper function wrapI produces x if x 2 I and a wrapped result otherwise. The
de�nition in clause 5.1.2 of ISO/IEC 10967-1:1994 is

wrapI : Z ! I
wrapI(x) = x+ j � (maxint �minint + 1) for some j 2 Z

A.4.2 De�nitions

A.5 Speci�cations for the numerical functions

A.5.1 Additional basic integer operations

A.5.1.1 The integer result and wrap helper functions

The resultI helper function noti�es over
ow when the result cannot be represented in I .

The wrapI helper function wraps the result into a value that can be represented in I . The
result is wrapped in such a way that the value returned can be used in extended range integer
arithmetic.

80

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

A.5.1.2 Integer maximum and minimum operations

A.5.1.3 Integer positive di�erence (monus, diminish) operation

A.5.1.4 Integer power and arithmetic shift operations

The integer arithmetic shift operations can be used to implement integer multiplication and
integer division more quickly in special cases.

A.5.1.5 Integer square root (rounded to nearest integer) operation

A.5.1.6 Divisibility and even/odd test operations

A.5.1.7 Greatest common divisor and least common multiple operations

The greatest common divisor is useful in reducing a fraction (a rational number) to its lowest
terms, without loosing accuracy.

The least common multiple is useful in converting two fractions (rational numbers) to have
the same denominator.

A.5.1.8 Support operations for extended integer range

These operations would typically be used to extend the range of the highest level supported by
the underlying hardware of an implementation.

The two parts of an integer product, mul ovI(x; y) and mul wrapI(x; y) together provide the
complete integer product. Similarly for addition and subtraction.

The use of wrapI guarantees that integer over
ow will not occur.

A.5.2 Additional basic
oating point operations

A.5.2.1 The rounding and
oating point result helper functions

A.5.2.2 Floating point maximum and minimum operations

A.5.2.3 Floating point positive di�erence (monus, diminish) operation

A.5.2.4 Round,
oor, and ceiling operations

Since fmaxF always has an integral value according to ISO/IEC 10967-1, no over
ow can occur
for these operations.

A.5.2.5 Operation for remainder after division and round to integer (IEEE remain-
der)

The remainder after division and round to integer (IEC 559 remainder) is an exact operation,
even if the
oating point datatype only conforms to ISO/IEC 10967-1, but not to the more speci�c
IEC 559.

Remainder after
oating point division and
oor to integer cannot be exact. For a small
negative nominator and a positive denominator, the resulting value looses much absolute accuracy
in relation to the original value. Such an operation is therefore not included in ISO/IEC 10967-2.

See also the radian and the argument angular-unit normalisation operations (5.3.6.1, 5.3.7.1).

81

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

A.5.2.6 Square root and reciprocal square root operations

The inverses of squares are double valued, the two possible results having the same magnitude with
opposite signs. For a non-zero result, ISO/IEC 10967-2 requires that each of the corresponding
operations return a positive result.

There is no ambiguity in the result for sqrtF (x): the existence of an ambiguity would require
that the corresponding mathematical function could yield a result exactly half-way between two
successive
oating point numbers. Such a number would require exactly (p+1) digits for its exact
representation. The square of such a number would require at least (2p+ 1) digits, which could
not equal the p-digit number x.

The extensions sqrtF (+1) = +1 and sqrtF (�0) = �0 are mandated by IEC 559. LIA-2
requires that these axioms hold for implementations which support in�nities and signed zeros.
However, it should be noted that while the second is harmless, the �rst may lead to erroneous
results: a +1 generated by an addition or subtraction is just barely outside of the normalised
range of numbers. Hence its square root would be well within the representable range. The
possibility that LIA-2 should require that sqrtF (+1) = unde�ned was considered, but rejected
because of the principle of regarding arguments as exact, even if they are not exact. In addition
sqrtF (+1) = +1 for is already required by IEC 559.

Note that the requirement that sqrtF (x) = invalid(qNaN) for x strictly less than zero is
mandated by IEC 559. It follows that NaNs generated in this way represent imaginary values,
which would become complex through addition and subtraction, and even imaginary in�nities on
multiplication by ordinary in�nities.

The rsqrtF operation will increase performance for scaling a vector into a unit vector. Such
an operation involves division of each component of the vector by the magnitude of the vector
or, equivalently and with higher performance, multiplication by the reciprocal of the magnitude.

A.5.2.7 Support operations for extended
oating point precision

These operations would typically be used to extend the precision of the highest level supported
by the underlying hardware of an implementation.

The major motivation for including them in LIA-2 is to provide a capability for accurately
evaluating residuals in an iterative procedure. The residuals give a measure of the error in
the current solution. More important they can be used to estimate a correction to the current
solution. The accuracy of the correction depends on the accuracy of the residuals. The residuals
are calculated as a di�erence in which the number of leading digits cancelled increases as the
accuracy of the solution increases. A doubled precision calculation of the residuals is usually
adequate to produce a reasonably e�cient iteration.

For the basic
oating point arithmetic doubled precision operations, the high parts are calcu-
lated the corresponding
oating point operations.

There is no intent to provide a set of operations suitable for the implementation of a complete
package for the support of calculations at an arbitrarily high level of precision.

If addF (x; y) rounds to nearest then the high and low parts represent x+ y exactly.

The product of two numbers, each with p digits of precision, is always exactly representable in
at most 2p digits. The high and low parts of the product will always represent the true product.

The remainder for division is more useful than a 2p-digit approximation. The remainder will
be exactly representable if the high part di�ers from the true quotient by less than one ulp. The
true quotient can be constructed p digits at a time by division of the successive remainders by
the divisor.

82

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

The remainder for square root is more useful than a low part for the same reason that the
remainder is more useful for division. The remainder for the square root operation will be
exactly representable only if the high part is correctly rounded to nearest, as is required by the
speci�cation for sqrtF .

A.5.2.8 Extended precision multiply

This operation is intended for the case that there exist at least two
oating point datatypes F
and F 0, such that the product of two numbers of type F is always exactly representable in type
F 0.

To obtain higher precision for multiplication, in the absence of a suitable level of precision F 0,
a programmer can exploit the paired mulF and mul loF operations.

A.5.2.9 Extended precision multiply and add

This operation should multiply using a 2p-digit accumulator, add the third argument, with the
result rounded by the rounding rule to the original p-digit level of precision.

A.5.2.10 Exact summation operation

This operation can be used in conjunction with doubled precision multiplication to generate an
exact inner product. An important application is in the calculation of residuals for an iterative
solution of a system of linear equations, A � x = b where A is an n by n matrix and x and b are
n-vectors. If x0 is the current solution, then the correction u is given by A � u = b�A � x0. The
term A � x0 is a vector of inner products.

A.5.3 Elementary transcendental
oating point operations

A.5.3.1 Speci�cation format

The terms \numerical function" and \mathematical function" are used to distinguish between a
method for approximating a mathematical function and the approximated mathematical function
itself.

The signature of an operation identi�es the arithmetic datatypes for the input operands and
the output produced by a operation. The datatypes in the signature of an operation also appear
as subscripts to the name of the operation. For some operations the exceptional value invalid is
produced only by input values of �0, +1, �1, or sNaN. For these operations the signature
does not contain invalid. In general, LIA-2 does not specify operations in terms of identities like

powerF (x; y) = expF (mulF (y; lnF (x))

in order to avoid an implied requirement that a particular algorithm be used to implement the
operation, an algorithm which in addition may result in less accuracy than may be otherwise
attainable.

83

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

A.5.3.1.1 Maximum error requirements

max error opF measures the discrepancy between the computed value opF (x) and the true math-
ematical value f(x) in ulps of the true value. The magnitude of the error bound is thus available
to a program from the computed value opF (x). Note that for results at an exponent boundary
for F , y, the error away from zero is in terms of ulpF (y), whereas the error toward zero is in
terms of ulpF (y)=rF , which is the ulp of values slightly smaller in magnitude than y.

Within limits, accuracy and performance may be varied to best meet customer needs. Note
also that LIA-2 does not prevent a vendor from o�ering two or more implementations of the
various operations.

The operation speci�cations de�ne the domain and range for the operations. The computa-
tional domain and range are more limited for the operations than for the corresponding math-
ematical functions because the arithmetic datatypes are subsets of R and Z . Thus the actual
domain of expF (x) is approximately given by

ln(fminF) � x � ln(fmaxF)

The actual range extends over F , although there are values, v 2 F , for which there is no x 2 F

satisfying

expF (x) = v.

The numerical functions may produce any of the exceptional values integer over
ow,
oating over
ow,
under
ow, invalid, pole, or angle too big.

The thresholds for the integer over
ow,
oating over
ow, and under
ow noti�cations
are determined by the parameters de�ning the arithmetic datatypes.

The threshold for an unde�ned noti�cation is determined by the domain of input arguments
for which the mathematical function being approximated is de�ned.

The pole noti�cation is the operation's counterpart of a mathematical pole of the mathemat-
ical function being approximated by the operation.

The threshold for angle too big is determined by the parameters big angle rF and big angle uF
supplied by the implementation.

LIA-2 imposes a fairly tight bound on the maximum error allowed in the implementation of
each operation. The tightest possible bound is given by requiring rounding to nearest, for which
the accompanying performance penalty is often unacceptably high. LIA-2 requires rounding to
nearest for only a few operations.

The parameters max error opF will be documented by the implementation for each such
parameter required by LIA-2. A comparison of the values of these parameters with the values of
the speci�ed maximum value for each such parameter will give some indication of the \quality"
of the routines provided. Further, a comparison of the values of this parameter for two versions
of a frequently used operation will give some indication of the accuracy sacri�ce made in order
to gain performance.

Language bindings are free to modify the error limits provided in the speci�cations for the
operations to meet the expected requirements of their users.

Material on the implementation of high accuracy operations is provided in for example [30,
32, 38].

84

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

A.5.3.1.2 The trans result helper function

A.5.3.1.3 Sign requirements

A.5.3.1.4 Monotonicity requirements

A.5.3.1.5 IEC 559 special values

The signed zeros, in�nities, and NaNs introduced in IEC 559, are implemented in many current
implementations, and can be expected to become a standard part of
oating point calculations.
These special values can be generated as continuation values in such implementations, via literals
for these values, and as the true result when appropriate.

It follows that they can occur as input to arithmetic operations on any implementation which
supports them. Implementations which provide these special values may conform to IEC 559.
Moreover, implementations which do not support these special values are required to document
such alternative actions as they provide.

A report ([36]) issued by the ANSI X3J11 committee discusses possible ways of exploiting
these features. The report identi�es some of its suggestions as controversial and cites [32] as
justi�cation.

The next four clauses summarise the speci�cations of IEC 559 on the creation and propagation
of signed zeros, in�nities, andNaNs. They also include some discussion of material in [32, 33, 30].

IEC 559 regards 0 and �0 as almost indistinguishable. The sign is supposed to indicate
the direction of approach to zero. The sign is reliable for a zero generated by under
ow in
a multiplication or division operation. It is not reliable for a zero generated by an implied
subtraction of two
oating point numbers with the same value, for which case the zero is arbitrarily
given a + sign. The phrase \implied subtraction" indicates either the addition of two oppositely
signed numbers or the subtraction of two like signed numbers.

On occurrence of
oating over
ow or division of a non-zero number by zero, an implementation
conforming to IEC 559 sets the appropriate status
ag (if trapping is not enabled) and then
continues execution with a result of +1 or �1.

IEC 559 states that the arithmetic of in�nities is that associated with mathematical in�nities.
Thus, an in�nity times, plus, minus, or divided by a non-zero
oating point number yields an
in�nity for the result; no status
ag is set and execution continues. These rules are not necessarily
valid for in�nities generated by over
ow, thought they are valid if the in�nitary arguments are
exact.

NaNs are generated by invalid operations on in�nities, 0=0, and the square root of a negative
number (other than �0). Thus NaNs can represent unknown real or complex values, as well as
totally unde�ned values.

IEC 559 requires that the result of any of its basic operations with one or more NaN inputs
shall be a NaN. This principle is not extended to the numerical functions by [32, 36].

The controversial speci�cations in [36] are based on an assumption that all of these special
operands represent �nite non-zero real-valued numbers; see [32, 33].

The LIA-2 policy for dealing with signed zeros, in�nities, and NaNs is as follows:

a) The output is a NaN for any operation for which one (or more) inputs is a NaN. There is
no noti�cation.

b) If a mathematical function h(x) is such that h(0) = 0, the corresponding operation opF (x)
returns x if x 2 f0;�0g and h has a positive derivative at 0, and opF (x) returns negF (x) if
x 2 f0;�0g and h has a negative derivative at 0.

85

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

c) For an input value, x, of 0, �0, +1, or �1, the output value of the operation op(x) is

lim
z!x

h(z)

where the an approach to zero if from the positive side if x = 0, and the approach is from
the negative side if x = �0.
There is no noti�cation if the limit exists, is �nite, and is path independent. The returned
value is +1 or �1 if the limiting value is unbounded, and the approach is towards an
in�nity. The returned value is pole(+1) or pole(�1) if the limiting value is unbounded,
and the approach is towards zero.

If the limit does not exist the value returned is invalid, and a noti�cation occurs, with a
continuation value of qNaN if appropriate.

A.5.3.2 Hypotenuse operation

The hypotF operation can produce an over
ow only if both arguments have magnitudes very close
to the over
ow threshold. Care must be taken in its implementation to either avoid or properly
handle over
ows and under
ows which might occur in squaring the arguments. The function
approximated by this operation is mathematically equivalent to complex absolute value, which
is needed in the calculation of the modulus and argument of a complex number. It is important
for this application that an implementation satisfy the constraint on the magnitude of the result
returned.

LIA-2 does not follow the recommendations in [32] and in [33] that

hypotF (+1;qNaN) = +1
hypotF (�1;qNaN) = +1
hypotF (qNaN;+1) = +1
hypotF (qNaN;�1) = +1

which are based on the claim that a qNaN represents an (unknown) real valued number. This
claim is not always valid, though it may sometimes be.

A.5.3.3 Operations for exponentiations and logarithms

For all of the exponentiation operations, over
ow occurs for su�ciently large values of the argu-
ment(s).

There is a problem for powerF (x; y) if both x and y are zero:

{ Ada raises an exception for the operation that is close in semantics to powerF when both
arguments are zero, in accordance with the fact that 00 is mathematically unde�ned.

{ The X/OPEN Portability Guide speci�es for pow(0,0) a return value of 1, and no noti�-
cation. This speci�cation agrees with the recommendations in [30, 32, 33, 36].

The speci�cation in LIA-2 follows Ada, and returns invalid for powerF (0; 0) (with the contin-
uation value 1), because of the risks inherent in returning a result which might be inappropriate
for the application at hand.

The speci�cations for input of +1 or �1 are non-controversial, and are consistent with the
behaviour of the mathematical function xy .

The arguments of powerF are
oating point numbers. No special treatment is provided for
integer
oating point values, which may be approximate. The cases for integer values of the
arguments are covered by the operations powerFI and powerI .

86

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

The result of the powerF operation is invalid for negative values of the base x. The reason
is that the
oating point exponent y might imply an implicit extraction of an even root of x,
which would have a complex value for negative x. This constraint is explicit in Ada, and is widely
imposed in existing numerical packages provided by vendors.

Along any curve de�ned by y = k=ln(x) the mathematical function xy has the value ek . It
follows that some of the limiting values for xy depend on the choice of k, and hence are unde�ned,
as indicated in the speci�cation.

There is an accuracy problem with an algorithm based on the following identity:

xy = r
y�logr

F
(x)

F

The integer part of the product y � logrF (x) de�nes the exponent of the result and the fractional
part de�nes the reduced argument. If the exponent is large, and one calculates pF digits of
this intermediate result, there will be fewer than pF digits for the fraction. Thus, in order to
obtain a reduced argument accurately rounded to p digits, it may be necessary to calculate an
approximation to y � logrF (x) to a few more than logrF (emaxF) + pF base rF digits.

The special exponential operations, corresponding to 2x and 10x, have speci�cations which
are minor variations on those for expF (x). Accuracy and performance can be increased if they
are specially coded, rather than evaluated as expF (mulF (x; lnF (2))) or powerF (2; x).

Similar comments hold for the base 2 and base 10 logarithmic operations.

A.5.3.4 Operations for hyperbolics and inverse hyperbolics

The hyperbolic sine operation, sinhF (x), will over
ow if jxj is in the immediate neighbourhood
of ln(2 � fmax), or greater.

The hyperbolic cosine operation, coshF (x), will over
ow if jxj is in the immediate neighbour-
hood of ln(2 � fmax), or greater.

The hyperbolic cotangent operation, cothF (x), has a pole at x = 0.

The inverse of cosh is double valued, the two possible results having the same magnitude with
opposite signs. The value returned by arccoshF is always greater than or equal to 1.

The inverse hyperbolic tangent operation arctanhF (x) has poles at x = +1 and at x = �1.
The inverse hyperbolic cotangent operation arccothF (x) has poles at x = +1 and at x = �1.

A.5.3.5 Introduction to operations for trigonometrics

A.5.3.6 Operations for radian trigonometrics and inverse radian trigonometrics

The real trigonometric functions sin(x), cos(x), tan(x), cot(x), sec(x), and csc(x) are all periodic
in the (real) argument x. The period for sin, cos, sec, and csc is 2 � � radians (360 degrees). The
period for tan and cot is � radians (180 degrees).

There are three ways in which a limitation on the accuracy of a trigonometric operation can
be identi�ed:

{ The �rst is related to the fact that the density of
oating point values gets sparser as the
magnitude of the values increases. For arguments known to be exact, sparsity implies no
accuracy problems.

For a trigonometric operation, the number of
oating point values per period gets sparser as
the magnitude of the argument increases. Hence, for approximately computed arguments,

87

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

there is a maximum argument for which the sparsity will pose no problem. The Ada

standard suggests the value r
bpF =2c
F for radian reduction.

{ For reduction of an argument given in radians, implementations use one or several approxi-
mate value(s) of � (or of a multiple of �), valid to, say, n digits. It follows that the division
implied in the argument reduction cannot be valid to more than n digits, which implies a
maximum absolute angle value for which the reduction yields an accurate reduced angle
value.

ISO/IEC 10967-2 de�nes two parameters for the identi�cation of the maximum argument for
which the trigonometric operations are guaranteed to satisfy the accuracy requirements: one,
big arg rF , refers to operations with radian arguments. The other, big arg uF , refers to opera-
tions with angular unit (including degree) arguments.

An implementation must support a maximum argument parameter for which a set of trigono-
metric operations is implemented. The value of each of the parameters is determined by the
implementation.

The argument reduction techniques for radians described in [38] avoid the inaccuracies men-
tioned above. Moreover, at least for currently available
oating point implementations, this
techniques can produce p digit reduced arguments with an error bound of ulp=2.

All six functions have an essential singularity at in�nity. In addition

{ tan and sec have poles at odd multiples of �=2 radians (90 degrees).

{ cot and csc have poles at multiples of � radians (180 degrees).

All four of the corresponding operations with poles may produce
oating over
ow for arguments
su�ciently close to the poles of the functions.

The pole noti�cations cannot occur if a non-zero argument is in radians because � is not
representable in F , except when the pole occurs at 0. For the angular unit argument trigonometric
operations a continuation value of +1 has been chosen arbitrarily for a pole which occurs for a
positive argument.

The operations may produce under
ow for arguments su�ciently close to their zeros.

For a denormalised argument x, the sinF and tanF operations can return x for the result,
with very high accuracy. Similarly, for a denormalised argument, cosF and secF can return a
result of 1:0 with very high accuracy.

At present only Ada speci�es trigonometric operations with angular unit argument. ISO/IEC
10967-2 has adopted angular unit argument operations in order to encourage uniformity among
languages which might include such operations in the future. The angular units in T appear to
be particularly important and have therefore been given a tighter error bound requirement. An
implementation can of course have the same (tighter) error bound for all angular units.

Few languages require the functions with the argument in degrees. However, they are almost
universally provided for Fortran.

The tanF operation produces no pole noti�cations if its argument is an element of F . The
reason is that the poles of tan(x) are at odd multiples of �=2, which are not representable in F .

The mathematical cotangent function has a pole at the origin. For a system which supports
signed zeros and in�nities, the continuation values are +1 and �1 for arguments of 0 and �0
respectively.

Although the mathematical function sec has poles at odd multiples of �=2, the secF operation
will not generate them because such arguments are not representable in F . The situation is the
same as for the tangent function in radians.

88

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

The corresponding mathematical functions are multiple valued. They are rendered single
valued by de�ning a principal value range. This range is closely related to a branch cut in
the complex plane for the corresponding complex function. Among the numerical functions this
branch cut is \visible" only for the arctan2 operation.

The principal value ranges are not uniquely determined.

The invalid and under
ow noti�cations are the only noti�cations produced by the inverse
trigonometric functions.

The arc function has a branch cut along the negative real axis. For x < 0 the function has a
discontinuity from �� to +� as y passes through zero from negative to positive values. Thus for
x < 0, systems supporting signed zeros can handle the discontinuity as follows:

arcF (x;�0) = �nearestF (�)
arcF (x; 0) = +nearestF (�)

The values given for the operation arcF (x; y) for the four combinations of signed zeros for x and
y are those given in [32]. There is a problem for input values of +1 or �1 for this operation.
The following table of values is given in [32] for the value of arcF (x; y) with at least one of the
arguments in�nite:

In�nite arguments

x y arcF (x; y)

+1 b � 0 0
+1 +1 �=4
b � 0 +1 �=2
�1 +1 3 � �=4
�1 b � 0 �
�1 b � �0 ��
�1 �1 �3 � �=4

b � �0 �1 ��=2
+1 �1 ��=4
+1 b � �0 �0

where b represents a �nite number.

If one of x and y is in�nite and the other is �nite, the result tabulated is consistent with that
obtained by a conventional limiting process. ISO/IEC 10967-2 provides these results.

However, the results of �=4, ��=4, 3 � �=4, and �3 � �=4 corresponding to in�nite values for
both x and y, are of questionable validity.

A.5.3.7 Operations for argument angular unit trigonometrics and inverse argument

angular unit trigonometrics

If the angular unit argument, u, is such that u=4 2 F , the tanuF operation has poles at odd
multiples of u=4. This is the case for degrees (u = 360).

As for tanuF , if the angular unit argument, u, is such that u=4 2 F the secuF operation has
poles at odd multiples of u=4.

The same comments hold for the arcuF operation as for arcF operation, except that the
discontinuity in the mathematical function is from �u=2 to +u=2.

89

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

A.5.3.8 Operations for degree trigonometrics and inverse degree trigonometrics

Few languages require the trigonometric operations with angles in degrees. However, they are
almost universally provided for Fortran. Performance can probably be gained by implementing
them as functions of the single argument x measured in degrees, rather than using the two
argument forms.

A.5.3.9 Operations for angular-unit conversions

A.5.4 Conversion operations

Clause 5.2 of ISO/IEC 10967-1 covers conversions from an integer type to another integer type
and to a
oating point type.

A.6 Noti�cation

The reason for omitting noti�cation for under
ow for an operation for which the corresponding
mathematical function satis�es f(x) � x if jxj � fminN is as follows: such an under
ow can
happen only if the input operand x is a denormalised number. Hence a noti�cation must have
already been returned when its denormalisation was created. Nothing is gained by \repeating"
the noti�cation, particularly since the calculation of f(x) is very accurate (relative error much
less than epsilonF =2).

A.6.1 Continuation values

An implementation which supports noti�cation by a recording of indicators (ISO/IEC 10967-1,
clause 6.1.2) must supply values to be used if execution is to be continued following occurrence of
a
oating over
ow;under
ow, or unde�ned. For systems which also support signed zeros,
in�nities and NaNs, LIA-2 speci�es how these entities are used for continuation values. Other
implementations must supply continuation values and document the values selected.

A.7 Relationship with language standards

A.8 Documentation requirements

90

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

Annex B

(informative)

Partial conformity

If an implementation of an operation ful�lls all relevant requirements according to the norma-
tive text in LIA-2, except the ones relaxed in this annex, the implementation of that operation
is said to partially conform to LIA-2.

LIA-2 has the following max error requirements for full conformity.

max error hypotF 2 [0:5; 1]

max error expF 2 [0:5; 1:5 � rnd errorF]
max error powerF 2 [max error expF ; 2 � rnd errorF]

max error sinhF 2 [0:5; 2 � rnd errorF]
max error tanhF 2 [max error sinhF ; 2 � rnd errorF]

max error sinF 2 [0:5; 1:5 � rnd errorF]
max error tanF 2 [max error sinF ; 2 � rnd errorF]

max error sinuF : F ! F [finvalidg
max error tanuF : F ! F [finvalidg

For u 2 GF , the max error sinuF (u) parameter shall be in the interval [max error sinF ; 2].
The max error sinuF (u) parameter shall be equal to max error sinF if u 2 T .

For u 2 GF , the max error tanuF (u) parameter shall be in the interval [max error tanF ; 4].
The max error tanuF (u) parameter shall be equal to max error tanF if u 2 T .

In a partially conforming implementation the max error parameters may be greater than what
is speci�ed by LIA-2. The max error parameter values given in an implementation must still
adequately re
ect the accuracy of the relevant operations, if a claim of partial conformity is
made. A partially conforming implementation must document which max error parameters have
greater values than speci�ed by LIA-2.

LIA-2 has a number of extra accuracy requirements in section 5.3. These are detailed in the
paragraphs beginning \Further requirements on the op�F approximation helper function". In a
partially conforming implementation these further requirements need not be ful�lled. The values
returned must still be within the max error bounds that are given by the max error parameters,
if a claim of partial conformity is made. A partially conforming implementation must document
which `further requirements' that are not ful�lled by the implementation.

91

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

92

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

Annex C

(informative)

Example bindings for speci�c languages

This annex describes how a computing system can simultaneously conform to a language
standard (or publicly available speci�cation) and to ISO/IEC 10967-2. It contains suggestions
for binding the \abstract" operations speci�ed in ISO/IEC 10967-2 to concrete language syntax.

Portability of programs can be improved if two conforming LIA-2 systems using the same
language agree in the manner with which they adhere to LIA-2. For instance, LIA-2 requires
that the parameter big angle rF be provided (if any conforming , but if one system provides it by
means of the identi�er BigAngle and another by the identi�er MaxAngle, portability is impaired.
Clearly, it would be best if such names were de�ned in the relevant language standards or binding
standards, but in the meantime, suggestions are given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote \de facto" portability by following these suggestions on their
own.

The languages covered in this annex are

Ada
Basic
C and C++
Fortran
Java
ISLisp and Common Lisp
Modula-2
Pascal and Extended Pascal

This list is not exhaustive. Other languages and other computing devices (like `scienti�c'
calculators, and database `query languages') are suitable for conformity to ISO/IEC 10967-2.

In this annex, the parameters, operations, and exception behaviour of each language are
examined to see how closely they �t the requirements of ISO/IEC 10967-2. Where parameters,
constants, or operations are not provided by the language, names and syntax are suggested.

This annex describes only the language-level support for ISO/IEC 10967-2. An implementation
that wishes to conform must ensure that the underlying hardware and software is also con�gured
to conform to ISO/IEC 10967-2 requirements.

A complete binding for ISO/IEC 10967-2 will include, or refer to, a binding for ISO/IEC
10967-1. In turn, a complete binding for the ISO/IEC 10967-1 will include a binding for IEC 559.
Such a joint LIA-2/LIA-1/IEC 559 binding should be developed as a single binding standard. To
avoid con
ict with ongoing development, only the ISO/IEC 10967-2 speci�c portions of such a
binding are presented in this annex.

C.1 General comments

Most language standards permit an implementation to provide, by some means, the parameters
and operations required by ISO/IEC 10967-2 that are not already part of the language. The
method for accessing these additional parameters and operations depends on the implementation
and language, and is not speci�ed in ISO/IEC 10967-2 nor exempli�ed in this annex. It could

93

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

include external subroutine libraries; new intrinsic functions supported by the compiler; constants
and functions provided as global \macros"; and so on.

Most language standards do not constrain the accuracy of elementary numerical functions, or
specify the subsequent behaviour after a serious arithmetic violation occurs.

In the event that there is a con
ict between the requirements of the language standard and
the requirements of ISO/IEC 10967-2, the language binding standard should clearly identify the
con
ict and state its resolution of the con
ict.

C.2 Ada

The programming language Ada is de�ned by ISO/IEC 8652:1995, Information Technology {
Programming Languages { Ada [6].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Ada datatype Boolean corresponds to the ISO/IEC 10967-1 datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one
oating point
datatype. The notations INT and FLT are used to stand for the names of one of these datatypes
in what follows.

The additional integer operations are listed below, along with the syntax used to invoke them:

maxI(x; y) INT'Max(x, y)
minI(x; y) INT'Min(x, y)

max seqI(xs) Max(xs) y
min seqI(xs) Min(xs) y

dimI(x; y) Dim(x, y) y
powerI(x; y) x ** y
sqrtI (x) Sqrt(x) y

dividesI(x; y) Divides(x, y) y
evenI (x) Even(x) y
oddI(x) Odd(x) y
gcdI(x; y) Gcd(x, y) y
lcmI(x; y) Lcm(x, y) y
gcd seqI (xs) Gcd(xs) y
lcm seqI(xs) Lcm(xs) y

add wrapI(x; y) Add wrap(x, y) y
add ovI(x; y) Add over(x, y) y
sub wrapI(x; y) Sub wrap(x, y) y
sub ovI (x; y) Sub over(x, y) y
mul wrapI(x; y) Mul wrap(x, y) y
mul ovI(x; y) Mul over(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The additional basic
oating point operations are listed below, along with the syntax used to
invoke them:

94

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

maxF (x; y) FLT'Max(x, y)
minF (x; y) FLT'Min(x, y)

mmaxF (x; y) Mmax(x, y) y
mminF (x; y) Mmin(x, y) y
max seqF (xs) Max(xs) y
min seqF (xs) Min(xs) y
mmax seqF (xs) Mmax(xs) y
mmin seqF (xs) Mmin(xs) y

dimF (x; y) Dim(x, y) y
roundingF (x) FLT'Unbiased Rounding(x)

floorF (x) FLT'Floor(x)
ceilingF (x) FLT'Ceiling(x)

rounding restF (x) (x - FLT'Unbiased Rounding(x))
floor restF (x) (x - FLT'Floor(x))

ceiling restF (x) (x - FLT'Ceiling(x))
sqrtF (x) Sqrt(x)

rsqrtF (x) Rsqrt(x) y
iremF (x; y) FLT'Remainder(x, y)

add loF (x; y) Add low(x, y) y
sub loF (x; y) Sub low(x, y) y
mul loF (x; y) Mul low(x, y) y
div restF (x; y) Div rest(x, y) y
sqrt restF (x) Sqrt rest(x) y
add3F (x; y; z) Add(x, y, z) y
add3 midF (x; y; z) AddMid(x, y, z) y
mul addF (x; y; z) Mul add(x, y, z) y
dprodF!F 0(x; y) Prod(x, y) y
sumF (xs) Sum(xs) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF Err hypotenuse(x) y

max err expF Err exp(x) y
max err powerF Err power(x) y

max err sinhF Err sinh(x) y
max err tanhF Err tanh(x) y

big angle rF Big radian angle(x) y
max err sinF Err sin(x) y
max err tanF Err tan(x) y

big angle uF Big angle(x) y
max err sinuF (u) Err sin cycle(u) y
max err tanuF (u) Err tan cycle(u) y

95

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

hypotF (x; y) Hypotenuse(x, y) y

expF (x) Exp(x)

expm1F (x) ExpM1(x) y
powerF (b; y) b ** y

powerFI(b; z) b ** z
powerm1F (b; y) PowerM1(b, y) y
exp2F (x) Exp2(x) y
exp10F (x) Exp10(x) y

lnF (x) Log(x)
ln1pF (x) Log1P(x) y
logF (b; x) Log(x, b)
log1pF (b; x) Log1P(x, b) y
log2F (x) Log2(x) y
log10F (x) Log10(x) y

sinhF (x) Sinh(x)

coshF (x) Cosh(x)
tanhF (x) Tanh(x)

cothF (x) Coth(x)
sechF (x) Sech(x) y
cschF (x) Csch(x) y

arcsinhF (x) Arcsinh(x)

arccoshF (x) Arccosh(x)
arctanhF (x) Arctanh(x)

arccothF (x) Arccoth(x)
arcsechF (x) Arcsech(x) y
arccschF (x) Arccsch(x) y

rad nearest axisF (x) Rad nearest axis(x) y
rad offset axisF (x) Rad offset axis(x) y
radF (x) Rad(x) y
sinF (x) Sin(x)

cosF (x) Cos(x)
tanF (x) Tan(x)

cotF (x) Cot(x)
secF (x) Sec(x) y
cscF (x) Csc(x) y

arcsinF (x) Arcsin(x)
arccosF (x) Arccos(x)

arcF (x; y) Arctan(y, x), or Arccot(x, y)
arctanF (x) Arctan(x)
arccotF (x) Arccot(x)

96

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

arcctgF (x) (Sign(x)*Arccot(Abs(x)))
arcsecF (x) Arcsec(x) y
arccscF (x) Arccsc(x) y

cycle nearest axisF (u; x) Cycle nearest axis(x,u) y
cycle offset axisF (u; x) Cycle offset axis(x,u) y
cycleF (u; x) Cycle(x,u) y
sinuF (u; x) Sin(x,u)

cosuF (u; x) Cos(x,u)
tanuF (u; x) Tan(x,u)

cotuF (u; x) Cot(x,u)
secuF (u; x) Sec(x,u) y
cscuF (u; x) Csc(x,u) y

arcsinuF (u; x) Arcsin(x,u)
arccosuF (u; x) Arccos(x,u)

arcuF (u; x; y) Arctan(y,x,u) or Arccot(x,y,u)
arctanuF (u; x) Arctan(x, Cycle=>u)
arccotuF (u; x) Arccot(x, Cycle=>u)

arcctguF (u; x) (Sign(x)*Arccot(Abs(x), Cycle=>u))
arcsecuF (u; x) Arcsec(x,u) y
arccscuF (u; x) Arccsc(x,u) y

deg nearest axisF (u; x) Cycle nearest axis(x, 360.0) y
deg offset axisF (u; x) Cycle offset axis(x, 360.0) y
degF (x) Cycle(x, 360.0) y
sindF (x) Sin(x, 360.0)

cosdF (x) Cos(x, 360.0)

tandF (x) Tan(x, 360.0)

cotdF (x) Cot(x, 360.0)

secdF (x) Sec(x, 360.0) y
cscdF (x) Csc(x, 360.0) y

arcsindF (x) Arcsin(x, 360.0)

arccosdF (x) Arccos(x, 360.0)

arcdF (x; y) Arctan(y,x, 360.0), or Arccot(x,y, 360.0)

arctandF (x) Arctan(x, Cycle=>360.0)

arccotdF (x) Arccot(x, Cycle=>360.0)

arcctgdF (x) (Sign(x)*Arccot(Abs(x), Cycle=>360.0))

arcsecdF (x) Arcsec(x, 360.0) y
arccscdF (x) Arccsc(x, 360.0) y

rad to cycleF (x; u) Rad to cycle(x, u) y
cycle to radF (u; x) Cycle to rad(u, x) y
cycle to cycleF (u; x; v) Cycle to cycle(u, x, v) y
rad to degF (x) Rad to deg(x) y
deg to radF (x) Deg to rad(x) y
deg to cycleF (x; v) Deg to cycle(x, v) y

97

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

cycle to degF (u; x) Cycle to deg(u, x) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Type conversions in Ada are always explicit and usually use the destination datatype name
as the name of the conversion function. Few of them full�ll the requirements in this standard,
however.

cvtI!I 0(x) INT2(x)

cvtI!I 0(x) Get(s,n,w) convert from string s
cvtI!I 0(x) Put(s,x,base?) convert to string s
cvtI!I 0(x) Get(f?,n,w?) input from text �le f
cvtI!I 0(x) Put(f?,x,w?,base?) output to text�le f

roundingF!I(y) INT(FLT'Unbiased Rounding(y))

floorF!I(y) INT(FLT'Floor(y))
ceilingF!I(y) INT(FLT'Ceiling(y))

cvtnI!F earest(x) FLT Nearest(x) y
cvtdI!F own(x) FLT Down(x) y
cvtuI!F p(x) FLT Up(x) y

cvtnF!F 0earest(y) FLT2(y)

cvtnF!F 0earest(y) Get(s,n,w) convert from string s
cvtnF!F 0earest(y) Put(s,x,a?,e?) convert to string s
cvtnF!F 0earest(y) Get(f?,m,w?) input from text �le f
cvtnF!F 0earest(y) Put(f?,x,i?,a?,e?) output to text �le f
cvtdF!F 0own(y) FLT2 Down(y) y
cvtdF 00!F own(y) Get Down(s,m,w) convert from string s
cvtdF!F 00own(y) Put Down(s,x,a?,e?) convert to string s
cvtuF!F 0p(y) FLT2 Up(y) y
cvtuF 00!F p(y) Get Up(s,m,w) yconvert from string s

cvtuF!F 00p(y) Put Up(s,x,a?,e?) yconvert to string s

cvtnF!Dearest(y) FXD(y)

cvtnF!D0earest(y) Put(s,y,a?,e?)
cvtnF!D0earest(y) Put(f?,y,i?,a?,e?)

cvtdF!Down(y) FXD Down(y) y
cvtdF!D0own(y) Put Down(s,x,a?,e?) y
cvtuF!Dp(y) FXD Up(y) y
cvtuF!D0p(y) Put Up(s,x,a?,e?) y

cvtnD!F earest(z) FLT(z)
cvtnD0!F earest(z) Get(s,n,w?)

cvtnD0!F earest(z) Get(f?,n,w?)
cvtdD!F own(z) FLT Down(z) y
cvtdD0!F own(z) Get Down(s,m,w) y
cvtuD!F p(z) FLT Up(z) y
cvtuD0!F p(z) Put Up(s,x,a?,e?) y

98

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional.

Ada provides non-negative numerals for all its integer and
oating point types. The default
base is 10, but all bases from 2 to 16 can be used. There is no di�erentiation between the numerals
for di�erent
oating point types, nor between numerals for di�erent integer types, but integer
numerals (without a point) cannot be used for
oating point types, and `real' numerals (with a
point) cannot be used for integer types. Integer numerals can have an exponent part though.
The details are not repeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numeric
Literals, clause 3.5.4 Integer Types, and clause 3.5.6 Real Types.

Numerals for in�nity...

String formats for numerals (same as numerals in Ada programs?).

C.3 BASIC

The programming language BASIC is de�ned by ISO/IEC 10279:1991, Information Technology
{ Programming Languages { Full BASIC [12].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the ISO/IEC 109672 for that operation. For
each of the marked items a suggested identi�er is provided.

The BASIC datatype ???? corresponds to the LIA-1 datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) Min(x, y) y
maxI(x; y) Max(x, y) y
min seqI (xs) Min(xs) y
max seqI (xs) Max(xs) y

dimI(x; y) Dim(x, y) y
sqrtI(x) Sqrt(x) y
powerI(x; y) x ** y y

dividesI(x; y) Divides(x, y) y
evenI(x) Even(x) y
oddI(x) Odd(x) y
gcdI(x; y) Gcd(x, y) y
lcmI(x; y) Lcm(x, y) y
gcd seqI(xs) Gcd(xs) y
lcm seqI (xs) Lcm(xs) y

add wrapI(x; y) Add wrap(x, y) y
add ovI(x; y) Add over(x, y) y
sub wrapI(x; y) Sub wrap(x, y) y
sub ovI(x; y) Sub over(x, y) y
mul wrapI(x; y) Mul wrap(x, y) y
mul ovI (x; y) Mul over(x, y) y

99

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) Min(x, y) y
maxF (x; y) Max(x, y) y
min seqF (xs) Min(xs) y
max seqF (xs) Max(xs) y

roundingF (x) Rounding(x) y
floorF (x) Floor(x)
ceilingF (x) Ceiling(x) y

dimF (x; y) Dim(x, y) y
add3F (x; y; z) Add(x, y, z) y
sumF (xs) Sum(xs) y
dprodF!F 0(x; y) Prod(x, y) y
mul addF (x; y; z) Mul add(x, y, z) y
iremF (x; y) Remainder(x, y) y
sqrtF (x) Sqrt(x)
rsqrtF (x) Rsqrt(x) y

add loF (x; y) Add low(x, y) y
sub loF (x; y) Sub low(x, y) y
mul loF (x; y) Mul low(x, y) y
div restF (x; y) Div rest(x, y) y
sqrt restF (x) Sqrt rest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF Err hypotenuse(x) y

max err expF Err exp(x) y
max err powerF (b; x) Err power(b, x) y

max err sinhF Err sinh(x) y
max err tanhF Err tanh(x) y

big angle rF Big radian angle(x) y
max err sinF Err sin(x) y
max err tanF Err tan(x) y

big angle uF Big angle(x) y
max err sinuF (u) Err sin cycle(u) y
max err tanuF (u) Err tan cycle(u) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

100

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

hypotF (x; y) Hypotenuse(x, y) y

expF (x) Exp(x)
expm1F (x) ExpM1(x) y
powerFI(b; z) Ipower(b, z) y
powerF (b; y) Power(b, y) y
powerm1F (b; y) PowerM1(b, y) y
exp2F (x) Exp2(x) y
exp10F (x) Exp10(x) y

lnF (x) Log(x)

ln1pF (x) Log1P(x) y
logF (b; x) Log(x, b) y
log1pF(b; x) Log1P(x, b) y
log2F (x) Log2(x)

log10F(x) Log10(x)

sinhF (x) Sinh(x)
coshF (x) Cosh(x)

tanhF (x) Tanh(x)
cothF (x) Coth(x) y
sechF (x) Sech(x) y
cschF (x) Csch(x) y

arcsinhF (x) Arcsinh(x) y
arccoshF (x) Arccosh(x) y
arctanhF (x) Arctanh(x) y
arccothF (x) Arccoth(x) y
arcsechF (x) Arcsech(x) y
arccschF (x) Arccsch(x) y

rad nearest axisF (x) Nearest axis(x) y
rad offset axisF (x) Offset axis(x) y
radF (x) Rad(x) y
sinF (x) Sin(x) (when in radian mode)
cosF (x) Cos(x) (when in radian mode)
tanF (x) Tan(x) (when in radian mode)
cotF (x) Cot(x) (when in radian mode)
secF (x) Sec(x) (when in radian mode) y
cscF (x) Csc(x) (when in radian mode) y

arcsinF (x) Arcsin(x) (when in radian mode)
arccosF (x) Arccos(x) (when in radian mode)
arctanF (x) Arctan(x) (when in radian mode)
arccotF (x) Arccot(x) (when in radian mode)
arcctgF (x) (Sign(x)*Arccot(Abs(x))) (when in radian mode)
arcsecF (x) Arcsec(x) y
arccscF (x) Arccsc(x) y
arcF (x; y) Angle(x, y) (when in radian mode)

101

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

cycle nearest axisF (u; x) Nearest axis(x,u) y
cycle offset axisF (u; x) Offset axis(x,u) y
cycleF (u; x) Cycle(u,x) y
sinuF (u; x) Sin(u,x) y
cosuF (u; x) Cos(u,x) y
tanuF (u; x) Tan(u,x) y
cotuF (u; x) Cot(u,x) y
secuF (u; x) Sec(u,x) y
cscuF (u; x) Csc(u,x) y

arcsinuF (u; x) Arcsin(u,x) y
arccosuF (u; x) Arccos(u,x) y
arctanuF (u; x) Arctan(u,x) y
arccotuF (u; x) Arccot(u,x) y
arcctguF (u; x) (Sign(x)*Arccot(u,Abs(x))) y
arcsecuF (u; x) Arcsec(u,x) y
arccscuF (u; x) Arccsc(u,x) y
arcuF (u; x; y) Angle(u,x, y) y

deg nearest axisF (u; x) Nearest axis(x) y
deg offset axisF (u; x) Offset axis(x) y
degF (x) Degree(x) y
sindF (x) Sin(x) (when in degree mode)
cosdF (x) Cos(x) (when in degree mode)
tandF (x) Tan(x) (when in degree mode)
cotdF (x) Cot(x) (when in degree mode)
secdF (x) Sec(x) (when in degree mode) y
cscdF (x) Csc(x) (when in degree mode) y

arcsindF (x) Arcsin(x) (when in degree mode)
arccosdF (x) Arccos(x) (when in degree mode)
arctandF (x) Arctan(x) (when in degree mode)
arccotdF (x) Arccot(x) (when in degree mode)
arcctgdF (x) (Sign(x)*Arccot(Abs(x))) (when in degree mode)
arcsecdF (x) Arcsec(x) (when in degree mode) y
arccscdF (x) Arccsc(x) (when in degree mode) y
arcdF (x; y) Angle(x,y) (when in degree mode)

rad to cycleF (x; u) Rad to cycle(x, u) y
cycle to radF (u; x) Cycle to rad(u, x) y
cycle to cycleF (u; x; v) Cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Type conversions in BASIC...

convertI!I 0(x) INT2(x)

102

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

roundingF!I(y) Rounding(y)
floorF!I(y) Floor(y)

ceilingF!I(y) Ceiling(y)

cvtnearestI!F (x) y
cvtdownI!F (x) y
cvtupI!F (x) y

cvtnearestF!F 0 (y) y
cvtdownF!F 0(y) y
cvtupF!F 0(y) y

cvtnearestF!D(y) y
cvtdownF!D(y) y
cvtupF!D(y) y

cvtnearestD!F (z) y
cvtdownD!F (z) y
cvtupD!F (z) y

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type.

BASIC provides non-negative base 10 numerals for all its integer and
oating point types.

C.4 C and C++

The programming language C is de�ned by ISO/IEC 9899:1990, Information technology { Pro-
gramming languages { C [9]. The programming language C++ is de�ned by ISO/IEC , Informa-
tion Technology { Programming Languages { C++.

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the ISO/IEC 109672 for that operation. For
each of the marked items a suggested identi�er is provided.

Integer valued parameters and derived constants can be used in preprocessor expressions.

The LIA-1 datatype Boolean is implemented in the C datatype int (1 = true and 0 = false).

Every implementation of C has integral datatypes int, long int, unsigned int, and unsigned
long int which conform to the LIA-1.

NOTE { The conformity of short and char (signed or unsigned) is not relevant since values
of these types are promoted to int (signed or unsigned) before computations are done.

C has three
oating point datatypes that (can) conform to LIA-1: float, double, and long

double.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) imin(x, y) y
maxI(x; y) imax(x, y) y
min seqI (xs) imin arr(xs) y

103

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

max seqI(xs) imax arr(xs) y

dimI(x; y) idim(x, y) y
sqrtI (x) isqrt(x) y
powerI(x; y) ipower(x, y) y

dividesI(x; y) divides(x, y) y
evenI (x) x % 2 = 0

oddI(x) x % 2 != 0

gcdI(x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI (xs) gcd arr(xs) y
lcm seqI(xs) lcm arr(xs) y

add wrapI(x; y) add wrap(x, y) y
add ovI(x; y) add over(x, y) y
sub wrapI(x; y) sub wrap(x, y) y
sub ovI (x; y) sub over(x, y) y
mul wrapI(x; y) mul wrap(x, y) y
mul ovI(x; y) mul over(x, y) y

where x and y are expressions of type INT and where xs is an expression of type INT[].

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) min(x, y) y
maxF (x; y) max(x, y) y
min seqF (xs) min arr(xs) y
max seqF (xs) max arr(xs) y

roundingF (x) round(x) y
floorF (x) ffloorf(x), ffloor(x), ffloorl(x)
y
ceilingF (x) ceiling(x) y

dimF (x; y) dim(x, y) y
add3F (x; y; z) add(x, y, z) y
sumF (xs) sum(xs) y
dprodF!F 0(x; y) ????(x, y) y
mul addF (x; y; z) mul add(x, y, z) y
iremF (x; y) remainder(x, y) y
sqrtF (x) sqrtf(x), sqrt(x), sqrtl(x)
rsqrtF (x) rsqrt(x) y

add loF (x; y) add low(x, y) y
sub loF (x; y) sub low(x, y) y
mul loF (x; y) mul low(x, y) y
div restF (x; y) div rest(x, y) y
sqrt restF (x) sqrt rest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type FLT[].

104

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF Err hypotenuse(x) y

max err expF Err exp(x) y
max err powerF (b; x) Err power(b, x) y

max err sinhF Err sinh(x) y
max err tanhF Err tanh(x) y

big radian angleF Big radian angle(x) y
max err sinF Err sin(x) y
max err tanF Err tan(x) y

big angleF Big angle(x) y
max err sinuF (u) Err sin cycle(u) y
max err tanuF (u) Err tan cycle(u) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

hypotF (x; y) hypotenuse(x, y) y

expF (x) exp(x)

expm1F (x) expm1(x)
powerFI(b; z) poweri(b, z) y
powerF (b; y) power(b, y) y
powerm1F (b; y) powerm1(b, y) y
exp2F (x) exp2(x) y
exp10F (x) exp10(x) y

lnF (x) ln(x)
ln1pF (x) ln1p(x)

logF (b; x) log(b, x) y
log1pF(b; x) log1p(b, x) y
log2F (x) log2(x) y
log10F(x) log10(x)

sinhF (x) sinh(x)

coshF (x) cosh(x)
tanhF (x) tanh(x)

cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) asinh(x)
arccoshF (x) acosh(x)
arctanhF (x) atanh(x)

arccothF (x) acoth(x) y

105

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arcsechF (x) asech(x) y
arccschF (x) acsch(x) y

rad nearest axisF (x) nearest axis(x) y
rad offset axisF (x) offset axis(x) y
radF (x) radian(x) y
sinF (x) sin(x)
cosF (x) cos(x)

tanF (x) tan(x)
cotF (x) cot(x) y
secF (x) sec(x) y
cscF (x) csc(x) y

arcsinF (x) asin(x)

arccosF (x) acos(x)
arctanF (x) atan(x)

arccotF (x) acot(x) y
arcctgF (x) (sign(x)*acot(abs(x))) y
arcsecF (x) asec(x) y
arccscF (x) acsc(x) y
arcF (x; y) angle(x, y) y

cycle nearest axisF (u; x) nearest axisu(u, x) y
cycle offset axisF (u; x) offset axisu(u, x) y
cycleF (u; x) cycle(u, x) y
sinuF (u; x) sinu(u, x) y
cosuF (u; x) cosu(u, x) y
tanuF (u; x) tanu(u, x) y
cotuF (u; x) cotu(u, x) y
secuF (u; x) secu(u, x) y
cscuF (u; x) cscu(u, x) y

arcsinuF (u; x) asinu(u, x) y
arccosuF (u; x) acosu(u, x) y
arctanuF (u; x) atanu(u, x) y
arccotuF (u; x) acotu(u, x) y
arcctguF (u; x) (sign(x)*acotu(u, abs(x))) y
arcsecuF (u; x) asecu(u, x) y
arccscuF (u; x) acscu(u, x) y
arcuF (u; x; y) angleu(u, x, y) y

deg nearest axisF (u; x) nearest axisu(360.0, x) y
deg offset axisF (u; x) offset axisu(360.0, x) y
degF (x) cycle(360.0, x) y
sindF (x) sinu(360.0, x) y
cosdF (x) cosu(360.0, x) y
tandF (x) tanu(360.0, x) y
cotdF (x) cotu(360.0, x) y

106

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

secdF (x) secu(360.0, x) y
cscdF (x) cscu(360.0, x) y

arcsindF (x) asinu(360.0, x) y
arccosdF (x) acosu(360.0, x) y
arctandF (x) atanu(360.0, x) y
arccotdF (x) acotu(360.0, x) y
arcctgdF (x) (sign(x)*acotu(360.0, abs(x))) y
arcsecdF (x) asecu(360.0, x) y
arccscdF (x) acscu(360.0, x) y
arcdF (x; y) angleu(360.0, x,y) y

rad to cycleF (x; u) radian to cycle(x, u) y
cycle to radF (u; x) cycle to radian(u, x) y
cycle to cycleF (u; x; v) cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

....

convertI!I 0(x) y

roundingF!I(y) rounding(y) y
floorF!I(y) floor(y)
ceilingF!I(y) ceil(y)

cvtnearestI!F (x) y
cvtdownI!F (x) y
cvtupI!F (x) y

cvtnearestF!F 0 (y) y
cvtdownF!F 0(y) y
cvtupF!F 0(y) y

cvtnearestF!D(y) y
cvtdownF!D(y) y
cvtupF!D(y) y

cvtnearestD!F (z) y
cvtdownD!F (z) y
cvtupD!F (z) y

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type.

C provides non-negative numerals

107

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

C.5 Fortran

The programming language Fortran is de�ned by ISO/IEC 1539:1991, Information technology {
Programming languages { FORTRAN [3].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Fortran datatype LOGICAL corresponds to the LIA-1 datatype Boolean.

Every implementation of Fortran has one integer data type, denoted as INTEGER, and two

oating point data type denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to o�er additional INTEGER types with a di�erent range and
additional REAL types with di�erent precision or range, parameterized with the KIND parameter.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) min0(x, y)
maxI(x; y) max0(x, y)

min seqI(xs) min0(xs[1], xs[2], ..., xs[n])
max seqI(xs) max0(xs[1], xs[2], ..., xs[n])

dimI(x; y) dim(x, y)

sqrtI (x) isqrt(x) y
powerI(x; y) x ** y

dividesI(x; y) divides(x, y) y
evenI (x) even(x) y
oddI(x) odd(x) y
gcdI(x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI (xs) gcd(xs) y
lcm seqI(xs) lcm(xs) y

add wrapI(x; y) add wrap(x, y) y
add ovI(x; y) add over(x, y) y
sub wrapI(x; y) sub wrap(x, y) y
sub ovI (x; y) sub over(x, y) y
mul wrapI(x; y) mul wrap(x, y) y
mul ovI(x; y) mul over(x, y) y

where x and y are expressions of type INT and where xs is an expression of type ARRAY OF INT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) amin1(x, y)

maxF (x; y) amax1(x, y)
min seqF (xs) amin1(xs[1], xs[2], ..., xs[n])
max seqF (xs) amax1(xs[1], xs[2], ..., xs[n])

floorF (x) floor(x)

roundingF (x)

108

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

ceilingF (x) ceil(x)

dimF (x; y) dim(x, y)
add3F (x; y; z) add(x, y, z) y
sumF (xs) sum(xs) y
dprodF!F 0(x; y) ????(x, y) y
mul addF (x; y; z) mul add(x, y, z) y
iremF (x; y) remainder(x, y) y
sqrtF (x) sqrt(x)

rsqrtF (x) rsqrt(x) y

add loF (x; y) add low(x, y) y
sub loF (x; y) sub low(x, y) y
mul loF (x; y) mul low(x, y) y
div restF (x; y) div rest(x, y) y
sqrt restF (x) sqrt rest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF err hypotenuse(x) y

max err expF err exp(x) y
max err powerF (b; x) err power(b, x) y

max err sinhF err sinh(x) y
max err tanhF err tanh(x) y

big angle rF big radian angle(x) y
max err sinF err sin(x) y
max err tanF err tan(x) y

big angle uF big angle(x) y
max err sinuF (u) err sin cycle(u) y
max err tanuF (u) err tan cycle(u) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

hypotF (x; y) hypotenuse(x, y) y

powerFI(b; z) b ** z
powerF (b; y) b ** y
powerm1F (b; y) powerm1(b, y) y
expF (x) exp(x)
expm1F (x) expm1(x) y
exp2F (x) exp2(x) y
exp10F (x) exp10(x) y

109

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

logF (b; x) logbase(b, x) y
log1pF (b; x) logbase1p(b, x) y
lnF (x) log(x)
ln1pF (x) log1p(x) y
log2F (x) log2(x)
log10F (x) log10(x)

sinhF (x) sinh(x)

coshF (x) cosh(x)
tanhF (x) tanh(x)

cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) asinh(x)
arccoshF (x) acosh(x)

arctanhF (x) atanh(x)
arccothF (x) acoth(x) y
arcsechF (x) asech(x) y
arccschF (x) acsch(x) y

rad nearest axisF (x) rad nearest axis(x) y
rad offset axisF (x) rad offset axis(x) y
radF (x) rad(x) y
sinF (x) sin(x)
cosF (x) cos(x)

tanF (x) tan(x)
cotF (x) cot(x)
secF (x) sec(x) y
cscF (x) csc(x) y

arcsinF (x) asin(x)
arccosF (x) acos(x)

arctanF (x) atan(x)
arccotF (x) acot(x) y
arcctgF (x) (sign(x)*acot(abs(x))) y
arcsecF (x) asec(x) y
arccscF (x) acsc(x) y
arcF (x; y) atan2(y, x)

cycle nearest axisF (u; x) cycle nearest axis(u,x) y
cycle offset axisF (u; x) cycle offset axis(u,x) y
cycleF (u; x) cycle(u,x) y
sinuF (u; x) sinu(u,x) y
cosuF (u; x) cosu(u,x) y
tanuF (u; x) tanu(u,x) y
cotuF (u; x) cotu(u,x) y
secuF (u; x) secu(u,x) y

110

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

cscuF (u; x) cscu(u,x) y

arcsinuF (u; x) asinu(u,x) y
arccosuF (u; x) acosu(u,x) y
arctanuF (u; x) atanu(u,x) y
arccotuF (u; x) acotu(u,x) y
arcctguF (u; x) (sign(x)*acotu(abs(x),u))
arcsecuF (u; x) asecu(u,x) y
arccscuF (u; x) acscu(u,x) y
arcuF (u; x; y) atan2u(u,x,y) y

deg nearest axisF (u; x) degree nearest axis(x) y
deg offset axisF (u; x) degree offset axis(x) y
degF (x) degrees(x) y
sindF (x) sind(x) y
cosdF (x) cosd(x) y
tandF (x) tand(x) y
cotdF (x) cotd(x) y
secdF (x) secd(x) y
cscdF (x) cscd(x) y

arcsindF (x) asind(x) y
arccosdF (x) acosd(x) y
arctandF (x) atand(x) y
arccotdF (x) acotd(x) y
arcctgdF (x) (sign(x)*acotd(abs(x))) y
arcsecdF (x) asecd(x) y
arccscdF (x) acscd(x) y
arcdF (x; y) atan2d(y,x) y

rad to cycleF (x; u) rad to cycle(x, u) y
cycle to radF (u; x) cycle to rad(u, x) y
cycle to cycleF (u; x; v) cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Type conversions in Fortran...

convertI!I 0(x) INT2(x)

roundingF!I(y) nint(y))
floorF!I(y) floor(y)

ceilingF!I(y) ceiling(y)

cvtnearestI!F (x) y
cvtdownI!F (x) y
cvtupI!F (x) y

cvtnearestF!F 0 (y) y

111

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

cvtdownF!F 0(y) y
cvtupF!F 0(y) y

cvtnearestF!D(y) y
cvtdownF!D(y) y
cvtupF!D(y) y

cvtnearestD!F (z) y
cvtdownD!F (z) y
cvtupD!F (z) y

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type.

Fortran provides non-negative numerals for all its integer and
oating point types.

C.6 Java

The programming language Java is de�ned by SUN Microsystems...

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Java datatype Boolean corresponds to the LIA-1 datatype Boolean.

Every implementation of Java has integral types int, long int, unsigned int, and unsigned

long int which (can) conform to the LIA-1.

Java has three
oating point types that (can) conform to LIA-1: float, double, and long

double.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) imin(x, y) y
maxI(x; y) imax(x, y) y
min seqI(xs) imin arr(xs) y
max seqI(xs) imax arr(xs) y

dimI(x; y) idim(x, y) y
sqrtI (x) isqrt(x) y
powerI(x; y) ipower(x, y) y

dividesI(x; y) divides(x, y) y
evenI (x) x % 2 = 0

oddI(x) x % 2 != 0

gcdI(x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI (xs) gcd arr(xs) y
lcm seqI(xs) lcm arr(xs) y

add wrapI(x; y) add wrap(x, y) y
add ovI(x; y) add over(x, y) y

112

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

sub wrapI(x; y) sub wrap(x, y) y
sub ovI(x; y) sub over(x, y) y
mul wrapI(x; y) mul wrap(x, y) y
mul ovI (x; y) mul over(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) min(x, y) y
maxF (x; y) max(x, y) y
min seqF (xs) min arr(xs) y
max seqF (xs) max arr(xs) y

floorF (x) ffloor(x)
roundingF (x) round(x) y
ceilingF (x) ceiling(x) y

dimF (x; y) dim(x, y) y
add3F (x; y; z) add(x, y, z) y
sumF (xs) sum(xs) y
dprodF!F 0(x; y) ????(x, y) y
mul addF (x; y; z) mul add(x, y, z) y
iremF (x; y) remainder(x, y) y
sqrtF (x) sqrt(x)

rsqrtF (x) rsqrt(x) y

add loF (x; y) add low(x, y) y
sub loF (x; y) sub low(x, y) y
mul loF (x; y) mul low(x, y) y
div restF (x; y) div rest(x, y) y
sqrt restF (x) sqrt rest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF Err hypotenuse(x) y

max err expF Err exp(x) y
max err powerF (b; x) Err power(b, x) y

max err sinhF Err sinh(x) y
max err tanhF Err tanh(x) y

big radian angleF Big radian angle(x) y
max err sinF Err sin(x) y
max err tanF Err tan(x) y

big angleF Big angle(x) y
max err sinuF (u) Err sin cycle(u) y

113

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

max err tanuF (u) Err tan cycle(u) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

hypotF (x; y) hypotenuse(x, y) y

expF (x) exp(x)
expm1F (x) expm1(x)

powerFI(b; z) poweri(b, z) y
powerF (b; y) power(b, y) y
powerm1F (b; y) powerm1(b, y) y
exp2F (x) exp2(x) y
exp10F (x) exp10(x) y

lnF (x) ln(x)

ln1pF (x) ln1p(x)
logF (b; x) log(b, x) y
log1pF (b; x) log1p(b, x) y
log2F (x) log2(x) y
log10F (x) log10(x)

sinhF (x) sinh(x)

coshF (x) cosh(x)
tanhF (x) tanh(x)
cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) asinh(x)

arccoshF (x) acosh(x)
arctanhF (x) atanh(x)

arccothF (x) acoth(x) y
arcsechF (x) asech(x) y
arccschF (x) acsch(x) y

rad nearest axisF (x) nearest axis(x) y
rad offset axisF (x) offset axis(x) y
radF (x) radian(x) y
sinF (x) sin(x)

cosF (x) cos(x)
tanF (x) tan(x)

cotF (x) cot(x) y
secF (x) sec(x) y
cscF (x) csc(x) y

arcsinF (x) asin(x)
arccosF (x) acos(x)
arctanF (x) atan(x)

114

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

arccotF (x) acot(x) y
arcctgF (x) (sign(x)*acot(abs(x))) y
arcsecF (x) asec(x) y
arccscF (x) acsc(x) y
arcF (x; y) angle(x, y) y

cycle nearest axisF (u; x) nearest axisu(u, x) y
cycle offset axisF (u; x) offset axisu(u, x) y
cycleF (u; x) Cycle(u, x) y
sinuF (u; x) sinu(u, x) y
cosuF (u; x) cosu(u, x) y
tanuF (u; x) tanu(u, x) y
cotuF (u; x) cotu(u, x) y
secuF (u; x) secu(u, x) y
cscuF (u; x) cscu(u, x) y

arcsinuF (u; x) asinu(u, x) y
arccosuF (u; x) acosu(u, x) y
arctanuF (u; x) atanu(u, x) y
arccotuF (u; x) acotu(u, x) y
arcctguF (u; x) (sign(x)*acotu(u, abs(x))) y
arcsecuF (u; x) asecu(u, x) y
arccscuF (u; x) acscu(u, x) y
arcuF (u; x; y) angleu(u, x, y) y

deg nearest axisF (u; x) nearest axisu(360.0, x) y
deg offset axisF (u; x) offset axisu(360.0, x) y
degF (x) cycle(360.0, x) y
sindF (x) sinu(360.0, x) y
cosdF (x) cosu(360.0, x) y
tandF (x) tanu(360.0, x) y
cotdF (x) cotu(360.0, x) y
secdF (x) secu(360.0, x) y
cscdF (x) cscu(360.0, x) y

arcsindF (x) asin(360.0, x) y
arccosdF (x) acos(360.0, x) y
arctandF (x) atan(360.0, x) y
arccotdF (x) acot(360.0, x) y
arcctgdF (x) (sign(x)*acot(360.0, abs(x))) y
arcsecdF (x) asec(360.0, x) y
arccscdF (x) acsc(360.0, x) y
arcdF (x; y) angle(360.0, x,y) y

rad to cycleF (x; u) radian to cycle(x, u) y
cycle to radF (u; x) cycle to radian(u, x) y
cycle to cycleF (u; x; v) cycle to cycle(u, x, v) y

115

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

....

convertI!I 0(x) y

floorF!I(y) floor(y)

roundingF!I(y) round(y) y
ceilingF!I(y) ceil(y)

cvtdownI!F (x) y
cvtnearestI!F (x) y
cvtupI!F (x) y

cvtdownF!F 0(y) y
cvtnearestF!F 0 (y) y
cvtupF!F 0(y) y

cvtdownF!D(y) y
cvtnearestF!D(y) y
cvtupF!D(y) y

cvtdownD!F (z) y
cvtnearestD!F (z) y
cvtupD!F (z) y

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type.

Java provides non-negative numerals

C.7 ISLisp and Common Lisp

The programming language ISLisp is de�ned by ISO/IEC CD 13816.2, Information Technology
{ Programming Languages { Lisp .

The programming language Common Lisp is under development by ANSI X3J13.The standard
will be based on the de�nition contained in Common Lisp the Language.

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatypeBoolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp and of ISLisp has one unbounded integer datatype.
Any mathematical integer is assumed to have a representation as a Common Lisp or ISLisp data
object, subject only to total memory limitations.

Common Lisp has four
oating point types: short-float, single-float, double-float, and
long-float. Not all of these
oating point types must be distinct.

116

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) (min x y)

maxI(x; y) (max x y)
min seqI (xs) (min.xs) or (min x1 x2 ... xn)

max seqI (xs) (max.xs) or (max x1 x2 ... xn)

dimI(x; y) (dim x y) y
sqrtI(x) (isqrt x) y
powerI(x; y) (power x y) y

dividesI(x; y) (dividesp x y) y
evenI(x) (evenp x)
oddI(x) (oddp x)

gcdI(x; y) (gcd x y)
lcmI(x; y) (lcm x y)

gcd seqI(xs) (gcd.xs) or (gcd x1 x2 ... xn)
lcm seqI (xs) (lcm.xs) or (lcm x1 x2 ... xn)

add wrapI(x; y) (add wrap x y) y
add ovI(x; y) (add over x y) y
sub wrapI(x; y) (sub wrap x y) y
sub ovI(x; y) (sub over x y) y
mul wrapI(x; y) (mul wrap x y) y
mul ovI (x; y) (mul over x y) y

where x and y are expressions of type INT and where xs is an expression of type list of INT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) (min x y)

maxF (x; y) (max x y)
min seqF (xs) (min.xs) or (min x1 x2 ... xn)

max seqF (xs) (max.xs) or (max x1 x2 ... xn)

floorF (x) (ffloor x)
roundingF (x) (fround x)
ceilingF (x) (fceiling x)

dimF (x; y) (dim x y) y
add3F (x; y; z) (add x y z) y
sumF (xs) (sum xs) y
dprodF!F 0(x; y) (prod x y) y
mul addF (x; y; z) (mul add x y z) y
iremF (x; y) (remainder x y) y
sqrtF (x) (sqrt x)

rsqrtF (x) (rsqrt x) y

add loF (x; y) (add low x y) y
sub loF (x; y) (sub low x y) y
mul loF (x; y) (mul low x y) y
div restF (x; y) (div rest x y) y

117

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

sqrt restF (x) (sqrt rest x) y

where x, y and z are data objects of the same
oating point type, and where xs is an data objects
that are lists of data objects of the same
oating point type.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF (err hypotenuse x) y

max err expF (err exp x) y
max err powerF (b; x) (err power b x) y

max err sinhF (err sinh x) y
max err tanhF (err tanh x) y

big radian angleF (big radian angle x) y
max err sinF (err sin x) y
max err tanF (err tan x) y

big angleF (big angle x) y
max err sinuF (u) (err sin cycle u) y
max err tanuF (u) (err tan cycle u) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

hypotF (x; y) (hypotenuse x y) y

expF (x) (expt x)
expm1F (x) (expm1 x) y
powerFI(b; z) (expt b z)
powerF (b; y) (expt b y)

powerm1F (b; y) (expm1 b y) y
exp2F (x) (exp2 x) y
exp10F (x) (exp10 x) y

lnF (x) (log x)

ln1pF (x) (log1p x) y
logF (b; x) (log b x)

log1pF (b; x) (log1p b x) y
log2F (x) (log2 x) y
log10F (x) (log10 x) y

sinhF (x) (sinh x)
coshF (x) (cosh x)

tanhF (x) (tanh x)
cothF (x) (coth x) y
sechF (x) (sech x) y
cschF (x) (csch x) y

118

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

arcsinhF (x) (asinh x)
arccoshF (x) (acosh x)

arctanhF (x) (atanh x)
arccothF (x) (acoth x) y
arcsechF (x) (asech x) y
arccschF (x) (acsch x) y

rad nearest axisF (x) (rad nearest axis x) y
rad offset axisF (x) (rad offset axis x) y
radF (x) (radians x) y
sinF (x) (sin x)
cosF (x) (cos x)

tanF (x) (tan x)
cotF (x) (cot x) y
secF (x) (sec x) y
cscF (x) (csc x) y

arcsinF (x) (asin x)
arccosF (x) (acos x)

arctanF (x) (atan x)
arccotF (x) (acot x) y
arcctgF (x) (* (sign x) (acot (abs x))) y
arcsecF (x) (asec x) y
arccscF (x) (acsc x) y
arcF (x; y) (atan2 y x)

cycle nearest axisF (u; x) (cycle nearest axis u x) y
cycle offset axisF (u; x) (cycle offset axis u x) y
cycleF (u; x) (cycle u x) y
sinuF (u; x) (sinU u x) y
cosuF (u; x) (cosU u x) y
tanuF (u; x) (tanU u x) y
cotuF (u; x) (cotU u x) y
secuF (u; x) (secU u x) y
cscuF (u; x) (cscU u x) y

arcsinuF (u; x) (asinU u x y
arccosuF (u; x) (acosU u x y
arctanuF (u; x) (atanU u x y
arccotuF (u; x) (acotU u x y
arcctguF (u; x) (* (sign x) (acotU u (abs x))) y
arcsecuF (u; x) (asecU u x) y
arccscuF (u; x) (acscU u x) y
arcuF (u; x; y) (atan2U u y x) y

deg nearest axisF (u; x) (cycle nearest axis 360 x) y
deg offset axisF (u; x) (cycle offset axis 360 x) y
degF (x) (cycle 360 x) y

119

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

sindF (x) (sinU 360 x) y
cosdF (x) (cosU 360 x) y
tandF (x) (tanU 360 x) y
cotdF (x) (cotU 360 x) y
secdF (x) (secU 360 x) y
cscdF (x) (cscU 360 x) y

arcsindF (x) (asinU 360 x) y
arccosdF (x) (acosU 360 x) y
arctandF (x) (atanU 360 x) y
arccotdF (x) (acotU 360 x) y
arcctgdF (x) (* (sign x) (acotU 360 (abs x))) y
arcsecdF (x) (asecU 360 x) y
arccscdF (x) (acscU 360 x) y
arcdF (x; y) (atan2U 360 y x) y

rad to cycleF (x; u) (rad to cycle x u) y
cycle to radF (u; x) (cycle to rad u x) y
cycle to cycleF (u; x; v) (cycle to cycle u x v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Type conversions in Common Lisp and in ISLisp...

convertI!I 0(x) x (only one integer type)

roundingF!I(y) (round y)
floorF!I(y) (floor y)

ceilingF!I(y) (ceiling y)

cvtnearestI!F (x) y
cvtdownI!F (x) y
cvtupI!F (x) y

cvtnearestF!F 0 (y) y
cvtdownF!F 0(y) y
cvtupF!F 0(y) y

cvtnearestF!D(y) y
cvtdownF!D(y) y
cvtupF!D(y) y

cvtnearestD!F (z) y
cvtdownD!F (z) y
cvtupD!F (z) y

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type.

Common List and ISLisp provides non-negative base 10 numerals for all its integer and
oating

120

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

point types. There is no di�erentiation between the numerals for di�erent
oating point datatypes,
nor between numerals for di�erent integer types, and integer numerals can be used for
oating
point values. The details are not repeated here, see

C.8 Modula 2

The programming language Modula-2 is de�ned by ISO/IEC , Information Technology { Pro-
gramming Languages { Modula-2 .

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Modula-2 datatype Boolean corresponds to the LIA-1 datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) Imin(x, y) y
maxI(x; y) Imax(x, y) y
min seqI (xs) IminArr(xs) y
max seqI (xs) ImaxArr(xs) y

dimI(x; y) Idim(x, y) y
sqrtI(x) Isqrt(x) y
powerI(x; y) Ipower(x, y) y

dividesI(x; y) Divides(x, y) y
evenI(x) (not Odd(x))

oddI(x) Odd(x)
gcdI(x; y) Gcd(x, y) y
lcmI(x; y) Lcm(x, y) y
gcd seqI(xs) GcdArr(xs) y
lcm seqI (xs) LcmArr(xs) y

add wrapI(x; y) AddWrap(x, y) y
add ovI(x; y) AddOver(x, y) y
sub wrapI(x; y) SubWrap(x, y) y
sub ovI(x; y) SubOver(x, y) y
mul wrapI(x; y) MulWrap(x, y) y
mul ovI (x; y) MulOver(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array [] of

INT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) Min(x, y) y
maxF (x; y) Max(x, y) y
min seqF (xs) MinArr(xs) y
max seqF (xs) MaxArr(xs) y

roundingF (x) Rounding(x) y

121

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

floorF (x) Floor(x) y
ceilingF (x) Ceiling(x) y

dimF (x; y) Dim(x, y) y
add3F (x; y; z) Add(x, y, z) y
sumF (xs) Sum(xs) y
dprodF!F 0(x; y) Prod(x, y) y
mul addF (x; y; z) MulAdd(x, y, z) y
iremF (x; y) Remainder(x, y) y
sqrtF (x) Sqrt(x)
rsqrtF (x) Rsqrt(x) y

add loF (x; y) AddLow(x, y) y
sub loF (x; y) SubLow(x, y) y
mul loF (x; y) MulLow(x, y) y
div restF (x; y) DivRest(x, y) y
sqrt restF (x) SqrtRest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array []

of FLT.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF Err hypotenuse(x) y

max err expF Err exp(x) y
max err powerF (b; x) Err power(b, x) y

max err sinhF Err sinh(x) y
max err tanhF Err tanh(x) y

big radian angleF Big radian angle(x) y
max err sinF Err sin(x) y
max err tanF Err tan(x) y

big angleF Big angle(x) y
max err sinuF (u) Err sin cycle(u) y
max err tanuF (u) Err tan cycle(u) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

hypotF (x; y) Hypotenuse(x, y) y

expF (x) Exp(x)
expm1F (x) ExpM1(x) y
powerFI(b; z) PowerI(b, z) y
powerF (b; y) Power(b, y) y
powerm1F (b; y) PowerM1(b, y) y
exp2F (x) Exp2(x) y
exp10F (x) Exp10(x) y

122

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

lnF (x) Ln(x)

ln1pF (x) Ln1P(x) y
logF (b; x) Log(x, b) y
log1pF(b; x) Log1P(x, b) y
log2F (x) Log2(x) y
log10F(x) Log10(x) y

sinhF (x) Sinh(x) y
coshF (x) Cosh(x) y
tanhF (x) Tanh(x) y
cothF (x) Coth(x) y
sechF (x) Sech(x) y
cschF (x) Csch(x) y

arcsinhF (x) Arcsinh(x) y
arccoshF (x) Arccosh(x) y
arctanhF (x) Arctanh(x) y
arccothF (x) Arccoth(x) y
arcsechF (x) Arcsech(x) y
arccschF (x) Arccsch(x) y

rad nearest axisF (x) nearest axis(x) y
rad offset axisF (x) offset axis(x) y
radF (x) Radian(x) y
sinF (x) Sin(x)

cosF (x) Cos(x)
tanF (x) Tan(x) y
cotF (x) Cot(x) y
secF (x) Sec(x) y
cscF (x) Csc(x) y

arcsinF (x) Arcsin(x) y
arccosF (x) Arccos(x) y
arctanF (x) Arctan(x)

arccotF (x) Arccot(x) y
arcctgF (x) (Sign(x)*Arccot(Abs(x))) y
arcsecF (x) Arcsec(x) y
arccscF (x) Arccsc(x) y
arcF (x; y) Angle(x, y) y

cycle nearest axisF (u; x) nearest axisU(u, x) y
cycle offset axisF (u; x) offset axisU(u, x) y
cycleF (u; x) Cycle(u, x) y
sinuF (u; x) SinU(u, x) y
cosuF (u; x) CosU(u, x) y
tanuF (u; x) TanU(u, x) y
cotuF (u; x) CotU(u, x) y

123

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

secuF (u; x) SecU(u, x) y
cscuF (u; x) CscU(u, x) y

arcsinuF (u; x) ArcsinU(u, x) y
arccosuF (u; x) ArccosU(u, x) y
arctanuF (u; x) ArctanU(u, x) y
arccotuF (u; x) ArccotU(u, x) y
arcctguF (u; x) (Sign(x)*ArccotU(u, Abs(x))) y
arcsecuF (u; x) ArcsecU(u, x) y
arccscuF (u; x) ArccscU(u, x) y
arcuF (u; x; y) AngleU(u, x, y) y

sindF (x) SinU(360.0, x) y
cosdF (x) CosU(360.0, x) y
tandF (x) TanU(360.0, x) y
cotdF (x) CotU(360.0, x) y
secdF (x) SecU(360.0, x) y
cscdF (x) CscU(360.0, x) y
deg nearest axisF (u; x) nearest axisU(360.0, x) y
deg offset axisF (u; x) offset axisU(360.0, x) y
degF (x) Cycle(360.0, x) y

arcsindF (x) ArcsinU(360.0, x) y
arccosdF (x) ArccosU(360.0, x) y
arctandF (x) ArctanU(360.0, x) y
arccotdF (x) ArccotU(360.0, x) y
arcctgdF (x) (Sign(x)*ArccotU(360.0, Abs(x))) y
arcsecdF (x) ArcsecU(360.0, x) y
arccscdF (x) ArccscU(360.0, x) y
arcdF (x; y) AngleU(360.0, x,y) y

rad to cycleF (x; u) Radian to cycle(x, u) y
cycle to radF (u; x) Cycle to radian(u, x) y
cycle to cycleF (u; x; v) Cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

....

convertI!I 0(x) y

roundingF!I(y) Round(y) y
floorF!I(y)
ceilingF!I(y)

cvtnearestI!F (x) y
cvtdownI!F (x) y
cvtupI!F (x) y

124

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

cvtnearestF!F 0 (y) y
cvtdownF!F 0(y) y
cvtupF!F 0(y) y

cvtnearestF!D(y) y
cvtdownF!D(y) y
cvtupF!D(y) y

cvtnearestD!F (z) y
cvtdownD!F (z) y
cvtupD!F (z) y

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type.

Modula-2 provides non-negative numerals

C.9 Pascal and Extended Pascal

The programming language Extended Pascal is de�ned in ISO/IEC 10206:1991 Information tech-
nology { Programming languages { Extended Pascal [11]. The programming language ISO Pascal
is de�ned by ISO/IEC 7185:1990, Information technology { Programming languages { Pascal [5].
The programming language ANSI/IEEE Pascal is de�ned in ANSI/IEEE 770/X3.97-1983 [17].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Pascal datatype Boolean corresponds to the LIA-1 datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) Imin(x, y) y
maxI(x; y) Imax(x, y) y
min seqI (xs) IminArr(xs) y
max seqI (xs) ImaxArr(xs) y

dimI(x; y) Idim(x, y) y
sqrtI(x) Isqrt(x) y
powerI(x; y) Ipower(x, y) y

dividesI(x; y) Divides(x, y) y
evenI(x) (not Odd(x))

oddI(x) Odd(x)
gcdI(x; y) Gcd(x, y) y
lcmI(x; y) Lcm(x, y) y
gcd seqI(xs) GcdArr(xs) y
lcm seqI (xs) LcmArr(xs) y

add wrapI(x; y) AddWrap(x, y) y
add ovI(x; y) AddOver(x, y) y

125

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

sub wrapI(x; y) SubWrap(x, y) y
sub ovI (x; y) SubOver(x, y) y
mul wrapI(x; y) MulWrap(x, y) y
mul ovI(x; y) MulOver(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) Min(x, y) y
maxF (x; y) Max(x, y) y
min seqF (xs) MinArr(xs) y
max seqF (xs) MaxArr(xs) y

roundingF (x) Rounding(x) y
floorF (x) Floor(x) y
ceilingF (x) Ceiling(x) y

dimF (x; y) Dim(x, y) y
add3F (x; y; z) Add(x, y, z) y
sumF (xs) Sum(xs) y
dprodF!F 0(x; y) Prod(x, y) y
mul addF (x; y; z) MulAdd(x, y, z) y
iremF (x; y) Remainder(x, y) y
sqrtF (x) Sqrt(x)

rsqrtF (x) Rsqrt(x) y

add loF (x; y) AddLow(x, y) y
sub loF (x; y) SubLow(x, y) y
mul loF (x; y) MulLow(x, y) y
div restF (x; y) DivRest(x, y) y
sqrt restF (x) SqrtRest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF Err hypotenuse(x) y

max err expF Err exp(x) y
max err powerF (b; x) Err power(b, x) y

max err sinhF Err sinh(x) y
max err tanhF Err tanh(x) y

big radian angleF Big radian angle(x) y
max err sinF Err sin(x) y
max err tanF Err tan(x) y

big angleF Big angle(x) y
max err sinuF (u) Err sin cycle(u) y

126

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

max err tanuF (u) Err tan cycle(u) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

hypotF (x; y) Hypotenuse(x, y) y

expF (x) Exp(x)
expm1F (x) ExpM1(x) y
powerFI(b; z) PowerI(b, z) y
powerF (b; y) Power(b, y) y
powerm1F (b; y) PowerM1(b, y) y
exp2F (x) Exp2(x) y
exp10F (x) Exp10(x) y

lnF (x) Ln(x)

ln1pF (x) Ln1P(x) y
logF (b; x) Log(x, b) y
log1pF(b; x) Log1P(x, b) y
log2F (x) Log2(x) y
log10F(x) Log10(x) y

sinhF (x) Sinh(x) y
coshF (x) Cosh(x) y
tanhF (x) Tanh(x) y
cothF (x) Coth(x) y
sechF (x) Sech(x) y
cschF (x) Csch(x) y

arcsinhF (x) Arcsinh(x) y
arccoshF (x) Arccosh(x) y
arctanhF (x) Arctanh(x) y
arccothF (x) Arccoth(x) y
arcsechF (x) Arcsech(x) y
arccschF (x) Arccsch(x) y

sinF (x) Sin(x)
cosF (x) Cos(x)

tanF (x) Tan(x) y
cotF (x) Cot(x) y
secF (x) Sec(x) y
cscF (x) Csc(x) y
rad nearest axisF (x) nearest axis(x) y
rad offset axisF (x) offset axis(x) y
radF (x) Radian(x) y

arcsinF (x) Arcsin(x) y
arccosF (x) Arccos(x) y
arctanF (x) Arctan(x)

127

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

arccotF (x) Arccot(x) y
arcctgF (x) (Sign(x)*Arccot(Abs(x))) y
arcsecF (x) Arcsec(x) y
arccscF (x) Arccsc(x) y
arcF (x; y) Angle(x, y) y

sinuF (u; x) SinU(u, x) y
cosuF (u; x) CosU(u, x) y
tanuF (u; x) TanU(u, x) y
cotuF (u; x) CotU(u, x) y
secuF (u; x) SecU(u, x) y
cscuF (u; x) CscU(u, x) y
cycle nearest axisF (u; x) nearest axisU(u, x) y
cycle offset axisF (u; x) offset axisU(u, x) y
cycleF (u; x) Cycle(u, x) y

arcsinuF (u; x) ArcsinU(u, x) y
arccosuF (u; x) ArccosU(u, x) y
arctanuF (u; x) ArctanU(u, x) y
arccotuF (u; x) ArccotU(u, x) y
arcctguF (u; x) (Sign(x)*ArccotU(u, Abs(x))) y
arcsecuF (u; x) ArcsecU(u, x) y
arccscuF (u; x) ArccscU(u, x) y
arcuF (u; x; y) AngleU(u, x, y) y

sindF (x) SinU(360.0, x) y
cosdF (x) CosU(360.0, x) y
tandF (x) TanU(360.0, x) y
cotdF (x) CotU(360.0, x) y
secdF (x) SecU(360.0, x) y
cscdF (x) CscU(360.0, x) y
deg nearest axisF (u; x) nearest axisU(360.0, x) y
deg offset axisF (u; x) offset axisU(360.0, x) y
degF (x) Cycle(360.0, x) y

arcsindF (x) Arcsin(360.0, x) y
arccosdF (x) Arccos(360.0, x) y
arctandF (x) Arctan(360.0, x) y
arccotdF (x) Arccot(360.0, x) y
arcctgdF (x) (Sign(x)*Arccot(360.0, Abs(x))) y
arcsecdF (x) Arcsec(360.0, x) y
arccscdF (x) Arccsc(360.0, x) y
arcdF (x; y) Angle(360.0, x,y) y

rad to cycleF (x; u) RadianToCycle(x, u) y
cycle to radF (u; x) CycleToRadian(u, x) y
cycle to cycleF (u; x; v) CycleToCycle(u, x, v) y

128

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

....

convertI!I 0(x) y

floorF!I(y) Floor(y)

roundingF!I(y) Round(y) y
ceilingF!I(y)

cvtdownI!F (x) y
cvtnearestI!F (x) y
cvtupI!F (x) y

cvtdownF!F 0(y) y
cvtnearestF!F 0 (y) y
cvtupF!F 0(y) y

cvtdownF!D(y) y
cvtnearestF!D(y) y
cvtupF!D(y) y

cvtdownD!F (z) y
cvtnearestD!F (z) y
cvtupD!F (z) y

where x is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a �xed point type.

Pascal provides non-negative numerals

129

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

130

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

Annex D

(informative)

Bibliography

This annex gives references to publications relevant to ISO/IEC 109672.

International Standards Documents

[1] IEC 559:1989, Binary
oating-point arithmetic for microprocessor systems. (Also:
ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.)

[2] ISO/IEC Directives, Part 3: Drafting and presentation of International Standards, 1989.

[3] ISO/IEC 1539:1991, Information technology { Programming languages { Fortran. (Also:
ANSI X3.198-1991, American National Standard Programming Language Fortran.)

[4] ISO/IEC 6160:1979, Information technology { Programming languages { PL/I. (Endorsement
of ANSI X3.53-1976, American National Standard Programming Language PL/I.)

[5] ISO/IEC 7185:1990, Information technology { Programming languages { Pascal. (Also:
ANSI/IEEE 770/X3.97-1983, American National Standard / IEEE Standard / Pascal Com-
puter Programming Language.)

[6] ISO/IEC 8652:1995, Information technology { Programming languages { Ada.

[7] ISO/IEC 8825:1990, Information Processing Systems { Open Systems Interconnection { Spec-
i�cation of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1).

[8] ISO/IEC 9001:1987, Quality systems { Model for quality assurance in production and instal-
lation.

[9] ISO/IEC 9899:1990, Information technology { Programming languages { C. (Also: ANSI
X3.159-1989, American National Standard for Information Systems { Programming Lan-

guage { C.)

[10] ISO/IEC TR 10176:1991, Information technology { Guidelines for the preparation of pro-

gramming language standards.

[11] ISO/IEC 10206:1991, Information technology { Programming languages { Extended Pascal.
(Also: ANSI/IEEE 770/X3.160-1989, Standard for the programming language Extended Pas-
cal.)

[12] ISO/IEC 10279:1991, Information technology { Programming languages for Information Sys-

tems { Programming Languages { Full BASIC. (Also: ANSI X3.113-1987American National
Standard for Information Systems { Programming Languages { Full BASIC.)

[13] ISO/IEC 10514:1994, Information technology { Programming languages { Modula-2.

[14] ISO/IEC 10967-1:1994, Information technology { Language independent arithmetic { Part

1: Integer and
oating point arithmetic.

[15] ISO/IEC 10967-3:|, Information technology { Language independent arithmetic { Part 3:
Complex
oating point arithmetic and complex elementary numerical functions. (To be pub-
lished.)

131

ISO/IEC CD 10967-2.3:1998(E) Third Committee Draft

National Standards Documents

[16] ANSI/MIL-STD-1815A-1995?, Reference Manual for the Ada Programming Language.

[17] ANSI/IEEE 770/X3.97-1983,American National Standard / IEEE Standard / Pascal Com-
puter Programming Language.

[18] ANSI/IEEE 770/X3.160-1989, Standard for the programming language Extended Pascal.

[19] ANSI X3.113-1987 American National Standard for Information Systems { Programming

Languages { Full BASIC.

[20] ANSI X3.159-1989, American National Standard for Information Systems { Programming
Language { C.

[21] ANSI X3.198-1991, American National Standard Programming Language Fortran.

[22] ANSI/IEEE Std 754-1984, IEEE Standard for Binary Floating-Point Arithmetic.

[23] ANSI/IEEE Std 854-1987, A Radix-Independent Standard for Floating-Point Arithmetic.

[24] ANSI X3.226, American National Standard for Information Systems { Programming Lan-
guage { Common Lisp (Draft 12.24).

[25] ANSI X3.74-1987, Americal National Standard Programming Language General Purpose
PL/I.

Books, Articles, and Other Documents

[26] J S Squire (ed), Ada Letters, vol. XI, No. 7, ACM Press (1991).

[27] M Abramowitz and I Stegun (eds), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Tenth Printing, 1972, Superintendent of Documents, U.S.
Government Printing O�ce, Washington, D.C. 20402.

[28] J Du Croz and M Pont, The Development of a Floating-Point Validation Package, NAG
Newsletter, No. 3, 1984.

[29] J W Demmel and X Li, Faster Numerical Algorithms via Exception Handling, 11th Interna-
tional Symposium on Computer Arithmetic, Winsor, Ontario, June 29 - July 2, 1993.

[30] D Goldberg, What Every Computer Scientist Should Know about Floating-Point Arithmetic.
ACM Computing Surveys, Vol. 23, No. 1, March 1991.

[31] J R Hauser, Handling Floating-Point Exceptions in Numeric Programs. ACM Transactions
on Programming Languages and Systems, Vol. 18, No. 2, March 1986, Pages 139-174.

[32] W Kahan, Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing's
Sign Bit, Chapter 7 in The State of the Art in Numerical Analysis ed. by M Powell and A
Iserles (1987) Oxford.

[33] W Kahan, Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic, Panel Discussion of Floating-Point Past, Present and Future, May 23, 1995, in
a series of San Francisco Bay Area Computer Historical Perspectives, sponsored by SUN
Microsystems Inc.

[34] U Kulisch and W L Miranker, Computer Arithmetic in Theory and Practice, Academic Press,
1981.

132

Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

[35] U Kulisch and W L Miranker (eds), A New Approach to Scienti�c Computation, Academic
Press, 1983.

[36] D C Sorenson and P T P Tang, On the Orthogonality of Eigenvectors Computed by Divide-
and-Conquer Techniques, SIAM Journal of Numerical Analysis, Vol. 28, No. 6, p. 1760,
algorithm 5.3.

[37] Floating-Point C Extensions in Technical Report Numerical C Extensions Committee X3J11,
April 1995, SC22/WG14 N403, X3J11/95-004.

[38] MPayne and R Hanek, Radian Reduction for Trigonometric Functions, SIGNUM Newsletter,
Vol. 18, January 1983.

[39] M Payne and R Hanek, Degree Reduction for Trigonometric Functions, SIGNUM Newsletter,
Vol. 18, April 1983.

[40] N L Schryer, A Test of a Computer's Floating-Point Unit, Computer Science Technical
Report No. 89, AT&T Bell Laboratories, Murray Hill, NJ, 1981.

133

