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Foreword

ISO (the International Organisation for Standardisation) and IEC (the International Electrotech-
nical Commission) form the specialised system for world-wide standardisation. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organisation to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical commit-
tee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee
are circulated to national bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 10967-2 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Sub-Committee SC 22, Programming languages.

ISO/IEC 10967 consists of the following parts, under the general title Information technology

— Language independent arithmetic:

— Part 1: Integer and floating point arithmetic
— Part 2: Flementary numerical functions

— Part 3: Complex floating point arithmetic and complex elementary numerical functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

Notes and annexes A to D of ISO/IEC 10967-2 are for information only.

vii
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Introduction

Portability is a key issue for scientific and numerical software in today’s heterogeneous computing
environment. Such software may be required to run on systems ranging from personal computers
to high performance pipelined vector processors and massively parallel systems.

Part 1 of ISO/IEC 10967, LIA-1, specifies the basic properties of integer and floating point
types that can be relied upon in writing portable software.

The aims for this part, part 2 of ISO/IEC 10967, LIA-2, are extensions of the aims for LIA-
1: i.e. to ensure accuracy adequate for numerical analysts, predictability, notification on the
production of exceptional results, and compatibility with language standards.

The content of LIA-2 is based on LIA-1, and extends LIA-1’s specifications to specifications for
operations approximating real elementary functions, operations often required (usually without
a detailed specification) by the standards for programming languages widely used for scientific
software. LIA-2 also provides specifications for conversions between the “internal” values of an
arithmetic datatype, and a very close approximation in, e.g., the decimal radix. It does not
cover the further transformation to decimal string format, which is usually provided by language
standards. LIA-2 also includes specifications for a number of other functions deemed useful, even
though they may not be stipulated by language standards.

The numerical functions covered by LIA-2 are computer approximations to mathematical func-
tions of one or more real arguments. Accuracy versus performance requirements often vary with
the application at hand. LIA-2 recognises this by recommending that implementors support more
than one library of these numerical functions. Various documentation and (program available)
parameters requirements are specified to assist programmers in the selection of the library best
suited to the application at hand.

Annex A is intended to be read in parallel with the standard.

viii
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Information technology —

Language independent arithmetic —
Part 2: Elementary numerical functions

1 Scope

ISO/IEC 10967-2 defines the properties of numerical approximations for many of the real ele-
mentary numerical functions available in standard libraries for a variety of languages in common
use for mathematical and numerical applications.

An implementor may choose any combination of hardware and software support to meet the
specifications of ISO/IEC 10967-2. It is the computing environment, as seen by the program-
mer/user, that does or does not conform to the specifications.

The term implementation of 1SO/TEC 10967-2 denotes the total computing environment, in-
cluding hardware, language processors, subroutine libraries, exception handling facilities, other
software, and all pertinent documentation.

1.1 Specifications included in ISO/IEC 10967-2

The specifications of ISO/IEC 10967-1 are included by reference in ISO/IEC 10967-2.

ISO/IEC 10967-2 provides specifications for numerical functions for which all operand val-
ues are of integer or floating point datatypes satisfying the requirements of ISO/IEC 10967-1.
Boundaries for the occurrence of exceptions and the maximum error allowed are prescribed for
each such operation. Also the result produced by a special value operand, such as an infinity, a
NaNN, or a (returnable) value in R is prescribed for each operation.

ISO/IEC 10967-2 covers most numerical functions required by the ISO standards for Ada,
Basic, C/C++, Fortran, Extended Pascal, ISLisp, and PL/I. In particular, specifications are
provided for

a) some additional integer operations,

b) some additional non-transcendental floating point operations, including maximum and min-
imum operations,

¢) exponentiations, logarithms, hyperbolics, and

d) trigonometrics.
ISO/IEC 10967-2 also provide specifications for

e) conversions between implemented datatypes (possibly based on different radices) conforming
to the requirements of 1ISO/TEC 10967-1,

f) the radix conversion operations used, for example, in text input and output.

In addition, it provides specifications for
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g) the results produced when one or more operand value is an IEC 559 special value, and

h) program-visible parameters that characterise the operations.

ISO/IEC 10967-2 uses the same procedures as ISO/IEC 10967-1 for reporting errors.

1.2 Specifications not within the scope of ISO/IEC 10967-2

This standard provides no specifications for:

a) Numerical functions whose operands are of more than one datatype (with one exception).
This standard neither requires nor excludes the presence of such “mixed operand” opera-
tions.

b) An interval data type, or the operations on such data. This standard neither requires nor
excludes such data or operations.

¢) A fixed point data type, or the operations on such data. This standard neither requires nor
excludes such data or operations.

d) A rational data type, or the operations on such data. This standard neither requires nor
excludes such data or operations.

e) The properties of arithmetic data types that are not related to the numerical process, such
as the representation of values on physical media.

f) The properties of integer and floating point data types that properly belong in language
standards. Examples include

1) the syntax of literals and expressions,

the precedence of operators,

the rules of assignment and parameter passing,

the presence or absence of automatic type coercions,

the consequences of applying an operation to values of improper type, or to uninitialised
data.

Nor does this part of ISO/IEC 10967 provide any specifications for

g) how numerical functions should be implemented,
h) which algorithms are to be used for the various operations,
i) the textual form used for input or output by any specific programming language,

j) complex, matrix, statistical, or symbolic operations.

2 Conformity

It is expected that the provisions of this part of ISO/TEC 10967 will be incorporated by reference
and further defined in other International Standards; specifically in language standards and in
language binding standards.

A binding standard specifies the correspondence between one or more operations and pa-
rameters defined in ISO/IEC 10967-2 and the concrete language syntax of some programming
language. More generally, a binding standard specifies the correspondence between certain oper-
ations and the elements of some arbitrary computing entity. A language standard that explicitly
provides such binding information can serve as a binding standard.



Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

Conformity to ISO/TEC 10967-2 is always with respect to a specified set of operations. Con-
formity to ISO/IEC 10967-2 implies conformity to ISO/TEC 10967-1 for the integer and floating
point datatypes used.

When a binding standard for a language exists, an implementation shall be said to conform to
this part of ISO/IEC 10967 if and only if it conforms to the binding standard. In particular, in
the case of conflict between a binding standard and this part of ISO/IEC 10967, the specifications
of the binding standard shall take precedence.

When a binding standard covers only a subset of the operations defined in ISO/IEC 10967-2,
an implementation remains free to conform to ISO/IEC 10967-2 with respect to other operations
independently of that binding standard.

When no binding standard for a language and some operations specified in ISO/IEC 10967-2
exists, an implementation conforms to this part of ISO/IEC 10967 if and only if it provides one or
more operations that together satisfy all the requirements of clauses 5 through 8 that are relevant
to those operations.

An implementation is free to provide operations that do not conform to ISO/IEC 10967-2 or

that are beyond the scope of this Part. The implementation shall not claim or imply conformity
with respect to such operations.

An implementation is permitted to have modes of operation that do not conform to ISO/IEC
10967-2. A conforming implementation shall specify how to select the modes of operation that
ensure conformity.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See annex C for suggested language bindings.

2 A complete binding for ISO/TEC 10967-2 will include (explicitly or by reference) a binding
for ISO/TEC 10967-1 as well, which in turn includes (explicitly or by reference) a binding
for IEC 559 as well.

3 Tt is not possible to conform to ISO/TEC 10967-2 without specifying to which set of oper-
ations conformity is claimed.

3 Normative References

The following standards contain provisions which, through reference in this text, constitute pro-
visions of ISO/IEC 10967-2. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on ISO/IEC 10967-2 are
encouraged to investigate the possibility of applying the most recent edition of the standards
indicated below. Members of 1EC and ISO maintain registers of currently valid International
Standards.

IEC 559:1989, Binary floating-point arithmetic for microprocessor systems.

ISO/IEC 10967-1:1994, Information technology — Language independent arithmetic —
Part 1: Integer and floating point arithmetic.

4 Symbols and definitions

4.1 Symbols

In ISO/IEC 10967-2, Z denotes the set of mathematical integers, R denotes the set of classical
real numbers, and C denotes the set of complex numbers. Note that Z C R C C.
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Ja, z] designates the interval {y € R | z < y < z},
[, z] designates the interval {y € R | 2 <y < z},
[, z[ designates the interval {y € R | 2 <y < z}, and
Ja, z[ designates the interval {y € R | z <y < z}.

All prefix and infix operators have their conventional (exact) mathematical meaning. The
conventional notation for set definition and manipulation is also used. In particular ISO/TEC
10967-2 uses

= and <= for logical implication and equivalence

=, %, /s 2, log,(y), v/, lol, 2], [+], and round(z) on reals
<, <, =, #, >, and > between reals

U, N, X, €, C, and = on sets

max and min on non-empty sets of integers and reals

— for a mapping between sets

ISO/TEC 10967-2 uses * for multiplication, and x for the Cartesian product of sets. \/z € [0, o[,
when the function is defined. For x € R, the notation |z] designates the largest integer not
greater than z:

lz] € 2 and az-1<|z] <
the notation [«] designates the smallest integer not less than a:

[2] €2 and az<[z]<a+1
and the notation round(z) designates the integer closest to z:

round(z) € Z and 2 —0.5 <round(z) <z+0.5
where in case z is exactly half-way between two integers, the even integer is the result.

The divides relation (|) on integers tests whether an integer 7 divides an integer j exactly:
ilj < (i#0andixn=jforsomen € 2Z)
The following ideal mathematical functions are defined in Chapter 4 of the Handbook of Math-

ematical Functions with Formulas, Graphs, and Mathematical Tables [27].
el’? $y7

1117 10gb7

sinh, cosh, tanh, coth, sech, csch,

arcsinh, arccosh, arctanh, arccoth, arcsech, arccsch,

sin, cos, tan, cot, sec, csc,

arcsin, arccos, arctan, arccot, arcsec, arccsc.
Many of the inverses are multi-valued. The selection of which value to return, so as to make the
inverses into functions, is done in the conventional way. The only one over which there is some
difference of conventions it the arccot function. Conventions there vary for negative arguments;
either a positive return value (giving a function that is continuous over zero), or a negative value
(giving a sign symmetric function). In this part of ISO/IEC 10967, arccot refers to the continuous
inverse function, and arcctg refers to the sign symmetric inverse function.

NOTE 1 - Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables [27] uses the notation arccot for what is called arcctg in LIA-2.
Define the following mathematical functions:
rad : R - R
axis_rad : R — {(1,0),(0,1),(-=1,0),(0,-1)} x R
arc : RXR =R

The rad function is defined by
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rad (x) =z —round(z/(2+ 7)) x 2%

The axis_rad function is defined by

axis_rad(z) = ((1,0), arcsin(sin(z if cos

))) ()
= ((0,1), arcsin(cos(z))) if sin(z) > 1/y/2
= ((—1,0),arcsin(sin(z))) if cos(z) < —1/+/2
= ((0, —1), arcsin(cos(x))) if sin(z) < —1/4/2
The arc function is defined by

arc(z,y) = —arccos(z/\/22 +y?) ify<0
= arccos(z/\/22 +y%)  ify>0
NOTES
2 rad(z) = arccos(cos(z)) if sin(z) > 0 and rad(z) = — arccos(cos(x)) if sin(x) < 0.

3 The first part of azis_rad(z) indicates which axis is nearest to the angle #. The second part
of aris_rad(x) is an angle offset from the axis that is nearest to the angle z. The second
part of aris_rad(x) is equal to rad(z) if cos(x) > 1/v/2 (i.e. if the first part of azis_rad(x)
is (1,0)). More generally, the second part of aris_rad(z) is equal to rad(4 x ) /4.

4 rad(xz) returns the same angle as the angle value x, but the returned angle value is between
—m and w. The rad function is defined to be used as the basis for the angle normalisation
operations. The axis_rad function is defined to be used as the basis for a numerically more
accurate radian angle normalisation operation. The arc function is defined to be used as
the basis for the arcus operations, which are used for conversion from Cartesian to polar
co-ordinates.

The datatype Boolean consists of the two values true and false.

Jst((z,y)) = x, and snd((z,y)) = y.

Square brackets are used to write finite sequences of values. [] is the sequence containing no
values. [s], is the sequence of one value, s. [s1, s3], is the sequence of two values, s; and then ss.
Etc. The colon operator is used to prepend a value to a sequence: @ : [xy, ..., 2] = [2, 21, ..., 2]

[S], where S is a set, denotes the set of finite sequences, where each value in each sequence is
in S.
NOTE 5 - Tt should be clear from context if [X] is a sequence of one element, or the set of

sequences with values from X. It should also be clear from context if [z, 2] is a sequence of
two values, or an interval.

Integer datatypes and floating point datatypes are defined in ISO/IEC 10967-1.
The following symbols are defined in ISO/IEC 10967-1:1994, and used in this part.

Exceptional values:
integer_overflow, floating_overflow, underflow, and undefined.

Integer parameters:

bounded;, mazinty, and mininty.
Integer helper functions:

wrapy.
Integer operations:

negr, addy, suby, muly, rem{.

Floating point parameters:
rE, pp, eming, emazy, denormyp, and iec_559 .
Derived floating point constants:
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fmaz g, fming, fminN g, fminD g, and epsilong.
Floating point rounding constants:
rnd_style, rnd_errorp.
Floating point value sets related to F:
F*, Fp, Fy.
Floating point helper functions:
er, resulty.
Floating point operations:
negr, addp, subp, mulg, divg, signg.
Floating point conversion operations:
CUtF_>F/.

Three new exceptional values, invalid, pole, and angle_too_big, are introduced in ISO/IEC
10967-2 in addition to those in ISO/IEC 10967-1:1994. invalid and pole are in ISO/IEC 10967-
2 used instead of the undefined of ISO/IEC 10967-1:1994. angle_too_big is used when the
floating point angle value argument is so big that even an highly accurate result from a trigono-
metric operation is questionable, due to that the density of floating point values has decreased
significantly at these big angle values.

NOTE 6 — ISO/IEC 10967-2 provides specifications for angle normalisation operations that

can be used to transform a (not too big) angle value to an angle value within one cycle for
the same (or very close) angle.

The following symbols represent values defined in IEC 559:1989 and used in ISO/TEC 10967-2:
-0, +oo, —00, gqNaN, and sNaN.

These symbols are not part of the set I, but if itec_559 has the value true, these values are
included in the floating point datatype corresponding to F.
NOTE 7 — ISO/TIEC 10967-2 uses the above four symbols for compatibility with TEC 559.

In particular, the symbol —0 is not the application of (mathematical) unary — to the value
0, and is a value logically distinct from 0.

4.2 Definitions

For the purposes of ISO/IEC 10967-2, the following definitions apply:

accuracy: The closeness between a computed result and the corresponding true mathematical
result.

arithmetic datatype: A datatype whose values are members of Z, R, or C.

NOTE 1 - This standard specifies requirements for integer and floating point data
types. Complex numbers are not covered here, but will be included in a subsequent part

of ISO/IEC 10967 [15].

continuation value: A computational value used as the result of an arithmetic operation when
an exception occurs. Continuation values are intended to be used in subsequent arithmetic
processing. (Contrast with ezceptional value. See 6.1.2 of ISO/IEC 10967-1:1994.)

datatype: A set of values and a set of operations that manipulate those values.

denormalisation loss: A larger than normal rounding error caused by the fact that subnormal
values have less than full precision. (See 5.2.5 of ISO/IEC 10967-1:1994, for a full definition.)

denormalised, denormal: The non-zero values of a floating point type F' that provide less than
the full precision allowed by that type. (See Fp in 5.2 of ISO/IEC 10967-1:1994, for a full
definition.)
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error: (1) The difference between a computed value and the correct value. (Used in phrases like
“rounding error” or “error bound”.)

(2) A synonym for exception in phrases like “error message” or “error output”. Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable numeric result. This might arise
because no such result exists mathematically, or because the mathematical result cannot
be represented with sufficient accuracy.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the
occurrence of an exception. Exceptional values are not used in subsequent arithmetic pro-
cessing. (See clause 5 of ISO/IEC 10967-1:1994.)

NOTES

2 Exceptional values are used as part of the defining formalism only. With respect to
ISO/TEC 10967, they do not represent values of any of the datatypes described. There
is no requirement that they be represented or stored in the computing system.

3 Exceptional values are not to be confused with the NaNs and infinities defined in IEC
559. Contrast this definition with that of continuation value above.

helper function: A function used solely to aid in the expression of a requirement. Helper
functions are not visible to the programmer, and are not required to be part of an im-
plementation. However, some implementation defined helper functions are required to be
documented.

implementation (of this part of ISO/IEC 10967): The total arithmetic environment presented
to a programmer, including hardware, language processors, exception handling facilities,
subroutine libraries, other software, and all pertinent documentation.

literal: A syntactic entity denoting a value without having proper sub-entities that are expres-
sions.

monotonic approximation: An operation opg : ... X F'x ... = F, where the other arguments
are kept constant, is a monotonic approximation of a predetermined mathematical function

h:R —= RIif, for every a € F' and b € F,
a) h is monotonic non-decreasing on [a, b] implies opr (..., a,...) < opr(...,b,...),
b) h is monotonic non-increasing on [a, b] implies opp (..., a,...) > opg(...,b,...).
monotonic non-decreasing: A function h : R — R is monotonic non-decreasing on a real

interval [a, b] if for every  and y such that a < 2 <y < b, h(z) and h(y) are well-defined
and h(z) < h(y).

monotonic non-increasing: A function » : R — R is monotonic non-increasing on a real
interval [a, b] if for every  and y such that a < 2 <y < b, h(z) and h(y) are well-defined
and h(z) > h(y).

normalised: The non-zero values of a floating point type I’ that provide the full precision allowed
by that type. (See Fy in 5.2 of ISO/IEC 10967-1:1994 for a full definition.)

notification: The process by which a program (or that program’s end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a notification.

(See clause 6 of ISO/IEC 10967-1:1994 for details.)
numeral: A numeric literal. It may denote a value in R, an infinity, or a NaN.

numerical function: A computer routine or other mechanism for the approximate evaluation
of a mathematical function.
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operation: A function directly available to the user/programmer, as opposed to helper functions
or theoretical mathematical functions.

pole: A mathematical function f has a pole at zg if z¢ is finite, f is defined, finite, monotonous,

and continuous in at least one side of the neighbourhood of zg, and 1i_>m f(2) is infinite.
T—T0

precision: The number of digits in the fraction of a floating point number. (See 5.2 of ISO/IEC
109671:1994.)

rounding: The act of computing a representable final result for an operation that is close to the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see 5.2.6 of ISO/IEC 10967-1:1994). (See also A.5.2.6 of ISO/IEC
10967-1:1994 for some examples.)

rounding function: Any function rnd : R — X (where X is a given discrete and unlimited
subset of R) that maps each element of X to itself, and is monotonic non-decreasing.
Formally, if z and y are in R,

r€X =rndz)==z
r<y=rnd(z) <rnd(y)

Note that if u € R is between two adjacent values in X, rnd(u) selects one of those adjacent
values.

round to nearest: The property of a rounding function rnd that when u € R is between two
adjacent values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant
from u, either may be chosen deterministically.

round toward minus infinity: The property of a rounding function rnd that when v € R is
between two adjacent values in X, rnd(u) selects the one less than u.

round toward plus infinity: The property of a rounding function rnd that when u € R is
between two adjacent values in X, rnd(u) selects the one greater than u.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted. (Quoted from [2].)

should: A verbal form used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from [2].)

signature (of a function or operation): A summary of information about an operation or func-
tion. A signature includes the function or operation name; a subset of allowed argument
values to the operation; and a superset of results from the function or operation (including
exceptional values if any), if the argument is in the subset of argument values given in the
signature.

The signature
addy : I x I — I U{integer_overflow}

states that the operation named add; shall accept any pair of I values as input, and (when
given such input) shall return either a single I value as its output or the exceptional value
integer_overflow.

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will
actually be returned for some input. An operation given an argument outside the stipulated
argument domain may produce a result outside the stipulated results range.
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The signature chosen in the specifications below is the one that allows all non-special values
as input, and gives all non-special, special, and exceptional values that may result. More
restrictive (for example, only the domain for which non-exceptional values result) or less
restrictive (for example, including IEC 559 special values as arguments) are not given in
the specifications below.

subnormal: A denormal value, the value 0, or the value —0.

ulp: The value of one “unit in the last place” of a floating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp

of a normalised value z (in F), with exponent ¢, precision p, and radix r, is r*~7, and the
ulp of a subnormal value is fminD . (See 5.2 of ISO/IEC 10967-1:1994.)

5 Specifications for the numerical functions

5.1 Additional basic integer operations

Clause 5.1 of ISO/IEC 10967-1 specifies integer datatypes and a number of operations on values
of an integer datatype. In this clause some additional operations on values of an integer datatype
are specified.

I is an integer datatype conforming to ISO/IEC 10967-1. Integer datatypes conforming to
ISO/IEC 10967-1 usually do not contain any NaN or infinity values, even though they may do
so. Therefore this clause has no specifications for such values as arguments. String formats for
integer values usually do contain (signalling) NaNs, however, when that string format is regarded
as an (non-ISO/IEC 10967-1) integer datatype. See clause 5.4 on conversions.

5.1.1 The integer result and wrap helper functions

The result; helper function:
result; : Z — I U {integer_overflow}

resulty(x) =z ifeecl
= integer_overflow ifeglandz e 2

The wrap; helper function (also used in ISO/IEC 10967-1). mazint; and minint; are from
ISO/IEC 10967-1.

wrapr: Z2 — 1

wrapr(z) =z — (n * (mazint; — minint; 4+ 1))
ifeeZand I #2Z2
=z otherwise

where n € Z is chosen such that the result is in 1.
NOTES
1 n = |(x — minintr)/(maxint; — minint; + 1) if € Z and T # Z;
n = [(x — mawzinty)/(maxint; — minint; + 1)] if e € Z and I # Z.
2 For some wrapping basic arithmetic operations this n is computed by the *
in clause 5.1.9.

_ov’ operations
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5.1.2 Integer maximum and minimum operations

mazxy: I x T —1

mazy(z,y) = max{x,y} ife,yel

miny I xX T — 1

ming(z,y) = min{x, y} ife,yel

mazx_seqr : [I] — I U{invalid}

maz_seqr([z1, - 2.])
= invalid if n =0 and —oo is not available
= max{zy,...,T,} ifn>1and {2y,...,2,} C I

min_seqy : [I] — I U {invalid }

min_seq([©1, - &)
= invalid if n =0 and 400 is not available
= min{zy,...,2,} ifn>1and {2y,...,2,} C I

5.1.3 Integer positive difference (monus, diminish) operation
dimy: I x I — I U{integer_overflow}

dimy(z,y) = resulty(max{0,z —y}) if a2,y € [

NOTE - diémy cannot be implemented as max (0, subr(x, y)) for limited integer types, since
this latter expression has other overflow properties.

5.1.4 Integer power and arithmetic shift operations

powery : [ x I — I'U {integer_overflow, invalid }

powerr(z,y) = result;(aY) ifx,yelandy>0
=1 ifeelandy=0and 2 #0
= invalid (1) ify=0and 2=0
— invalid ife,ye Tand y <0

shift2; : I x I — I'U {integer_overflow, invalid }
shift2;(z,y) = result;(|z *2Y]) ifz,yel

shift10y: I x I — I'U {integer_overflow, invalid }
shift10;(xz,y) = resulty(|z * 10Y]) ifz,yel

5.1.5 Integer square root (rounded to nearest integer) operation

sqrty . I — I'U {invalid}

sqrir(x) = round (/) ifz€landz>0
= invalid ifzelandz<0

10
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5.1.6 Divisibility and even/odd test operations

dividesy : I x I — Boolean

dividesi(z,y) = true if z,y € I and z|y
= false if z,y € I and not z|y

NOTES
1 dividesy(0,0) = false, since 0 does not divide anything, not even 0.

2 dividesy cannot be implemented as, e.g., eqr (0, remJIt(y, z)), since the remainder functions
are undefined for a zero second argument.

eveny : I — Boolean

eveny(x) = true if 2 € I and 2z
= false if # € I and not 2|z

oddy : I — Boolean

odd(z) = true if € I and not 2|z
= false if # € I and 2|z

5.1.7 Additional integer division and remainder operations

quoty : I x I — I U {integer_overflow, invalid }

quoty(z,y) = result;([z/y]) if e,y €l and y#0
— invalid ifxelandy=20

pady: I X I — I U {invalid}

padr(z,y) = ([z/y]*y) — = if 2,y €l and y #0
— invalid ifxelandy=20

remcy : I x I — I U {integer_overflow, invalid }

remcp(z,y) =result;(z — ([¢/y] xy))if e,y €  and y #0
— invalid ifxelandy=20

divry : I x I — I U {integer_overflow, invalid }
divry(z,y) = result;(round(z/y)) ifz,y€landy#0

— invalid ifxelandy=20

remry: I x I — I U{integer_overflow, invalid}

remry(z,y) = result;(z — (round(z/y) * y))
if e,y €l and y#0
— invalid ifxelandy=20
NOTE - remcy and remry can overflow only for unsigned integer datatypes (miny = 0).

11
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5.1.8 Greatest common divisor and least common multiple operations

gedp i I x I — I U {integer_overflow, invalid}

gedr(z,y) = resulty(max{v € Z | v|z and v|y})
if z,y € I and (z # 0 or y # 0)
= invalid if # =0 and y =0 and +oo is not available
NOTES

1 Returning 0 for geds(0,0), as is sometimes suggested, would be incorrect, since the greatest
common divisor for 0 and 0 is infinity.

2 gedy will overflow only if bounded; = true, minint; = —maxint; — 1, and both arguments
to gedy are mininty. The greatest common divisor is then —mininty, which is then not in

1.

lemyp: I x I — I'U{integer_overflow}

lemp(x,y) = result;y(min{v € Z | z|v and y|v and v > 0})
if z,y € Iand x #0 and y # 0
=0 if z,y € I and (z =0 or y =0)
NOTE 3 - lemj(x,y) overflows for many arguments: e.g., if © and y are relative primes,

then the least common multiple is |2 * y|, which may be greater than maxini;.

ged_seqr : [I] — I U{integer_overflow, invalid }

ged_seqr([x1, ..., z4))
= resulty(max{v € 2 | v|z; forall i € {1,...,n}})
if {z1,...,2,} C I and {0} # {x1,...,2,}

= invalid if {0} = {21, ...,2,} and 400 is not available

lem_seqp : [I] = I U {integer _overflow}

lem_seqr([x1, ..., x4))
= result;(min{v € Z | a;jvforallie {1,....,n}and v > 0})
if {z1,...,2,5 C 1T and 0 & {ay1,...;2,}
=0 if {z1,...,2,5 C 1 and 0 € {xy1,...,2,}

5.1.9 Support operations for extended integer range

These operations can be used to implement extended range integer datatypes, and unbounded
integer datatypes.

add_wrapy : I x I — 1
add_wrapr(z,y) = wrapr(z + y) ifz,yel

add_ovy : I x I —-{-1,0,1}
add_ovi(z,y) = ((z +y) — add_wrapr(z,y))/(mazint; — minint; + 1)

if e,ye€land I # Z
=0 ife,yeland I = Z

sub_wrapy : I x I — 1

12
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sub_wrapr(z,y) = wrapr(z — y) ife,yel

sub_ovy : I x [ —{-1,0,1}

sub_ovy(z,y) = ((x —y) — sub_wrap(z,y))/(mazint; — minint; + 1)
ife,yeland I # 2
=0 ife,yeland I =2

mul_wrapy : I x I — 1

mul wrapy(z,y) = wrapr(z * y) ifz,yel

mul_ovp: I x I — 1

mul_ovy(z,y) = ((z xy) — mulwrapr(z,y))/(mazint; — minint; + 1)
ife,yeland I # 2
=0 ife,yeland I =2

NOTE - The add_ovy and sub_ovy will only return —1 (for negative overflow), 0 (no overflow),
and 1 (for positive overflow).

5.2 Additional basic floating point operations

Clause 5.2 of ISO/IEC 10967-1 specifies floating point datatypes and a number of operations
on values of a floating point datatype. In this clause some additional operations on values of a
floating point datatype are specified.

NOTE - Further operations on values of a floating point datatype, for elementary floating
point numerical functions, are specified in clause 5.3.

F is a floating point type conforming to ISO/IEC 10967-1. Floating point datatypes con-
forming to ISO/TEC 10967-1 usually do contain —0, infinity, and NalN values. Therefore, in this
clause there are specifications for such values as arguments.

5.2.1 The rounding and floating point result helper functions

Floating point rounding helper functions:
downp : R — F*
is a rounding function. It rounds towards negative infinity.
NOTE 1 - F*is defined in ISO/TEC 10967-1. It is the unbounded extension of F.
upr : R — F*
is a rounding function. It rounds towards positive infinity.
nearestp : R — F*

is a rounding function, that is partially implementation defined. It rounds to nearest. The
handling of ties is implementation defined, but must be sign symmetric. If tec_559 = true, the
semantics of nearesty is completely determined: ties are rounded to even last digit by nearesty.

resulty is a helper function that is partially implementation defined. The specification from
ISO/IEC 10967-1 is repeated here, but here details regarding continuation values upon overflow
and underflow are given.

NOTE 2 — These details are intended to be in accordance with IEC 559 when tec_559F =
true.

13
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resultp : R X (R — F*) — F' U {underflow, floating_overflow}

resultp(z, nearesty) = floating_overflow(4oo) if nearestp(x) > fmazp
resultp(z, nearesty) = floating_overflow(—oo) if nearesty(z) < —fmaz g
resulty(z, upr) = floating_overflow(+o0) if upp(z) > fmazp
resulty(z, upr) = floating_overflow(—fmaz ) if upp(z) < —fmazp
resultp(z,downy) = floating_overflow(fmazy)  if downg(z) > fmazp
resultp(z,downyr) = floating_overflow(—oo) if downg(z) < —fmazp
resultp(z, rnd) = rnd(z) if fminNp <|z| and |rnd(z)| < fmazp
=0 ifz=0
= underflow(rnd(z)) if denormp = true and
(rnd(z) < 0 or 2 > 0) and
|z| < fminN g and @ # rnd(z)
=z if tec_559F = true and = # 0
and |z| < fminN g and @ = rnd(z)
and underflow is only recorded in indicator
= underflow(z) if iec_559F = true and = # 0

underflow(-0)
underflow(0)

underflow(0)

= underflow(-0)

and |z| < fminN g and @ = rnd(z)
and underflow is trapped

rnd(z) or underflow(rnd(z)) if iec_559 = false and

denormp = true and = # 0
and |z| < fminN g and @ = rnd(z)

if denormp = true and —0 is available
and rnd(z) =0 and z < 0

if denormp = true and —0 is not available
and rnd(z) =0 and z < 0

if denormp = false and 0 <
and z < fminN g

if denormyp = false and —0 is available
and —fminNp < x and z <0

= underflow(0) if denormp = false and —0 is not available
and —fminNp < x and z <0
NOTE 3 - denormp = false implies tec_559p = false, and iec_559F = true implies

denormp = true.

5.2.2 Floating point maximum and minimum operations

What the maximum and minimum operations should return on one quiet NaN (gNaN) input
depends on the context. Sometimes qNaNN is the appropriate result, sometimes the non-NalN

argument is the appropriate result. Therefore, two variants (each) of the floating point maxi-

mum and minimum operations are specified here,

and the programmer can decide which one is

appropriate to use at each particular place of usage, if both are included in the ISO/TIEC 10967-2

binding.
marp : F X F — F
mazp(z,y) = max{z,y} ife,yel
=400 if # =400 and y € FU{—00, -0}
=y ifr=-0and ye€ Fandy>0
=-0 if # =—-0and ((y € F and y < 0) or y = —0)
=y if t = —o0 and y € FU {400, -0}

14
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= invalid (gNaN)

ming : FXF — F
= min{z, y}
=Yy
=-0
=Yy

[T
| &8 | & |
g = 8

= invalid (gNaN)

mmarp : FXF — F
mmazp(x,y) = mazp(z,y)

=z

=¥

= qNaN

= invalid (gNaN)

mming : Fx F— F

ISO/IEC CD 10967-2.3:1998(E)

if y =400 and © € FU {400, -0}
ify=—-0and ¢ € Fand ¢ >0
ify=—-0and ¢ € Fand 2 <0

if y=—o0 and 2 € FF'U {—00, -0}

if 2 is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if # is a signalling NaN or y is a signalling NaN

ife,ye F

if 2 =400 and y € F'U {—00, -0}
ifr=-0andye Fandy>0

if 2 =—0and ((y € " and y < 0) or y = —0)

if 2 = —ocoand y € F'U {400, -0}

if y =400 and © € FU {400, -0}
ify=—-0and ¢ € Fand ¢ >0
ify=—-0and ¢ € Fand 2 <0

if y=—o0 and 2 € FF'U {—00, -0}

if 2 is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if # is a signalling NaN or y is a signalling NaN

if 2,y € FU{+00,—0,—00}

if © € FU{4+00,—0,—00} and y is a quiet NaN
if y € FU{+400,—0,—0c0} and z is a quiet NaN
if  is a quiet NaN and y is a quiet NaN

if # is a signalling NaN or y is a signalling NaN

mming(z,y) = ming(x,y) if 2,y € FU{+00,—0,—00}
=z if © € FU{4+00,—0,—00} and y is a quiet NaN
=y if y € FU{+400,—0,—0c0} and z is a quiet NaN
= qNaN if  is a quiet NaN and y is a quiet NaN
= invalid (gNaN) if 2 is a signalling NaN or y is a signalling NaN
NOTE -~ If one of the arguments to mmaxp or mming is a quiet NaN, that argument is
ignored.

mazx_seqp : [l - F'U{—o0, invalid }

maz_seqp ([T1, ..., Tn))
= -0
= invalid (gNaN)
= qNaN
= invalid (gNaN)

= mazp(maz_seqp([z1, ...

if n = 0 and —occ is available

if n = 0 and —oc is not available
if n =1 and 21 is not a NaN

if n =1 and =z is a quiet NaN

if n =1 and z; is a signalling NaN

s Tn—1])y Tp)

15
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ifn>2
min_seqr : [F] — ' U {400, invalid }
min_seqr (21, - 2]
= 400 if n =0 and 400 is available
= invalid (qNaN) if n = 0 and +o0 is not available
= if n =1 and 2 is not a NaN
= qNaN if n =1 and x; is a quiet NaN
= invalid (qNaN) if n =1 and 2 is a signalling NaN
= ming(min_seqr ([T1, ..., Tn-1]), Tp)
ifn>2
mmaz_seqp : [F] = F U{—o0,invalid }
mmaz_seqp ([T1, ..., Tn))
= —00 if n =0 and —oo is available
= invalid (qNaN) if n = 0 and —oo is not available
= if n =1 and z; is not a signalling NaN
= invalid (qNaN) if n =1 and 2 is a signalling NaN
= mmaz p(mmaz_seqp([T1, ..., Tn-1]), Tn)
ifn>2
mmin_seqr : [F] = F'U {400, invalid }
mmin_seqr ([1, ..., Ts))
= 400 if n =0 and 400 is available
= invalid (qNaN) if n = 0 and +o0 is not available
= if n =1 and z; is not a signalling NaN
= invalid (qNaN) if n =1 and 2 is a signalling NaN
= mming(mmin_seqp ([T1, ..., Tn-1]), Tn)
ifn>2

5.2.3 Floating point positive difference (monus, diminish) operation

dimp : F' X F'— F'U{floating_overflow, underflow}

dimp(z,y) = resultp(max{0,z —y)}, rndr)
ifx,ye F
= dimp(0,y) if e =—-0and y € FU{—00,—-0,+00}
= dimp(z,0) if y=-0and z € FU{—00,400}
=40 if 2 =400 and y € FU{—o0}
= invalid (qNaN) if z =+o0 and y = +o0
=0 if = —ocoand y € F'U {400}
= invalid (qNaN) if 2 = —oc0 and y = —o0
=0 if y=+o0 and z € F
= 400 ify=—-occand z € F
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if « is a signalling NaN or y is a signalling NaN

NOTE - dimp cannot be implemented by maxzp (0, subp(z,y)), since this latter expression
has other overflow properties.
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roundingr : F'— FU{-0}
roundingp(z) = round(x)
negr(0)

-0

400

—00

= qNaN

= invalid (gNaN)

floorg : F - F
floorp(x) = [z]
=-0
=4
= —00
= qNaN
= invalid (gNaN)

ceilingr : ' — FFU{-0}

ceilingp(z) = [z]
= negr(0)
=-0
=4
= —00
= qNaN
= invalid (gNaN)

NOTES

1 The result in the second case for roundingp
corresponding to F, otherwise it is —0.

2 floorp(x) = negp(ceilingr (negr(z))),

ISO/IEC CD 10967-2.3:1998(E)

5.2.4 Round, floor, and ceiling operations

if # € F' and (2 > 0 or round(z)
if 2 € F' and 2 < 0 and round(x)
ifx =-0

if z =400

if v =—-00

if © is a quiet NaN

if x is a signalling NaN

ife el

ife =-0
if z =400
ifr = —c0

if © is a quiet NaN
if x is a signalling NaN

if € Fand (z > 0 or [2] #0)
if 2 € Fand x <0and [2] =0
ifx =-0

if + = 400

if v =—-00

if © is a quiet NaN

if x is a signalling NaN

ceilingp(x) = negr(floor p(negr(x))), and
roundingp(x) = negr (roundingr(negr(z))).

Negative zeroes, if available, are handed in such a way as to maintain these identites.

)

3 Truncate to integer is specified in ISO/TEC 10967-1:1994, by the name intpartp.

rounding restyp : F' — F

rounding_restp(x)
=z — round(z)
=0
= invalid (gNaN)
= invalid (gNaN)
= qNaN
= invalid (gNaN)

floor_restp : F' — F

ife el

ife =-0
if z =400
ifr = —c0

if © is a quiet NaN
if x is a signalling NaN

0)
0

and ceilingp 1s 0, if —0 1s not in the type

17
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floor_restp(z) =« — 2]
=0
= invalid (qNaN)
= invalid (qNaN)
= qNaN
= invalid (qNaN)

cetling restyp : F' — F

ceiling_restp(x)
=2 — [z
=0
= invalid (qNaN)
= invalid (qNaN)
= qNaN
= invalid (qNaN)

Third Committee Draft

ifz ekl

if 2 = -0
if z =400
if 2 = —00

if z is a quiet NaN
if z is a signalling NaN

ifz ekl

if 2 = -0
if z =400
if 2 = —00

if z is a quiet NaN
if z is a signalling NaN

NOTE 4 — The rest after truncation is specified in ISO/IEC 10967-1:1994, by the name

fractpart .

5.2.5 Operation for remainder after division and round to integer (IEEE remainder)

iremp : F' x F'— F U{-0,underflow, invalid }

iremp(z,y) = resultp(z — (round(z/y) * y), nearesty)

=-0

=-0

=z

= invalid (qNaN)
= invalid (qNaN)
= invalid (qNaN)
= qNaN

= qNaN

= invalid (qNaN)

if 2,y € Fand y # 0 and

(x> 0 or x — (round(x/y) x y) # 0)
if 2,y € Fand y # 0 and

z <0 and 2 — (round(z/y) xy) =0
ifz=-0and y € FFU{—00,+o0} and y #0
if 2 € F and y € {—o0, +o0}
if e € FU{—00,-0,400} and y = —0
ifz € FU{-0}and y=0
if z € {—00, 400} and y € F'U {—00, 400}
if x is a quiet NaN and yis not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if z is a signalling NaN or y is a signalling NaN

5.2.6 Square root and reciprocal square root operations

sqrtp : ' — F U{invalid}
sqrip(z) = nearesty (\/x)
=-0
= invalid (qNaN)
=4
= qNaN
= invalid (qNaN)

rec_sqrty : F'— F U {invalid, pole}

18
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rec_sqrip(z) = rndp(1/y/x)
= pole(+0)
= pole(+0)
=0
= invalid (gNaN)
= qNaN
= invalid (gNaN)

ISO/IEC CD 10967-2.3:1998(E)

ifz e Fandz >0
ifzxeFPandz=0

ifz=-0

if z =400

if (+ € Fand 2 <0) or x = —00
if © is a quiet NaN

if x is a signalling NaN

5.2.7 Support operations for extended floating point precision

addlop : ' X F'— I'U {floating_overflow, underflow}
addlop(z,y) = resultp((z+y) — rndr(z +y), rndr)

= underflow(0)?
=07

=07

= addlop(0,

= add lop(z,

= invalid (gNaN)
= invalid (gNaN)
= qNaN

y)
0)

?
?

= invalid (gNaN)

if z,y,addp(z,y) € F

if addp(z,y) = underflow(u)

if addp(z,y) = floating_overflow(+o0)

if addp(z,y) = floating_overflow(—o0)

ife =—-0and y € FU{—00,—0,+00}

if y=-0and 2 € FU {—00,400}

if # € {—00,+o0} and y € FU{—00, 400}

if y € {—o00,4+0} and z € F

if 2 is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if # is a signalling NaN or y is a signalling NaN

sublop : F' x F — I'U {floating_overflow, underflow}

sublop(z,y) = resultp((z —y) — rndp(z —y), rndg)

= underflow(0)?

if z,y, subp(z,y) € F
if subp(z,y) = underflow(u)

= floating_overflow(—00)707?

if subp(z,y) = floating_overflow(+oo)

= floating_overflow(+00)707?

= invalid (gNaN)

NOTES

if subp(z,y) = floating_overflow(—oo)

ife =—-0and y € FU{—00,—0,+00}

if y=-0and 2 € FU {—00,400}

if # € {—00,+o0} and y € FU{—00, 400}

if y € {—o00,4+0} and z € F

if 2 is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if # is a signalling NaN or y is a signalling NaN

1 If rnd_stylep = nearest, then, in the absence of notifications, add_{or and sub_lop returns

exact results.

2 sublop(z,y) = addlop(x,negr(y)).

mullop : ' X F'— I'U {floating_overflow, underflow}

muldop(z,y) = resultp((z xy) — rndp(z x y), rndp)

= underflow(0)?

if z,y, mulp(z,y) € F
if mulp(z,y) = underflow(u)
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if z,y € F and mulp(z,y) = -0

= floating_overflow(—00)707

if mulp(z,y) = floating_overflow(+o0)

= floating_overflow(+400)707

= mul_lor(0,y)
= mullop(z,0)

if mulp(z,y) = floating_overflow(—o0)
if e =—-0and y € FU{—00,—-0,+00}
if y=—-0and 2 € I'U{—00,+o0}

= invalid (qNaN)? if z € {—00, 400} and y € F'U {—00, 400}

= invalid (qNaN)? if y € {—o00,+0} and z € F

= qNaN if x is a quiet NaN and y is not a signalling NaN

= qNaN if y is a quiet NaN and z is not a signalling NaN

= invalid (qNaN) if « is a signalling NaN or y is a signalling NaN
NOTE 3 — In the absence of notifications, mul_lop returns an exact result.

div_resty 1 ' X F'— F'U {floating_overflow, underflow, invalid }

div_restp(z,y)=resultp(z — (y * rndp(x/y)), rndr)

if z,y, divp(z,y) € F

= resultp(z — (y *u), rndrp)

=2

= invalid (qNaN)

if divp(z,y) = underflow(u) and z € F
if z,y € F and

(divp(z,y) = —0 or divp(z,y) = underflow(—0))
ifeeFand y=0

= floating_overflow(—00)707

if divp(z,y) = floating_overflow(+o0)

= floating_overflow(+400)707

= div_resty(0,y)

= invalid (qNaN)
= invalid (qNaN)?
= invalid (qNaN)?
= qNaN

= qNaN

= invalid (qNaN)

if divp(z,y) = floating_overflow(—oo)

if e =—-0and y € FU{—00,—-0,+00}

if y=—-0and 2 € I'U{—00,+o0}

if z € {—00, 400} and y € F'U {—00, 400}

if y € {—o0,+oc} and z € F

if x is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if z is a signalling NaN or y is a signalling NaN

sqrt_resty : F'— I'U {underflow, invalid }

sqri_restp(x) = resultp(z — (sqrip(x) * sqrip(z)), rndg)

=-0

= invalid (qNaN)

= invalid (qNaN)?0?
= qNaN

= invalid (qNaN)

ifeeFand z>0

ifz=-0
if (+ € Fand 2 <0) or 2 = —o0
if z =400

if z is a quiet NaN
if z is a signalling NaN

NOTE 4 - sqrt_restp(z) is exact when there is no underflow.

add3p : F' X F X ' — F U{floating_overflow, underflow}
add3p(z,y,z) = resultp((z + y) + z, rndp)

ife,y,z€e F
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= addp(addp(z,y), 2) if € {—00, -0, 400} and y,z € FU{—00, -0, 400}
= addp(addp(z,y), 2) if y € {—00,—0,+00} and = € F and

z € FU{—00,—0,+00}
addp(addp(z,y), z) if z € {—00,—0,4+00} and z,y € F

= qNaN if x is a quiet NaN and

not y nor z is a signalling NaN
= qNaN if y is a quiet NaN and

not z nor z is a signalling NaN
= qNaN if z is a quiet NaN and

not z nor y is a signalling NaN
= invalid (gNaN) if  is a signalling NaN or

y is a signalling NaN or
z is a signalling NaN

NOTE 5 - add3p(x,y,z) = addp(addp(z,y),z) if © ¢ Fory & F or z & F, thus
add3 p(—0, -0, -0) = —0.

add3_midp : F X F'x I' — F U {floating_overflow, underflow}

add3 _midp(x,y, )

=resultp(((z+y) + 2) — rndp((z + y) + 2), rndp)

if #,y, 2, add3p(z,y,2) € F
= underflow(0)? if add3F(z,y, z) = underflow(u)
= floating_overflow(—00)707?

if add3F(x,y, z) = floating_overflow(4o00)
= floating_overflow(+00)707?

if add3F(x,y, z) = floating_overflow(—o0)
= add3 _midp(0,y, z) ife =—-0and y,z € FU{—00,—0,4+00}
= add3 _midp(z,0, z) if y=-0and z € FF'U {—00,+00} and

z € FU{—00,—0,+00}

= add3 _midp(z,y,0) if z=—-0and 2,y € FFU{—o00,+o0}

= invalid (gNaN)? if 2 € {—o00, 400} and y,z € FU{—00, 400}
= invalid (qNaN)? if y € {—00,+0o0} and z € F and

z € FU{—00, 400}
= invalid (qNaN)? if z € {—o00, 400} and 2,y € F
= qNaN if x is a quiet NaN and

not y nor z is a signalling NaN
= qNaN if y is a quiet NaN and

not z nor z is a signalling NaN
= qNaN if z is a quiet NaN and

not z nor y is a signalling NaN
= invalid (gNaN) if  is a signalling NaN or

y is a signalling NaN or
z is a signalling NaN

mul_addp : F' x F' x F'— I'U {floating_overflow, underflow}

mul_addp(z,y, z)
= resultp((z xy) + z,rndp)
if ,y,z€ Fand 2 #0 and y 20 and z # 0
= addp(mulp(z,y), 2) if © € {—00,—0,0,400} and
Y,z € FU{—00,-0,+0}
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= addp(mulp(z,y),z) ify € {-00,—-0,0,+00} and z € F and
z#0and z € FU{—00,-0,400}
= addp(mulp(z,y), 2) if z € {—00,-0,0,400} and z,y € F and

r#0and y #0
= qNaN if  is a quiet NaN and

not y nor z is a signalling NaN
= qNaN if 4 is a quiet NaN and

not z nor z is a signalling NaN
= qNaN if zis a quiet NaN and

not z nor y is a signalling NaN
= invalid (qNaN) if z is a signalling NaN or

y is a signalling NaN or
z is a signalling NaN

NOTE 6 - mul_addp(z,y,z) = addp(mulp(z,y),z)ife & Foryg Forzg&F oraxz=0or
y=0or z=0. E.g., mul_addp(—0,1,—-0) = —0.

mul_add_midp : F' X F x ' — F U {floating_overflow, underflow}

mul _add_midp(z,y, 2)

= resultp(((z x y) + z) — mul_addp(z,y, z), rndrp)

if @,y, z, mul addp(z,y,z) € F
= underflow(0)? if mul_addp(z,y, z) = underflow(u)
= floating_overflow(—00)707

if mul_addp(z,y, z) = floating_overflow(4o0)
= floating_overflow(+400)707

if mul_addp(z,y, z) = floating_overflow(—o0)
= mul_add_midp(0,y,z) if 2 =—-0and y,z € I'U{—00, -0, 400}
= mul_add_midp(z,0,z) if y=—-0and z € FU{—00,400} and

z € FPU{-00,-0,400}

= mul_add_midp(z,y,0) if z=-0and 2,y € F'U{—00,+o0}

= invalid (qNaN)? if 2 € {—o00, 400} and y,z € FU{—00, 400}
= invalid (qNaN)? if y € {—o00,+c0} and 2 € F and

z € FU{-00, 400}
= invalid (qNaN)? if 2z € {—00,+00} and 2,y € F
= qNaN if  is a quiet NaN and

not y nor z is a signalling NaN
= qNaN if 4 is a quiet NaN and

not z nor z is a signalling NaN
= qNaN if zis a quiet NaN and

not z nor y is a signalling NaN
= invalid (qNaN) if z is a signalling NaN or

y is a signalling NaN or
z is a signalling NaN

For the following operation F’ is a floating point type conforming to ISO/IEC 10967-1.

NOTE 7 — Tt is expected that pp: > pp, i.e. F’ has higher precision than F', but that is not
required.

mulpp : F x F — F'U{-0,floating_overflow, underflow}
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mulp_pi(x,y) = resultp(x xy,rndp)  if 2,y € Fand 2 #0 and y # 0
= cvtpypr(mulp(z,y)) if 2 € {—o00,—-0,0,400} and
Yy € FuU {_007 _07+OO}

= cvtp_ypr(mulp(z,y)) ify € {—00,—0,0,+00} and z € F and z # 0

= cvtp_p(qNaN) if 2 is a quiet NaN and y is not a signalling NaN
= cvtp_p(qNaN) if y is a quiet NaN and z is not a signalling NaN
= cvtp_p(sNaN) if 2 is a signalling NaN or y is a signalling NaN

NOTE 8 — Converting a signalling NalN results in a notification of invalid. See clause 5.4.

5.2.8 Exact summation operation

An exact summation operation is useful for computing high accuracy sums, even if only the first
element of the resulting list is ultimately kept.

In order to be able to specify the exact sum operation, which sums a sequence of floating
point numbers returning a sequence of floating point numbers of decreasing magnitude, by pg, a
number of helper functions are needed.

The extended real addition helper function:

add : (R U {—o00, -0, 400, gNaN,sNaN}) x (RU {—o0, -0, 400, gNaN,sNaN}) —
(RU{-00,-0,4+00,qNaN,sNaN})

add(z,y) =z+y ifz,yeR
=-0 ifx=-0and y=-0
= add(0, y) ife =—-0and y € RU{—00,+0}
= add(z,0) ify=-0and z € RU{—00,+0}
=400 if £ = 400 and y € RU {400}
=400 ify=4oc0and z € R
= —00 if = —oc0and y € RU {—o0}
= -0 ify=—-occand z € R
= sNaN if = +o00 and y = —o0
= sNaN if t = —oc0 and y = 400
= qNaN if 2 is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and z is not a signalling NaN
= sNalN if # is a signalling NaN or y is a signalling NaN

The extended real summation helper function:

sum : [RU{—o0, —0,+00,qNaN,sNaN}| — (R U {—o0, —0, 400, gNalN, sNalN})

sum([x1, ..., zy))
= - ifn=20
= add(sum([z1, ..., Tp-1]), Tpn)
ifn>1

The seq_resultr helper function:
seqresulty : R x (R — F*) — [F] U {floating_overflow}

seqresulty(x, rnd)
= [0] if 2 =0 or (z > 0 and rnd(z) = 0 and denormp = true)
= [-0] if 2 < 0 and rnd(z) = 0 and denormp = true
= floating_overflow([+oc])
if rnd(z) > fmazp
= floating_overflow([—oc])
if rnd(z) < —fmaz g
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= rnd(z) : seq_resultp(x — rnd(z), rnd)
if rnd(z) # 0 and rnd(z) € F and
(denormp = true or |z| > fminN )
= [rnd(z — fminN ), fminN g]
if —fminNp <2 and 2 <0 and denormp = false
= [rnd(z 4+ fminN ), — fminN ;]
if 0 < & and = < frunN g and denormp = false

The exact summation operation:

sump : [F] = [F]U {floating_overflow}

sump ([T1, vy T0))
= seq_resultp(sum([z1, ..., x,]), nearesty)
if sum([z1,...,2,]) € Rand n > 1
= [sum([z1, ..., 4])] if sum([z1,...,2,]) € {—00,—0,+00} and n > 1
=[-0 if n =0 and —0 is available
= [0] if n =0 and —0 is not available
= [qNaN] if sum([z1, ..., 2,]) is a quiet NaN
= invalid ([qNaN]) if sum([z1,...,2,]) is a signalling NaN

NOTE - sump(sump(a)) = sump(a), and sump(sump(a) ++sump(b)) = sump(a++b) if
there is no notification (where ++ is sequence concatenation). Thus sump([]) = sump([—0]).

5.3 Elementary transcendental floating point operations
5.3.1 Specification format
5.3.1.1 Maximum error requirements

The specifications for each of the transcendental operations use an approximation helper function.
The approximation helper functions are ideally identical to the true mathematical functions.
However, that would imply that the maximum error for the corresponding operation was merely
0.5 ulp. This part of ISO/TEC 10967 does not require that the maximum error is only 0.5 ulp, but
may be a bit bigger. To express this, the approximation helper functions need not be identical
to the mathematical elementary transcendental functions, but are allowed to be approximate.

The approximation helper functions for the individual operations in this subclause have maxi-
mum error parameters that describe the maximum relative error of the helper function composed
with nearestg, for normalised results. The maximum error parameter also describe the maximum
absolute error for subnormal continuation values if denormp = true. The relevant maximum er-
ror parameters shall be available to programs.

That for a helper function hp, approximating f, the maximum error is maz_error_opyp means
that for all arguments z,... € F* x ... the following inequality is true:

|f(z,...) — nearestp (hp(z,...))| < maz_error_opp  rer U (@) =pr
NOTES

1 Partially conforming implementations may have greater values for maximum error param-
eters than stipulated below. See annex B.

2 For most positive (and not too small) return values ¢, the true result is thus claimed to
be in the interval [t — (maz_error_opp x ulpp(t)),t + (max_error_opp * ulpp(t))]. But if
the return value is exactly r% for some n € Z, then the true result is claimed to be in the
interval [t — (max_error_opp * ulpp(t)/rr),t + (mazx_error_opp * ulpp(t))], Similarly for
negative return values.
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The results of the approximating helper functions in this clause must be exact for certain
arguments as detailed below, and may be exact for all arguments. If the approximating helper
function is exact for all arguments, then the corresponding maximum error parameter should be
0.5, the minimum value.

5.3.1.2 The trans_result helper function

The trans_resulty helper function is similar to the resulty helper function extended with spec-
ifications for the continuation value on overflow, and it also returns —0 for negative underflows
that round (or are flushed) to zero, if possible. (Those extentions are implied in ISO/IEC 10967-1
for IEC 559 conforming implementations.) But trans_resulty is simplified compared to resulty
concerning underflow: trans_resulty always underflows for nonzero arguments that have an
absolute value less than fminN r, whereas resulty does not always underflow then.

In addition, the rounding is fixed to nearesty, rather than being parameterised. This is user
visible only in the cases where the operation’s approximation helper function is (required to be)
exact, but where that value is not representable in F, e.g. € or 7.

trans_resulty : R — F'U{underflow, floating_overflow}

trans_resultp(z)
= nearesty(x) if fminN g < |z| and |nearestp(z)| < fmazp
=0 ifa=0
= floating_overflow(+o0)
if nearestp(z) > fmazp
= floating_overflow(—oo)
if nearestp(z) < —fmaz g
= underflow(nearesty(z))
if denormp = true and (nearesty(x) < 0 or x > 0)
and |z| < fminN g

= underflow(-0) if denormp = true and —0 is available and
nearestp(z) =0and 2 <0

= underflow(0) if denormp = true and —0 is not available and
nearestp(z) =0and 2 <0

= underflow(0) if denormp = false and
0 <zand z < fminNg

= underflow(-0) if denormp = false and —0 is available and
—fminNp <2z and 2 <0

= underflow(0) if denormp = false and —0 is not available and

—fminNp <2z and 2 <0

5.3.1.3 Sign requirements

The approximation helper functions are required to be zero exactly at the points where the
approximated mathematical function is exactly zero. At points where the approximation helper
functions are not zero, they are required to have the same sign as the approximated mathematical
function at that point.

For the radian trigonometric helper functions, this sign requirement is imposed only for argu-
ments, x, such that |z| < big_angle_rp (see clause 5.3.6).

NOTE - TFor the operations, the continuation value after an underflow may be zero (or
negative zero) as given by trans_resultp, even though the approximation helper function is
not zero at that point. Such zero results are required to be accompanied by an underflow
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notification. When appropriate, zero may also be returned for IEC 559 infinities arguments.
See the individual specifications.

5.3.1.4 Monotonicity requirements

When the maximum error is tight, i.e. 0.5 ulp, that implies that the approximation helper func-
tions must be monotonous on the same intervals as the corresponding exact function is strictly
monotonous. When the maximum error is greater than 0.5 ulp, and the rounding is not directed,
a numerical function is not automatically monotonous where the corresponding exact function is.

The approximation helper functions in this clause are required to be monotonous on the
same intervals as the mathematical functions they are approximating are monotonous. There is
no general requirement that the approximation helper functions are strictly monotonous on the
same intervals as the corresponding exact function is strictly monotonous, however, since such a
requirement cannot be made due to that all floating point types are discrete, not continuous.

For the radian trigonometric helper functions, this monotonicity requirement is imposed only
for arguments, z, such that |z| < big_angle_rp (see clause 5.3.6).

The unit argument trigonometric and unit argument inverse trigonometric approximating
helper functions are excepted from the monotonicity requirement for the angular unit argument.

5.3.2 Hypotenuse operation

Maximum error parameter for the hypotr operation:
max _error_hypotr € F
The max_error_hypoty parameter is required to be in the interval [0.5, 1].
The hypot}. approximation helper function:
hypotl. : FF x ' = R
hypot3-(z, y) returns a close approximation to V22 4+ y2in R, with maximum error maz_error_hypotp.

Further requirements on the hypot}. approximation helper function:

hypott-(x,y) = hypot}(y, z)

hypoty-(—z,y) = hypot}:(z,y)

hypoty(x,y) = max{|z, |y}

hypoti(z,y) < || + |y

hypot:(z,y) = 1 if V22 FyZ> 1

hypot}-(z,y) <1 if o2 +y2<1
The hypotg operation:
hypotp : F x F'— F U {underflow, floating_overflow}

hypotr(z,y) = trans_resultp(hypoty(z,y))

ifx,ye F
= hypotr(0,y) if e =—-0and y € FU{—00,—-0,+00}
= hypotr(z,0) if y=-0and z € FU{—00,400}
=40 if z € {—00, 400} and y € F'U {—00, 400}
=40 if y € {—o00,+0} and z € F
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if « is a signalling NaN or y is a signalling NaN
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5.3.3 Operations for exponentiations and logarithms

There are two maximum error parameters for approximate exponentiations and logarithms:

max_error_expr € F
max_error_powerp € F

The max_error_expyr parameter is required to be in the interval [0.5, 1.5 % rnd_errorg].

The max_error_poweryp parameter is required to be in the interval [max_error_expp,?2 *
rnd_errory].

NOTE 1 — The “exp” operations are thus required to be at least as accurate as the “power”
operations.

e is the Napierian base.
NOTE 2 - e=2.71828.... e isnot in F.

5.3.3.1 Power-of ¢ (natural exponentiation) operation

The exp}. approximation helper function:
expr. : F'— R
expj-(z) returns a close approximation to e” in R, with maximum error maz_error_expr.

Further requirements on the exp} approximation helper function:

eapp(1) = ¢
expi(z) =1 if # € F' and expy(z) # €” and

In(1 — (epsilong /(2% rp))) < x < In(1+ (epsilong/2))
expy(x) < fminDy /2 if 2 € Fand 2 <In(fminDp) — 3

The expr operation:

expp : I — F'U{underflow, floating_overflow}

expr(z) = trans_resultp(expy(z))if ¢ € I

=1 ifz=-0

= 40 if z =400

=0 ifa = -

= qNaN if © is a quiet NaN

= invalid (gNaN) if  is a signalling NaN
NOTES

1 exprp(l) = nearestp(e).

2 expp(z) will overflow approximately when z > In(fmaz ).

5.3.3.2 Operation for power-of ¢, minus one (natural exponentiation, minus one)

The expm1% approximation helper function:
expmly : FF =R
expm1}.(z) returns a close approximation to e”—1in R, with maximum error max _error_expp.

NOTE 1 - There are two advantages with the expml! p operation: Firstly, expmi p(z)is
much more accurate than subp(expp(x),1) when the exponent argument is close to zero.
Secondly, the expm I  operation does not underflow for “very” negative exponent arguments.
Something which may be advantageous if underflow handling is slow, and high accuracy for
“very” negative arguments is not needed.
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Further requirements on the expm17 approximation helper function:

expml;-(l) =e—1

expmlf(z) =« if z € F' and expm17-(z) # €” — 1 and
—epsilong/rp < x < 0.5 x epsilong/rp
expmly(z) = —1 if z € F' and expm17-(z) # €” — 1 and
x < In(epsilong /(3 «rF))
expml(z) < expy(2) ifz el

The expml - operation:

expml p : F' = F U {underflow, floating_overflow}

expml p(x) = trans_resultp(expmlii(z))
if € Fand |z| > 0.5 x epsilong/rp
=z if 2 € F' and |z| < 0.5 x epsilonp/rp
=-0 ifz=-0
= 40 if z =400
=-1 if v =—00
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN
NOTES

2 underflow is explicitly avoided, when possible. ISO/TEC 10967-1:1994 requires that
JminN p < epsilong, but does not require that fminN p < epsilong /rp. A requirement
that expm! p(2) =z if # € F and |z| < fminN g, would thus be requiring results for some
arguments of some (very rare) floating point type that are more than 0.5 ulp in error.

expml (1) = nearestp(e — 1).

4 expml p(x) will overflow approximately when z > In(fmaz ).

5.3.3.3 Floating point power-of argument base operations

The power}. approximation helper function:
powery. : ' X FF =R

powery.(x,y) returns a close approximation to 2¥ in R, with maximum error maz_error_powerr.
The power}. helper function need be defined only for first arguments that are greater than or
equal to 0, and need not be defined when both of the arguments are zero.

Further requirements on the power}. approximation helper function:

powerf.(l,y) =1 ifye F

powery.(z,0) =1 ifz € Fand 2 > 0

powerf.(z,1) =z ifz € Fand 2 >0

powerf.(z,y) < fminDg /2 if e € Fand @ > 0and y € F and 2¥ < fminD /3

The powerr operation:

powerp : ' x F — F U {invalid, underflow, floating_overflow, pole}

powerp(z,y) = trans_resulty(powery(z,y))
ifeeFandz>0and y e F
= powerp(0,y) if e =—-0and y € FU{—00,—-0,+00}
= powerp(z,0) if y=-0and z € FU{—00,400}
=0 ife=0and ye Fandy >0
= invalid (1) ifz=0and y=0
= pole(+o0) ifz=0and ye Fandy <0
=0 ifeze Fand 0<z<1land y=+
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=400 ifreFand0<z<landy=-
= invalid (1) if 2 =1and (y = 400 or y = —0)
= 400 ifx € Fand z > 1and y =400
=0 ifreFandx>1and y=—00
=400 if = +oo and ((y € F' and y > 0) or y = +00)
= invalid (1) if #=+4o00cand y=0
=0 if = +oo and ((y € F' and y < 0) or y = —00)
= invalid (qNaNN) if ((z € F'and 2 < 0) or 2 = —o0) and

y € FU{+00, —o0}
= qNaN if 2 is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or y is a signalling NaN

NOTE 1 - powerp(z,y) will overflow approximately when z¥ > fmarp, ie., if ¢ > 1,

approximately when y > log, (fmaz ), and if 0 < z < 1, approximately when y < log, (fmaz )
(which is a negative number). It will not overflow when z € {0, 1}.

The powery;; approximation helper function:

powerp; F'x I =R

powerf.;(x,y) returns a close approximation to z¥ in R, with maximum error maz_error_powery.

Further requirements on the power}; approximation helper function:

powery.;(z,0) =1

powery;(z,1) =x

powerf.(z,y) < fminD g /2
powerf.;(z,y) = powery;(—z,y)
powery.(z,y) = —powery(—z,y)

powerf.;(z,y) = powery(z,y)

The powergr operation:

ifyel

ife € Fand 2 #0

ife el

if 2 € Fand 2 > 0and y € [ and 2¥ < fminDp/3
if e € Fand 2 < 0 and y € I and 2]y

if © € Fand 2 < 0 and y € I and not 2|y
ifreFandez>0andyelNF

powerpr : F' x I — F U {invalid, underflow, floating_overflow, pole}

powerpy(z,y) = trans_resulty(powery;(z,y))

=0

= invalid (1)
= pole(+0)
=0

=-0

= invalid (1)
= pole(+0)
= pole(—o0)
=4

= invalid (1)
=0

=4

= —00

= invalid (1)
=0

=-0

= qNaN

= invalid (gNaN)

ifeeFandae#0andyel
ifr=0andyelandy>0

ifr=0and y=20
ifr=0andyeland y<0

ife =—0and y €l and y > 0 and 2|y

if t = —0and y € I and y > 0 and not 2|y
ifr=—-0and y=0

ife =—0and y € and y < 0 and 2|y

if t = —0and y € I and y < 0 and not 2|y
ife =+4+occandy € landy>0

if t =+ocand y =10

ife =+4occandy € land y<0

if t = —occand y € I and y > 0 and 2|y

if t = —oc and y € I and y > 0 and not 2|y
ifx =—ocand y =0

if t = —occand y € I and y < 0 and 2|y

if t = —occ and y € I and y < 0 and not 2|y
if © is a quiet NaN

if x is a signalling NaN
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NOTES

2 powerpr(x,y) will overflow approximately when ¥ > fmazp, i.e., if # > 1, approximately
when y > log, (fmazp), and if 0 < # < 1, approximately when y < log, (fmazp) (which is
then negative). It will not overflow when # = 0 or when z = 1.

3 powery (in clause 5.1.4) does not allow negative exponents since the exact result then is
not in Z. powerrp does not allow any negative bases since the (exact) result is not in R
unless the exponent is integer. powerpy takes care of this latter case, where all exponents
are ensured to be integers that have not arisen from implicit floating point rounding.

5.3.3.4 Operation for power-of argument base, minus one

The powerm17%. approximation helper function:
powermly. : FF X F— R

powerm1i(x,y) returns a close approximation to ¥ —1in R, with maximum error max _error_powerp.

The powerm17%. helper function need be defined only for first arguments that are greater than or
equal to 0, and need not be defined when both of the arguments are zero.

NOTE 1 — There are two advantages with the powerm1 i operation below: Firstly, powerm! p(b, )

are much more accurate than subp(powerp(b,z),1) when the exponent argument is close to

zero. Secondly, the powerml p operation does not underflow for “very” negative exponent

arguments (when the base is greater than 1). Something which may be advantageous if un-

derflow handling is slow, and high accuracy for “very” negative arguments is not needed.

Further requirements on the powerm17% approximation helper function:
powerml%(0,y) = —1 ifye Fand y >0
powermly.(z,y) = —1 if x € FFand x > 0 and y € F and
powerml . (x,y) # «¥ — 1 and
x¥ < epsilonp /(3% rp)
powermlf(z,1) =2 —1 ifz € Fand 2 >0
powerml1i(z,y) < powerf.(z,y) ifre Fandax>0andyec F
NOTE 2 - powermlIy(z,y) ~ yx*In(x) if e € F and # > 0 and y € F and |y x In(x)| <
epsilong [rp.
The powerm1 ;- operation:

powerml 1 F' X F'— F'U {—0,invalid, underflow, floating_overflow, pole}

powerml p(x,y)
= trans_resultp(powerml.(z,y))
ifz € Fand 2 >0andy € Fand y #0

= powerml (0, y) if e =—-0and y € FU{—00,—-0,+00}
=-0 ify=0and 2 € Fand 0 <2 < 1
=0 ify=0and z € Fand 1 <z

=0 if y=0and z = 400

=0 ify=-0and € Fand 0 <2 < 1
=-0 ify=-0and x € Fand 1 <z

= -0 if y=—-0and z = +¢

=-1 ife=0and ye Fandy >0

= invalid (—0) ifz=0and y=0

= invalid (0) ifz=0and y=-0

= pole(+o0) ifz=0and ye Fandy <0

=1 ifeze Fand 0<z<1land y=+
=400 ifezeFand0<z<land y=-
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= invalid (0) if 2 =1 and (y = 400 or y = —00)
= 400 ifx € Fand z > 1and y =400
=-1 ifreFandx>1and y=—00
=400 if = +oo and ((y € F' and y > 0) or y = +00)
= invalid (0) if #=+4o00cand y=0
=-1 if = +oo and ((y € F' and y < 0) or y = —00)
= invalid (qNaNN) if ((z € F'and 2 < 0) or 2 = —o0) and

y € FU{+00,-0,—00}
= qNaN if 2 is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or y is a signalling NaN

NOTE 3 - powerm! p(x,y) will overflow approximately when ¥ > fmazp, ie., if 2 > 1, ap-
proximately when y > log, (fmaz ), and if 0 < # < 1, approximately when y < log,, (fmaz ).
It will not overflow when » € {0,1}.

5.3.3.5 Power-of 2 operation

The exp23}. approximation helper function:
exply =R
exp?7.(x) returns a close approximation to 2% in R, with maximum error max_error_expr.
Further requirements on the exp?2}. approximation helper function:
exp2t.(xz) =1 if 2 € F' and exp2%(x) # 27 and
log, (1 — (epsilong/(2 xrg))) < @ and
z < logy (1 + (epsilonp/2))
exp2y(z) =27 ife € (FNZ)and 2" € F
exp2i(x) < fminDy /2 if 2 € F' and z < logy(fminDg) — 3
The exp2r operation:

exp2p : F'— I'U {underflow, floating_overflow}

exp2p(x) = trans_resultp(exp2i-(z))
ife el
=1 ifz=-0
=400 if z =400
=0 ifa = -
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

NOTE - exp2p(z) will overflow approximately when # > log,(fmaz ).

5.3.3.6 Power-of 10 operation

The exp10% approximation helper function:
explO0y : F =R
expl07%(z) returns a close approximation to 10 in R, with maximum error max _error_expg.

Further requirements on the expl07} approximation helper function:
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expl0f(z) =1 if 2 € F' and exp10%(z) # 10 and
logo(1 — (epsilong /(2 rp))) < « and
z < logo(1 + (epsilony/2))

expl07.(z) = 107 if 2 € (FNZ)and 107 € F

expl0%(x) < fminD /2 if € F' and z < logo(fminDg) — 3

The expl10y operation:
expl0r : F' — F'U{underflow, floating_overflow}

expl0p(x) = trans_resultp(expl0%(z))
ifz el
=1 if e =-0
= 40 if z =400
=0 if 2 = —o0
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

NOTE - expl0p(x)will overflow approximately when # > log,y(fmazp).

5.3.3.7 Natural logarithm-of operation

The [n}. approximation helper function:
Inp :R—+R
In}.(z) returns a close approximation to In(z) in R, with maximum error maz_error_expr.
Further requirements on the {n}. approximation helper function:
Int.(e) =1
The Ing operation:
Inp : I'— F U {invalid, pole}

Inp(z) = trans_resultp(Inj-.(z)) if z € F'and 2 >0
= pole(—o0) if2=0
= pole(—o0) if e =—-0
=400 if z =400
= invalid (¢NaN) if (+ € Fand 2 <0) or 2 = —o0
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

5.3.3.8 Operation for natural logarithm-of one plus the argument

The In1p% approximation helper function:
Inipyz:R —R
In1p}-(z) returns a close approximation to In(142) in R, with maximum error maz_error_expp.
Further requirements on the {nipj} approximation helper function:

Inlpp(le—1)=1

Inlpp(z) == if 2 € F' and Inipr(z) # In(1 4 2) and
—0.5 x epsilonp/rp < x < epsilong /rp
Inlpy(x) > Iny(x) ifz € Fand 2 > 0

The Inlpyr operation:
Inlpp : F'— F U {invalid, pole, underflow}
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Inlpp(x) = trans_resultp(Inipk(z))
if 2 € Frand > —1 and |z| > 0.5 % epstlong/rp
=z if 2 € F' and |z| < 0.5 * epsilonp/rp
=-0 ife=-0
= pole(—o0) if o =—1
=400 if z =400
= invalid (qNaNN) if (+ € Fand 2 < —1) or 2 = —o0
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

NOTE - underflow is explicitly avoided, when possible. LIA-1 requires that fminNp <
epsilonp, but does not require that fminNp < epsilonp /rp. A requirement that Inipp(z) =«
if 2 € F and |2| < fminNp would thus be requireing results for some arguments of some
(very rare) floating point type that are more than 0.5 ulp in error. For such arguments in
such floating point types, underflow is still appropriate, and it is always appropriate to allow
results that are at most 0.5 ulp in error.

5.3.3.9 Argument base logarithm-of operation

The logbase}: approximation helper function:
logbasey. : ' X ' =R
logbaseT.(x, y) returns a close approximation to log,(y) in R, with maximum error max _error_powerp.
Further requirements on the logbase} approximation helper function:
logbaset.(z,z) =1 if # € Fand 2 >0and z # 1
The logbaser operation:
logbaser : ' x F — F U {invalid, pole}

logbaser(x,y) = trans_resultp(logbaset.(x,y))
if € Fand 2 > 0 and 2 # 1 and
y€ Fandy>0

= logbaser(0, y) ife =—-0and y € FU{—00,—0,+00}
= logbasep(x,0) if y=—-0and 2 € FU {—00, 400}
= pole(+0) ifzcFand0<z<landy=0
= pole(—o0) ifze Fandl <z and y=0
= —00 ifreFand0<a<1andy=+oc
= 400 ifx € Fand 1 <2 and y =400
= invalid (1) if # = 400 and y = +00
=0 ifx =4occand y € Fand y > 1
= -0 ifr=4occandy e Fand 0 <y <1
= invalid(—1) if #=+4o00cand y=0
=400 if t =1and y =400
= pole(+0) ifz=1landye Fandy>1
= invalid (gNaN) ifz=1andy=1
= pole(—o0) ifr=1landye Fand 0<y<1
= invalid (gNaN) if ((z € Fand 2 <0) or 2 = —o0) and
y € FU{+00, —o0}
= invalid (qNaNN) if ((y € Fand y <0) ory=—o0) and
x € F'U {400, —00}
= qNaN if 2 is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and z is not a signalling NaN
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= invalid (qNaN)
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if z is a signalling NaN or y is a signalling NaN

5.3.3.10 Operation for argument base logarithm-of one plus second argument

The logbase1p7: approximation helper function:

logbaselpt. : FF X FF — R

logbase1pt-(x,y) returns a close approximation to log, (1 4+ y) in R, with maximum error

max _error_powerrg.

Further requirements on logbaseIpF approximating helper function:

logbaselpp(z, 2 —1) =1
logbaselpy(x,y) < logbase-(x,y)
logbaselpy-(x,y) > logbase-(x,y)

ife,e—1€ Fandz>0and 2 #1
ifeeFPand0<z<landyé€e Fandy >0
ifeeFand l<zandyé€ Fandy >0

NOTE - logbaselpy(z,y) ~ y/In(x) if x € F and > 0 and z # 1 and y € F and

ly/ In(z)| < epsilonp /rp.
The logbaselpy operation:

logbaselpy : F x F'— FU{—-0,invalid, underflow, pole}

logbaselpp(x,y)

= trans_resulty (logbase1p}-(z,y))

= logbaselpy(0,y)
=-0

=0

=0

=0

=-0

=-0

= invalid (qNaN)
= pole(+o0)

= pole(—o0)

= —00

=4

= invalid (1)

=0

=-0

= invalid(—1)
=4

= pole(+o0)

= invalid (qNaN)
= pole(—o0)

= invalid (qNaN)

= invalid (qNaN)
= qNaN

= qNaN
= invalid (qNaN)
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if 2 € Fand 2 > 0 and  # 1 and
ye€Fandy>—-1land y#0
if e =—-0and y € FU{—00,—-0,+00}
ify=0and 2 € Fand 0 <2 < 1
ify=0and z € Fand 1 <z
if y=0and z = 400
fy=—-0andzeFand <z <1
ify=-0and z € Fand 1 <«
if y=—-0and z = +¢
if (y=-0ory=0)and 2z =1
ifeeFPand 0 <z <1land y=-1
ifeeFand 1l <zandy=-1
ifze Fand0<x<1and y=+oc
if € Fand 1 <2 and y = +o0
if # =400 and y = 400
ife=4occandye Fandy>0
ifzr=4occandye€ Fand -1 <y<0
if £ =+o0c and y=—1
if # =1and y =400
ife=1and ye Fandy >0
ifr=1and y=20
ife=1landye Fand -1 <y <0
if ((z € F and 2(0) or = —o0) and
y € FU{4+00,-0,—0c}
if (y € Fand y < —1) or y = —o0) and
r € F'U{400,—00}
if x is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if z is a signalling NaN or y is a signalling NaN
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5.3.3.11 2-logarithm-of operation

The log2% approximation helper function:

log2%: F - R
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log27%-(z) returns a close approximation to log,(z) in R, with maximum error max _error_expp.

Further requirements on the log2% approximation helper function:

log2%(z) = logy(z) if € F and log,(z) € Z

The log2 - operation:
log2r : F' — F U {invalid, pole}

log2 p(2) = trans_resultp(log2%(z))
ifz€Fandz>0
= pole(—o0) ifz=0
= pole(—o0) if 2 =-0
= 40 if z =400
= invalid (qNaNN) if (+ € Fand 2 <0) or x = —00
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN
5.3.3.12 10-logarithm-of operation

The log107% approximation helper function:
logl0% : F - R

log10% (z) returns a close approximation to log,o(z) in R, with maximum error maz_error_expr.

Further requirements on the log10%. approximation helper function:

log10%(z) = logg(z) if € I and logq(z) € Z

The log10 operation:
log10f : F — F U {invalid, pole}
log10 5 (2)

= pole(—o0)

= pole(—o0)
=4

= invalid (gNaN)
= qNaN

= invalid (gNaN)

= trans_resultp(log10%(z))

fzeFandaz >0

ifz=0
ifz=-0
if z =400

if (+ € Fand 2 <0) or x = —00
if © is a quiet NaN
if x is a signalling NaN

5.3.4 Operations for hyperbolics and inverse hyperbolics

There are two maximum error parameters for operations corresponding to the hyperbolic and

inverse hyperbolic functions:

mazx_error_sinhg € I
mazx_error_tanhg € I

The max_error_sinhy parameter is required to be in the interval [0.5,2 % rnd_errorg]. The
max_error_tanhp parameter is required to be in the interval [maxz_error_sinhp, 2 x rnd_errorg].
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5.3.4.1 Sinus hyperbolicus operation

The sinh}- approximation helper function:
sinhyp 1 FF—= R
sinh}-(x) returns a close approximation to sinh(z) in R, with maximum error maz_error_sinhp.

Further requirements on the sinhj. approximation helper function:

sinhyp(z) = 2 if 2 € F' and sinh}-(z) # sinh(z) and
|| < /2 * epsilong [rp

sinhy(—z) = —sinhi(2) ifz e

sinhy(z) < cosh}.(x) ifz e

The sinhp operation:

sinhp : I' — F U {floating_overflow}

sinhp(x) = trans_resultp(sinh}-(z))
if € Fand |z| > fminN g

=z if € Fand |z| < fminN g

=-0 ifz=-0

= - if e = -0

= 40 if z =400

= qNaN if z is a quiet NaN

= invalid (qNaN) if z is a signalling NaN
NOTES

1 underflow is explicitly avoided.

2 sinhp(x) will overflow approximately when |z| > In(2 % fmaz ).

5.3.4.2 Cosinus hyperbolicus operation

The cosh}. approximation helper function:
coshi. : ' =R
cosh}-(z) returns a close approximation to cosh(z) in R, with maximum error maz_error_sinhp.

Further requirements on the cosh% approximation helper function:

coshi.(z) =1 if z € F' and cosh}(x) # cosh(z) and |z| < /epsilonp
coshy(—x) = cosh}-(z) ifz el
coshi-(z) > sinh}.(x) ifz e

The coshr operation:

coshp : F' — F'U {floating_overflow}

coshp(x) = trans_resultp(coshi-(z))
ifz el
=1 if e =-0
=4 if e = -0
= 40 if z =400
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

NOTE - coshp(z) overflows approximately when |z| > In(2 x fmaz ).
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5.3.4.3 Tangentus hyperbolicus operation

The tanh} approximation helper function:
tanhy 1 FF =R
tanh}-(x) returns a close approximation to tanh(z) in R, with maximum error max _error_tanhy.

Further requirements on the tanh}. approximation helper function:

tanhi(z) = if € F' and tanh}-(x) # tanh(z) and
|z| < /1.5 * epsilonp/rF

tanhi(z) =1 if € F' and tanh}-(x) # tanh(z) and
x> arctanh(l — (epsilong/(3*rp)))

tanhi-(—z) = —tanh} () ife el

The tanhr operation:
tanhp : F — F

tanhp(x) = trans_resultp(tanhi.(z))
if # € Fand |z]| > fminN g
=z if 2 € Fand |z| < fminN g
=-0 ife=-0
=-1 if 2 =—o00
=1 if 2 =400
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

NOTE - underflow is explicitly avoided.

5.3.4.4 Cotangentus hyperbolicus operation

The coth}. approximation helper function:
cothy, : '+ R
coth}-(z) returns a close approximation to coth(z) in R, with maximum error maz _error_tanhp.

Further requirements on the coth}. approximation helper function:

cothi.(z) =1 if € F' and coth}-(x) # coth(z) and
x > arccoth(1l+ (epsilonp/4))
cothi.(—x) = —cothy,(x) ife el

The cothr operation:

cothy : F'— I'U {pole, floating_overflow}

cothp(x) = trans_resultp(coth}.(z))
ife € Fand 2 #0
= pole(+0) ifz=0
= pole(—o0) if 2 =-0
=-1 if v =—o0
=1 if 2 =400
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

NOTE - cothp(z) overflow approximately when [1/z| > fmazp.
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5.3.4.5 Secantus hyperbolicus operation

The sech¥} approximation helper function:
sechy, : "=+ R
sech.(z) returns a close approximation to sech(z) in R, with maximum error maz_error tanhy.

Further requirements on the sech? approximation helper function:

secht(z) =1 if 2 € F' and sechy:(z) # sech(z) and |z| < \/epsilonp/rp
sechi-(—z) = sechi-(x) ifz el

secht-(z) < eschi(x) ifz € Fand 2 > 0

sechy(x) < fminDy /2 if 2 € Fand z > 2 — In(fminDp/4)

The sechp operation:

sechp : F'— I'U {underflow}

sechp(x) = trans_resultp(sech}(z))
ifz el
=1 ifz=-0
=0 if 2 = —o0
=0 if z =400
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

5.3.4.6 Cosecantus hyperbolicus operation

The csch}, approximation helper function:
cschyz : FF =R
cschy(x) returns a close approximation to esch(z) in R, with maximum error max _error_tanhp.

Further requirements on the csch}. approximation helper function:

cschy(—z) = —cschi-(x) ifz e
cschi(x) > secht-(x) ifz € Fand 2 > 0
eschi-(x) < fminD g /2 if 2 € Fand z > 2 — In(fminDp/4)

The ¢schg operation:

cschy : F'— F U {underflow, floating_overflow, pole}

cschp(z) = trans_resultp(csch}(z))
if 2 € Fand 2 #0
= pole(+o0) if2=0
= pole(—o0) if e =—-0
=-0 if 2 = —o0
=0 if z =400
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

NOTE - cschp(z) overflows approximately when |1/2| > fmazp.
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5.3.4.7 Arcus sinus hyperbolicus operation

The arcsinh¥ approximation helper function:
arcsinhy. : F' = R
arcsinh¥,(z) returns a close approximation to aresinh(z) in R, with maximum error maz_error_sinhp.

Further requirements on the arcsinhj. approximation helper function:

arcsinhy(z) =z if € F' and arcsinh}(x) # arcsinh(z) and
|z] < \/3 x epsilong/rp
arcsinhy,(—z) = —arcsinh}-(z) ife el

The arcsinhg operation:

arcsinhp : FF — F

arcsinhp(z) = trans_resultp(arcsinhi-(z))
if # € Fand |z]| > fminN g
=z if 2 € Fand |z| < fminN g
=-0 ife=-0
= —00 if v =—o0
= 40 if z =400
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

NOTE - underflow is explicitly avoided.

5.3.4.8 Arcus cosinus hyperbolicus operation

The arccosh}- approximation helper function:
arccoshy, : I' =+ R
arccoshy;(x) returns a close approximation to arccosh(z) in R, with maximum error max_error_sinhp.
The arccoshg operation:

arccoshp : ' — F U {invalid }

arccoshp(z) = trans_resulty(arccoshi-(z))
ifee Fanda > 1
= 40 if z =400
= invalid (gNaN) ifz e Fandz <1
= invalid (gNaN) if 2 =-0
= invalid (gNaN) if 2 = —o0
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

5.3.4.9 Arcus tangentus hyperbolicus operation

The arctanh}. approximation helper function:

arctanhy : I' = R

arctanhi-(x) returns a close approximation to arctanh(z) in R, with maximum error max _error_tanhy.

Further requirements on the arctanhj. approximation helper function:
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arctanhy(z) = z if z € F' and arctanh}-(z) # arctanh(z) and
|| < \/1* epsilong/rF
arctanhy(—z) = —arctanhy,(x) ifz e

The arctanhp operation:

arctanhp : F'— F' U {invalid, pole}

arctanhp(z) = trans_resultp(arctanhi-(z))
if € Fand fminNp < |z| < 1
=z if € Fand |z| < fminN g
= pole(+o0) ifz=1
= pole(—o0) ifz =-1
=-0 if e =-0
= invalid (¢NaN) if 2 € Fand |z| > 1
= invalid (qNaN) if 2 = —oc0 or z = 400
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

NOTE - underflow is explicitly avoided.

5.3.4.10 Arcus cotangentus hyperbolicus operation

The arccoth}. approximation helper function:
arccoth : ' =+ R
arccothy(z) returns a close approximation to arccoth(z) in R, with maximum error maz_error_tanhp.
Further requirements on the arccoth}, approximation helper function:

arccothy(—z) = —arccothy () ifz e

The arccothr operation:

arccothp : F'— F U {invalid, underflow, pole}

arccothp(z) = trans_resultp(arccoth}-(x))
if z € Frand |z| > 1
= pole(+o0) ifz=1
= pole(—o0) ifz =-1
=-0 if v =—00
=0 if z =400
= invalid (qNaN) ifze€Fand -1<z<1
= invalid (qNaN) if e =—-0
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

NOTE - There i1s no underflow for this operation for most kinds of floating point types,
e.g. IEC 559 ones.

5.3.4.11 Arcus secantus hyperbolicus operation

The arcsechy, approximation helper function:

arcsech : I' = R
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arcsech}-(z) returns a close approximation to with maximum error maxz _error_tanhy.
The arcsechy operation:

arcsechp : I' — F U{invalid, pole}

arcsechp(z) = trans_resultp(arcsechy(z))
faeFand <z <1
= pole(+0) ifz=0
= pole(+0) if 2 =-0
= invalid (gNaN) if 2 € Fand (z <0orz>1)
= invalid (gNaN) if 2 = —oco or # = 400
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

5.3.4.12 Avrcus cosecantus hyperbolicus operation

The arccschy, approximation helper function:
arceschy : FF =R
arccschi-(z) returns a close approximation to arcesch(z) in R, with maximum error max _error_tanhy.
Further requirements on the arceschy approximation helper function:
arceschi-(1) = arcsinhi-(1)
arccschi.(—x) = —arceschy(x) ife el
The arceschy operation:

arceschy : F'— U {underflow, pole}

arccschp(z) = trans_resultp(arceschi-(z))
ifaeFand 2 <0
= pole(+0) ifz=0
= pole(—o0) if 2 =-0
=-0 if 2 =—o00
=0 if z =40
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

NOTE - There is no underflow for this operation for most kinds of floating point types,
e.g. IEC 559 ones.

5.3.5 Introduction to operations for trigonometrics

The mathematical trigonometric functions are perfectly cyclic. Their numerical counterparts are
not that perfect, for two reasons.

Firstly, the radian normalisation cannot be exact, even though it can be made very good
given very many digits for the approximation(s) of 7 used in the angle normalisation, returning
an offset from the nearest axis, and including guard digits. The unit argument normalisation,
however, can be made exact regardless of the (non-zero and, in case denormyp = false, not too
small) unit and the original angle, returning only a plain angle in F. ISO/IEC 10967-2 requires
unit argument angle normalisation to be exact.

Secondly, the length of one revolution is of course constant, but the density of floating point
values gets sparser (in absolute spacing rather than relative) the larger the magnitude of the values
are. This means that the number of floating point values gets sparser per revolution the larger
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the magnitude of the angle value. For this reason the notification angle_too_big is introduced.
This notification is given when the magnitude of the angle value is “too big”. Exactly when the
representable angle values get too sparse may depend upon the application at hand, and it may
be possible for the programmer to tighten the big-angle parameters below.

The continuation value upon an angle_too_big notification shall be qNalN.

Three different operations for each the ‘conventional textbook’ trigonometric functions are
specified. One version for radians, one version where the angular unit is given as a parameter,
and one where the angular unit is degrees.

5.3.6 Operations for radian trigonometrics and inverse radian trigonometrics

There shall be one radian big-angle parameter:
big_angle_rp € F

It shall have the following default value:
big_angle_rgp = rl[fF/z]

NOTE - The user may be allowed to narrow this value, but should not be allowed to widen
it beyond the value given here.

The radian trigonometric approximation helper functions (including those for normalisation
and conversion from radians) are required to have the same zero points as the approximated math-
ematical function only if the absolute value of the argument is less than or equal to big_angle rp.
Likewise, the radian trigonometric approximation helper functions are required to have the same
sign as the approximated mathematical function only if the absolute value of the argument is less
than or equal to big_angle_rg.

There shall be two maximum error parameters for radian trigonometric operations:

max_error_sing € F
max_error_tang € F

The maz_error_sing parameter shall be in the interval [0.5, 1.5 % rnd_errorg].

The maz_error tany parameter shall be in the interval [maz_error_sing,2 * rnd_errorg].

5.3.6.1 Radian angle normalisation operations

The rady. and axis_radj. approximation helper functions have the signatures:
rady : R =+ R
azis_rady : R — {(1,0),(0,1),(-1,0),(0,-1)} x R

radj-(z) returns a close approximation to rad(z) in R, if |z| < big_angle_rp, with maximum
error mar_error_sing.

azis_rady(z) returns a close approximation to azis_rad(z), if < big.anglerp. The ap-
proximation consists of that the second part of the result (the offset from the indicated axis) is
approximate.

Further requirements on the rad} and axis_rady. approximation helper functions:
rady(z) = if |z| <7
snd(azis_radi-(z)) = radi(z) if fst(azis_radi-(z)) = (1,0)

The radgr operation:

radp : F'— F'U {underflow, angle_too_big}
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radp(z) = trans_resultp(rady(z))if « € F' and |z| > fminNg and |z| < big_angle_rg
=z if (z € Fand |z| < fminNg) or 2 = —0
= angle_too_big(qNaN) if 2 € I’ and |z| > big_angle_rp
= invalid (qNaNN) if 2 € {—o0, 400}
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

The axis_radr operation:

azisoradp : F'— ((F x F) x F) U {angle_too_big}

azisradp(z) = (fst(axis_rady(z)), trans_resulty (snd(azis_rady(z))))
if € Fand || > fminN g and |z| < big_angle_rp
= ((1,0), ) if (¢ € F and |2]| < fminNg) or & = —0

= angle_too_big((qNaN, gNaN), gNaN)
if # € Fand |z| > big_angle_rp
= invalid ((gNaN, gNaN), gNaN)
if 2 € {—o0, +o0}
= ((qNaN, gNaN), qNaN)
if © is a quiet NaN
= invalid ((gNaN, gNaN), gNaN)
if x is a signalling NaN

NOTE - radp is simpler, easier to use, but less accurate than azis_radp. The latter
may still not be sufficient for implementing the radian trigonometric operations to less than
the maximum error stated by the parameters. Hence these operations are not used in the
specifications for the radian trigonometric operations.

5.3.6.2 Radian sinus operation

The sin} approximation helper function:
sinp : R —+ R
siny,(x) returns a close approximation to sin(z) in R if |2| < big_angle_rp, with maximum
error Mmax _error_sing.

Further requirements on the sin}. approximation helper function:

sing(n*2*x7m+7/6)=1/2 ifne Zand |n+2+7+7/6| < biganglerp

sinp(n*2xm+7w/4) =1 ifne€ Zand |n+2+7+x/4| < biganglerp

sing(n 2 % 7T—|— 54m/6)=1/2 ifn€ Zand [nx2*7+5*x7/6| < big_anglerp
siny(x) = if sin%(x) # sin(z) and |2| < /3 x epsilong/rg
sing(—z) = —sin}(x)

The sing operation:

sing : I' = F U{underflow, angle_too_big}

sing(x) = trans_resultp(siny(z))if @ € F' and fminNp < |z| and |z| < big_angle_rp
=z if 2 € Fand |z| < fminN g
=-0 ife=-0
= angle_too_big(qNaN) if || > big_angle_rg
= invalid (qNaNN) if 2 € {—o0, 400}
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN
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NOTE - underflow is here explicitly avoided for denormal arguments, but the operation
may underflow for other arguments.

5.3.6.3 Radian cosinus operation

The cos}- approximation helper function:
cosi : R =+ R
cosy(x) returns a close approximation to cos(z) in R if |z| < big_angle_rF, with maximum
error max_error_sing.

Further requirements on the cos}. approximation helper function:

cosp(n*2xm) =1 if n € Z and |n*2x*7| < big_anglerp
cosp(n+2xm+7/3)=1/2 if ne Zand |n*2x+7+7/3| < big.anglerp
cosf,(n x24T+ 2%x71/3) =—-1/2 ifneZand |n*2x7+2x*7/3| < big.anglerp
cosp(n+2xm4+7) = -1 if n € Zand |n*2x7+ 7| < biganglerp
cosi(z) =1 if cosi(z) # cos(z) and |z| < \/epsilong/rp

*

cosy(—a) = cosy.(x)
The cosg operation:

cosp : F'— F'U{underflow, angle_too_big}

cosp(x) = trans_resultp(cosi(x)) if « € F and |z| < big_angle_rp
=1 ifz=-0
= angle_too_big(qNaN) if |z| > big_anglerg
= invalid (¢NalN) if © € {—o0, 400}
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

5.3.6.4 Radian cosinus with sinus operation

cossing : F'— (F x F') U {underflow, angle_too_big}
cossinp(z) = (cosp(z),sinp(x))

5.3.6.5 Radian tangentus operation

The tan}. approximation helper function:
tany : R =+ R
tany;(x) returns a close approximation to tan(z) in R if |z| < big_angle_rp, with maximum
error max_error_tang.

Further requirements on the tan}. approximation helper function:

tany(n* 2«1+ 7w/4) =1 ifne Zand |n*x2*x7w+xw/4| < biganglerp

n}(n*Q*ﬂ—l—S*ﬂ'/ll) -1 if n€ Zand |nx2x7+4+3*7/4] < big_angle_rp
tani.(z) = if tan}(z) # tan(z) and |z| < \/epsilonp/rp
tany(—z) = —tan}(ac)

The tang operation:

tang : F'— F U {underflow, floating_overflow, angle_too_big}
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tanp(z) = trans_resultp(tany.(z))if « € F' and fminNp < |z| and |z| < big_angle_rg
=z if 2 € Fand |z| < fminN g
=-0 ifz=-0
= angle_too_big(qNaN) if || > big_angle_rg
= invalid (qNaNN) if 2 € {—o0, 400}
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN
NOTE - underflow is explicitly avoided for denormal arguments, but the operation may

underflow for other arguments.

5.3.6.6 Radian cotangentus operation

The cot}- approximation helper function:
cotl :R =R
coti-(x) returns a close approximation to cot(z) in R if |2| < big_anglerp, with maximum
error max _error_tang.

Further requirements on the cot}. approximation helper function:

cotp(n«2xm4m/4) =1 ifne€ Zand |n+2+7+x/4| < biganglerp
cotp(n«2xm4+3%7w/4) = —1 if n € Z and [nx2* 7+ 3*7n/4| < big_anglerp
cotp(—x) = —coth(2)

The cotp operation:

cotp : F'— F'U{underflow, floating_overflow, pole, angle too_big}

cotp(x) = trans_resultp(coti-(z)) if « € ' and = # 0 and || < big_angle_rp
= pole(+0) ifz=0
= pole(—o0) if 2 =-0
= angle_too_big(qNaN) if || > big_angle_rg
= invalid (qNaNN) if 2 € {—o0, 400}
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

5.3.6.7 Radian secantus operation

The secy- approximation helper function:
sec : R —R
secy-(z) returns a close approximation to sec(z) in R if |z| < big_angle_rp, with maximum
error max_error_tang.

Further requirements on the secj. approximation helper function:

secp(n*2xm) =1 if n € Z and |n x2* 7| < big.angle_rp

sech-(n* 2+ w4 7/3) =2 ifne Zand |n+2+7+x/3| < biganglerp

secrp(n« 2% w4+ 2%7/3) = ifneZand |n+2+7+2xn/3| < biganglerp

c}(n*Q*ﬂ'—l—ﬂ) -1 if ne€ Z and |n*2+7+ x| < big_anglerp
seci(x) = if sec(x) # sec(z) and |z| < epsilonp

sech(—x) = sec}(w)
The secp operation:

secg : F'— F U {floating_overflow, angle_too_big}
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5.3.6.8 Radian cosecantus operation

The cscy approximation helper function:

5.3.6.9 Radian arcus sinus operation

The arcsin}. approximation helper function:
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secp(x) = trans_resultp(secy(x)) if € F and |z| < big_angle_rp
=1 ifz=-0
= angle_too_big(qNaN) if |z| > big_anglerg
= invalid (¢NalN) if © € {—o0, 400}
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

*
csct R =+ R

csci-(x) returns a close approximation to csc(z) in R if |z| < big_angle_rp, with maximum
error max_error_tang.

Further requirements on the csc}, approximation helper function:

cscp(n* 2«7+ 7/6) =2
cscp(n*2xm+7/2)=1
cscp(n* 2«7+ 5%7w/6) =2
cscp(—x) = —escr(x)

The cscg operation:

ifne Zand |n*x2*x7+7/6| < biganglerp
ifne Zand |n*x2x7w+x/2| < biganglerp
if n€ Zand |[nx2x74+5%7/6] < big_angle_rp

cscp @ F'— F U {floating_overflow, pole, angle too_big}

csep () = trans_resultp(csci(z)) if © € F and 2 # 0 and |2| < big_angle_rp
= pole(+o0) if2=0
= pole(—o0) if e =—-0
= angle_too_big if |z| > big_anglerp
= invalid (¢NalN) if © € {—o0, 400}
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

arcsinf. : ' =R

arcsiny.(z) returns a close approximation to aresin(z) in R, with maximum error max _error_sing.

Further requirements on the arcsin}. approximation helper function:

arcsiny(1/2) ==«
arcsiny(1) = /2
arcsiny(z) =

arcsing(—z) = —

/6

arcsini(z)

The arcsing operation:

arcsinpg : F — F

U {invalid }

if arcsiny(x) # arcsin(z) and |z| < \/2 * epsilong/rp

arcsinp(z) = trans_resultp(arcsiny.(z))

z
-0

invalid (qNaN)
invalid (qNaN)
qNaN

if z € Fand fminNp < |z| <1
if € Fand |z| < fminN g
ifz=-0

if 2 € Fand (z < —lorz>1)
if € {—o00, 400}

if z is a quiet NaN
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= invalid (gNaN) if  is a signalling NaN
NOTE - underflow is explicitly avoided.

5.3.6.10 Radian arcus cosinus operation

The arccos}. approximation helper function:
arccosy, : I' =+ R
arccosy(x) returns a close approximation to arccos(z) in R, with maximum error max_error_sing.
Further requirements on the arccos}. approximation helper function:
arccosy(1/2) = /3
arccosy(0) = 7/2
arccosi(— 1/2) =2x7/3
(=1) =

arccosF

The arccosg operation:

arccosp : ' — F'U {invalid }

arccosp(xz) = trans_resultp(arccosi(z))
ifeeFand -1 <a2<1
= arccosp(0) if 2 =-0
= invalid (gNaN) if 2 € Fand (z < =l or z > 1)
= invalid (qNaNN) if 2 € {—o0, 400}
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

5.3.6.11 Radian arcus operation

The arcy. approximation helper function:
arcy. : FXF =R
arcy(x,y) returns a close approximation to arc(z, y) in R, with maximum error maz_error_tang.
NOTES
1 The mathematical arc function is defined in section 4.

2 The arc operations are often called arctan2 (with the co-ordinate arguments swapped), or
arccot2.

Further requirements on the arcy. approximation helper function:

arcy(z,0) = ifz>0
c}(w,x)_ﬂ'/él ifa>0
arci(0,y) =7/2 ify >0
arcp(z, — )_3*77/4 ifz <0

arcy(z,0) = ifz <0

arcp(z, —y) = —arc}(ac, Y) ify£0ora>0

The arcg operation:

arcg : ' X F' = F'U{underflow, invalid }
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arcp(z,y) = trans_resultp(arcy(z,y))
if z,y € Frand (z #0 or y #0)
= invalid (0) ifz=0and y=0
=arcr(0,y) if e =—-0and y € FU{—00,—-0,+00}
= negr(arcp(z,0)) if y=—-0 and 2 € FU{—00,400}
=0 ife =4occandy € Fandy >0
= negr(0) ifz=+4ocandye€ Fandy <0
= nearesty (7 /4)7inval? if 2 = 400 and y = 400
= nearestp (7 /2) if 2 € Fand y = 400
= nearesty (3 + 7 /4)%nvallf 2 = —oo and y = 400
= nearesty(w) ifz=-occand y€ FFand y >0
= nearesty(—mn) if2=-occand y€ FFand y <0
= nearesty (=3 + 7 /4)%inval%z = —oo and y = —o0
= nearesty(—7n/2) if 2 € Fand y = —o0
= nearesty(—n/4)Tnval? if 2 = 400 and y = —c0
= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if « is a signalling NaN or y is a signalling NaN

5.3.6.12 Radian arcus tangentus operation

The arctanj. approximation helper function:
arctany. : F' = R
arctany,(z) returns a close approximation to arctan(z) in R, with maximum error max_error_tany.
Further requirements on the arctany approximation helper function:

arctany,(1) == /4

arctany(z) = if arctany,(z) # arctan(z) and |z| < /1.5 * epstlonp/rp
arctany,(z) = /2 if arctany.(z) # arctan(z) and z > 3« rp/epsilony
arctany,(—x) = —arctani-(z)

The arctang operation:

arctang : F — F

arctang(xz) = trans_resultp(arctaniy(x))
if € Fand fminNgp < |z|

=z if € Fand |z| < fminN g

=-0 if e =-0

= trans_resultp(—n/2) if 2 = —o0

= trans_resultp(mw/2) if 2 = 400

= qNaN if z is a quiet NaN

= invalid (qNaN) if z is a signalling NaN
NOTES

1 arctanp(z) = arcp(l,x)

2 underflow is explicitly avoided.

5.3.6.13 Radian arcus cotangentus operation

The arccot}. and arcctgy. approximation helper functions:
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arccoty, : I' =+ R
arcctgpn : F'— R

arccoty;(x) returns a close approximation to arccot(z) in R, with maximum error max_error_tany.
arcctgy.(x) returns a close approximation to arcctg(z) in R, with maximum error max _error_tany.
Further requirements on the arccot}. and arcctgy. approximation helper functions:

arccoty (1) = /4

arccoty(0) = 7 /2

arccoty(—1) =3« 7 /4

arccoty(z) =7 if arccot}-(x) # arccot(z) and @ < —3 * rp/epsilony
arcctgy(x) = arccoty () ifz>0
arcctgp(—z) = —arcctgiq(x)

The arccotr operation:

arccotp : I' — F'U {underflow}

arccotp(z) = trans_resultp(arccoty.(z))
ife el

= trans_resultp (7 /2) if 2 =-0

= trans_resulty(m) if 2 = —o0

=0 if z =40

= qNaN if © is a quiet NaN

= invalid (gNaN) if  is a signalling NaN
NOTES

1 arccotp(x) = arep(z,1).
2 There is no “jump” at zero for arccotp.
The arcctgr operation:

arcctgp : F' — F U {underflow}

arcctgp(z) = trans_resultp(arcctgy-(z))
ife el
= trans_resultp(—7w/2) ifz=-0
=-0 if 2 =—o00
=0 if z =40
= qNaN if © is a quiet NaN
= invalid (gNaN) if  is a signalling NaN

NOTE 3 - arcctgr(negr(z)) = negr(arcetgr(z)).

5.3.6.14 Radian arcus secantus operation

The arcsec}. approximation helper function:
arcsecp : F'— R
arcsecy,(x) returns a close approximation to arcsec(z) in R, with maximum error maxz _error_tang.

Further requirements on the arcsec}. approximation helper function:
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arcsecy(2) = /3

arcsecy(—2) =2+ 7/3

arcsecy,(—1) =7

arcsecy(z) < /2 if >0

arcsecy(z) > 7/2 if 2 <0

arcsecy(z) = 7/2 if arcsec.(x) # arcsec(z) and |x| > 3% rp/epsilonp

The arcsecg operation:

arcsecy @ ' — F U {invalid }

arcsecp(x) = trans_resultp(arcsecy(x))
if 2 € Fand (z < —lorz>1)
= invalid (qNaN) ifze€Fand -1<z<1
= invalid (qNaN) if e =—-0
= trans_resultp(mw/2) if 2 = —o0
= trans_resultp(mw/2) if 2 = 400
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

5.3.6.15 Radian arcus cosecantus operation

The arcescy approximation helper function:
arcescy. i F'— R
arcescy(z) returns a close approximation to arcese(z) in R, with maximum error max _error_tany.
Further requirements on the arcescy approximation helper function:
arcescy(2) =7/6
arcesci(1) =7/2
arcescp(—x) = —arcescy(x)

The arccscp operation:

arcesep : IF'— F U {underflow, invalid }

arccscp(z) = trans_resultp(arcesc(z))
if z € Frand |z| > 1
= invalid (qNaN) ifze€Fand -1<z<1
= invalid (qNaN) if e =—-0
=-0 if v =—00
=0 if z =400
= qNaN if z is a quiet NaN
= invalid (qNaN) if z is a signalling NaN

5.3.7 Operations for argument angular-unit trigonometrics and inverse argument
angular-unit trigonometrics

There shall be one big-angle parameter for argument angular-unit trigonometric operations:
brg_angle_up € F

It is required to have the following default value:
big_angle_up = [rl[fF/ﬂ/m

NOTE 1 — The user may be allowed to narrow this value, but should not be allowed to widen
it beyond the value given here.
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There shall be one derived parameter signifying the minimum allowed angular unit:

. . ) . S
min_angular _unity = rg * fminN g /epsilony = rgﬁmznp +rF)

It is specified for two reasons. Firstly, if the type F' has no denormal values (denormyp = false),
some angle values in F are not representable after normalisation if the angular unit is too small
(this gives the firm limit above). Secondly, even if F' has denormal values (denormp = true),
very tiny angular units do not allow the representable angles to be particularly dense, not even
if the angular value is within the first cycle. This does in itself not give rise to a particular limit
value, but the limit value defined here is reasonable.

To make the requirements a bit easier to express, let Gp = {z € I' | |z| > min_angular_unity}.

NOTE 2 — Negative angular units have not been included since this simplifies the specification
of the inverse trigonometric argument angular unit operations somewhat, and the exclusion
is not judged to be significant.
There shall be two parameterised maximum error parameters for angular-unit argument
trigonometric operations.

max_error_sinup : I' — F'U {invalid }
mazx_error_tanup : F'— F U{invalid }

Let T = {1,2,360,400,6400}. T consists of angle values for exactly one revolution for some
common non-radian angular units: cycles, half-cycles, arc degrees, grades, and mils.

For u € G, the max_error_sinup(u) parameter shall be in the interval [maz_error_sing,2].
The max_error_sinup(u) parameter shall be equal to maz_error_sing if u € T.

For u € G, the max_error tanup (u) parameter shall be in the interval [maz_error_tang,4].
The max_error_tanup(u) parameter shall be equal to max_error tang if u € T.

The maxz_error_sinup(u) and maz_error tanup (u) parameters return invalid if « ¢ G.

All of the argument angular unit trigonometric, and argument angular unit inverse trigonomet-
ric, approximation helper functions, including those for normalisation, angular unit conversion,
and arc, are exempted from the monotonicity requirement for the angular unit argument.

5.3.7.1 Argument angular-unit angle normalisation operations

The argument angular-unit normalisation computes exactly rad(2 « 7+ 2 /u) x u/(2  7), where
is the angular value, and w is the angular unit.
The cycler operation:
cyclep : F x F— FU{-0,angle_too_big, invalid}
cyclep(u,z) = — (round(z/u) *xu) if u € Gp and @ € I and
(z > 0 or x — (round(z/u) *x u) # 0) and
|z /u| < big_angle_up
=-0 ifue Gpand v € F and
z < 0and 2 — (round(z/u) * u) = 0 and
|z /u| < big_angle_up
=-0 ifueGrand r=-0
= angle_too_big(qNaN) if u € G and = € F and |z/u| > big_.angle_up

(
= invalid (gNaN) if w € Fand |u| < min_angular unity and z € F'U{-0}
= invalid (gNaN) if u € {—o00,—0,400} and 2 € F U {—00,—-0,+00}
= invalid (qNaNN) if w€ F and 2 € {—o00, o0}
= qNaN if 2 is a quiet NaN and w is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
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= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN
The axis_cycler operation:
azis_cyclep : F X F' — ((F x F) x (FU{-0})) U {angle_too_big, invalid }

axis_cyclep(u, )
= (azis(u, x), resultp(z — ((round(z/(u/4)) x u/4), rndr))
ifue Grand x € F and
(z/u>0oraz— ((round(z «4/u) x u/4)) # 0) and
|z /u| < big_angle_up
= (azis(u,x), —0) if v e GF and # € I and
z/u <0 and z — (round(z x4/u) * u/4) = 0 and
|z /u| < big_angle_up
= ((1,0),—0) if ue Grpand x=—-0and u>0
1,0),0) ifueGpand z=-0and u<0

= angle_too_big((qNaN, gNaN), gNaN)
if w € Gpand @ € I and |x/u| > big_angle_up
= invalid ((qNaN, gNaN), gNaN)
if w € F and |u| < min_angular_unity and @ € FU{-0}
= invalid ((qNaN, gNaN), gNaN)
if u € {—00,—-0,400} and z € F'U{—00, -0, 400}
= invalid ((qNaN, gNaN), gNaN)
if we Fand 2 € {—o0, 400}

= ((qNaN, gNaN), qNaN)

if x is a quiet NaN and u is not a signalling NaN
= ((qNaN, gNaN), qNaN)

if u is a quiet NaN and z is not a signalling NaN
= invalid ((qNaN, gNaN), gNaN)

if z is a signalling NaN or u is a signalling NaN

where
axis(u, ) = (1,0) if round(z * 4/u) mod 4 =0
=(0,1) if round(z * 4/u) mod 4 =1
= (-1,0) if round(z * 4/u) mod 4 = 2
=(0,-1) if round(z * 4/u) mod 4 = 3
NOTES

1 axis_cyclep(u, z) is exact when divp(u,4) = u/4.
cyclep 1s an exact operation.
cyclep (u, x) has a result in the interval [—u/2,u/2] if u > 0.

A zero resulting angle is negative if the original angle value is negative.

T W N

The cyclep operation is used also in the specifications of the unit argument trigonometric
operations.

5.3.7.2 Argument angular-unit sinus operation

The sinuj. approximation helper function:

sinup : FXR =R
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sinuy(u, z) returns a close approximation to sin(z * 2 % 7/u) in R if v # 0, with maximum
error max _error_sinup(u).

Further requirements on the sinuj approximation helper function:

sinwp(u, nxu+ ) = sinug(u, ) ifne€ Zandué€F and u#0
sinuwp(u, u/12) = 1/2 ifueFandu#0
sinwp(u, u/4) =1 ifue Frand u #0
sinuwp(u, b * u/12) = 1/2 ifueFandu#0
sinuwp(u, —) = —sinup(u, x) ifue Frand u #0
sinup(—u, x) = —sinup(u, ) ifue Frand u #0

NOTE - sinuf(u,z) m e * 2+ w/uif |z * 2% 7/u| < fminNp.
The sinug operation:

sinup : F' x F'— F'U{-0,underflow, invalid, angle_too_big}

sinup(u, ) = trans_resultp(sinuy(u,z))
if cyclep(u,x) € F' and cyclep(u,z) # —u/2
=-0 if cyclep(u,x) € F' and cyclep(u,z) = —u/2
=-0 if cyclep(u,z) = -0

= angle_too_big(qNaN) if u € G and = € F and |z/u| > big_.angle_up

(
= invalid (gNaN) if w € Fand |u| < min_angular unity and z € F'U{-0}
= invalid (gNaN) if u € {—o00,—0,400} and 2 € F U {—00,—-0,+00}
= invalid (qNaNN) if w€ F and 2 € {—o00, o0}
= qNaN if 2 is a quiet NaN and w is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or u is a signalling NaN

5.3.7.3 Argument angular-unit cosinus operation

The cosuj}- approximation helper function:
cosup : I'xXR =R

cosuj-(u, ) returns a close approximation to cos(z * 2 * 7/u) in R if v # 0, with maximum
error max _error_sinup(u).

Further requirements on the cosuj. approximation helper function:

cosu-(u,n* u+ ) = cosuy(u, x) ifne€ Zandué€F and u#0
cosut-(u,0) =1 ifue Frand u #0
cosup-(u, u/6) =1/2 ifueFandu#0
cosup-(u,u/3) = —1/2 ifueFandu#0
cosut(u, u/2) = —1 ifue Frand u #0
cosu(u, —x) = cosuy(u, ) ifue Frand u #0
cosup(—u, z) = cosuy(u, ) ifue Frand u #0

NOTE - cosuf(u,z) = 1 should hold if |z % 2 % n/u| < \/epsilonp /rp
The cosur operation:

cosup : F' X F' = F'U{underflow, invalid, angle too_big}

cosup(u,z) = trans_resultp(cosuy(u,))
if cyclep(u,z) € F
=1 if cyclep(u,z) = -0
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= angle_too_big(qNaN) if v € G and = € F and |z/u| > big_.angle_up

(
= invalid (qNaN) if w € F and |u| < min_angular_unity and @ € FU{-0}
= invalid (¢NaN) if u€ {—00,—0,400} and z € FU{—00,—-0,+00}
= invalid (¢NalN) if w€ Fand 2 € {—o00, o0}
= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN

5.3.7.4 Argument angular-unit cosinus with sinus operation

cossinup : F' X F'— (F x (FU{-0})) U {underflow, invalid, angle_too_big}

cossinup(u, x) = (cosup(u, x), sinup(u, x))

5.3.7.5 Argument angular-unit tangentus operation

The tanuj. approximation helper function:
tanup : FXR =+ R

tanu}(u, z) returns a close approximation to tan(z 2% 7 /u) in R if v # 0, with maximum error
max_error_tanup(u).

Further requirements on the tanu} approximation helper function:

tanuy(u, n* u+ ) = tanuy(u, ) ifn€ Zand ue€F and u#0
tanui-(u,u/8) =1 if ue Fand u#0
tanuy-(u, 3+ u/8) = if ue Fand u#0
tanuy(u, —z) = —tanuF(u, ) if ue Fand u#0
tanuy(—u, z) = —tanuy(u, ) if ue Fand u#0

NOTE 1 - tanup(u, ) e * 2+ w/uif |+ 2% 7/u| < fminNp.
The tanur operation:

tanup : F x F'— FU{-0, pole, floating_overflow, underflow, invalid, angle_too_big}

tanup(u,z) = trans_resultp(tanuy(u,z))
if cyclep(u,z) € I and cyclep(u, z) ¢ {—u/2, —u/4,u/4}
=-0 if cyclep(u,z) € F and cyclep(u, ) = —u/2
=-0 if cyclep(u,x) =
= pole(+o0) if cyclep(u,x) = u/4
= pole(—o0) if cyclep(u, ) = —u/4

= angle_too_big(qNaN) if v € G and = € F and |z/u| > big_.angle_up

(
= invalid (qNaN) if w € F and |u| < min_angular_unity and @ € FU{-0}
= invalid (¢NaN) if u€ {—00,—0,400} and z € FU{—00,—-0,+00}
= invalid (¢NalN) if w€ Fand 2 € {—o00, o0}
= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN

NOTE 2 - The pole notification can arise for tanup(u, #) only when «/4 is in F.
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5.3.7.6 Argument angular-unit cotangentus operation

The cotu}. approximation helper function:
cotup, : ' X R =R

cotuj.(u, x) returns a close approximation to cot(z * 2+ 7/u) in R if u # 0, with maximum
error max _error_tanup(u).

Further requirements on the cotuj. approximation helper function:

cotuy(u,n* u+ ) = cotuy(u, ) ifne€ Zandué€F and u#0
cotut-(u,u/8) =1 ifue Frand u #0
cotup-(u, 3« u/8) = —1 ifue Frand u #0
cotup(u, —x) = —cotuj-(u, ) ifue Frand u #0
cotup-(—u, z) = —cotut-(u, ) ifue Frand u #0

The cotur operation:

cotup : F' x F — F U{-0, pole, floating_overflow, underflow, invalid, angle_too_big}

cotup(u,z) = trans_resulty(cotuy(u,z))
if cyclep(u,x) € I and cyclep(u,z) ¢ {—u/2,—u/4,0,u/2}
=-0 if cyclep(u,z) € F and cyclep(u,z) = —u/4
= pole(+0) if cyclep(u,x) =
= pole(—o0) if cyclep(u,x) =
= pole(+0) if cyclep(u,x) = u/2
= pole(—o0) if cyclep(u,z) = —u/2

= angle_too_big(qNaN) if u € G and = € F and |z/u| > big_.angle_up

(
= invalid (gNaN) if w € Fand |u| < min_angular unity and z € F'U{-0}
= invalid (gNaN) if u € {—o00,—0,400} and 2 € F U {—00,—-0,+00}
= invalid (qNaNN) if w€ F and 2 € {—o00, o0}
= qNaN if 2 is a quiet NaN and w is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or u is a signalling NaN

5.3.7.7 Argument angular-unit secantus operation

The secuj. approximation helper function:
secup : I'XR =+ R

secu-(u, z) returns a close approximation to sec(z * 2 « 7/u) in R if v # 0, with maximum
error max _error_tanup(u).

Further requirements on the secuj. approximation helper function:

secut.(u, n*u—l—x):secu}(u,x) ifne€ Zandué€F and u#0
secuy-(u,0) = ifue Frand u #0
sech(u,u/G)_Q ifue Frand u #0
secuf(u,u/3) = ifue Frand u #0
sech(u,u/Q):—l ifue Frand u #0

secut-(u, —x) = secut-(u, ) ifue Frand u #0

secuf.(—u, x) = secuj-(u, ) ifue Frand u #0
sech(u,x) 1 if Ja x 2 7/ul < 0.5 /epsilonp

The secur operation:
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secup : ' x F — F U {pole, floating_overflow, invalid, angle_too_big}

secup(u,z) = trans_resultp(secuy(u, z))
if cyclep(u,x) € I and cyclep(u,x) ¢ {—u/4,u/4}
=1 if cyclep(u,z) = -0
= pole(+o0) if cyclep(u,z) =u/4
= pole(+o0) if cyclep(u, ) = —u/4

= angle_too_big(qNaN) if v € G and = € F and |z/u| > big_.angle_up
= invalid (qNaN) if w € F and |u| < min_angular_unity and @ € FU{-0}
)
)

= invalid (qNaN if u€ {—00,—0,400} and z € FU{—00,—-0,+00}
= invalid (qNalN if we Fand 2 € {—o0, 400}

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN

5.3.7.8 Argument angular-unit cosecantus operation

The cscu?, approximation helper function:
cscun 1 X R =R

cscui-(u, x) returns a close approximation to csc(z * 2 w/u) in R if v # 0, with maximum
error max_error_tanup(u).

Further requirements on the cscuj. approximation helper function:

escuf(u,n*u+ x) = cscuj-(u, ) ifn€ Zand u € F and u €0
escuf(u, u/12) =2 if ue Fand u#0
csch(u u/4) =1 if ue Fand u#0
escuf(u, b* uf12) =2 if ue Fand u#0
cseuf(u, —x) = —cscuy(u, ) if ue Fand u#0
cseuf(—u, ) = —cscul(u, ) if ue Fand u#0

The ¢scup operation:

cscup : F' x F'— F U {pole, floating_overflow, invalid, angle_too_big}

cscup(u,z) = trans_resultp(cscui(u, z))
if cyclep(u,z) € F and cyclep(u,z) & {—u/2,0,u/2}
= pole(+o0) if cyclep(u,x) =
= pole(—o0) if cyclep(u,x) =
= pole(+o0) if cyclep(u,x) = u/2
= pole(—o0) if cyclep(u,z) = —u/2

= angle_too_big(qNaN) if v € G and = € F and |z/u| > big_.angle_up

= invalid (qNaN) if w € F and |u| < min_angular_unity and @ € FU{-0}
)
)

= invalid (qNaN if u€ {—00,—0,400} and z € FU{—00,—-0,+00}
= invalid (qNalN if we Fand 2 € {—o0, 400}

= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN
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5.3.7.9 Argument angular-unit arcus sinus operation

The arcsinuy approximation helper function:
arcsinuy : ' X =R

arcsinuy.(u, z) returns a close approximation to arcsin(z) * u/(2 * 7) in R, with maximum
error max _error_sinup(u).

Further requirements on the arcsinuj. approximation helper function:

arcsinuy(u,1/2) = u/12

arcsinuy.(u,1) = u/4
arcsinuy,(u, —x) = —arcsinui.(u, )
arcsinuy(—u, x) = —arcsinuy.(u, )

NOTE - arcsinufy(u, ) = u/(2 «7) if |x| < fminNp.
The arcsinup operation:
arcsinup @ F' x F'— F'U{-0,underflow, invalid }

arcsinup(u, x)
= trans_resultp(arcsinuy,(u, z))
if u€ Gpand 2 € I'and |z] <1 and 2 #0

=0 ifueGrpand u>0and 2 =0

=-0 ifueGrpand u>0and x = -0

=-0 ifueGrpand u<0and 2z =0

=0 ifueGrpand u<0and z = -0

= invalid (qNaNN) if we Gpand z € F and |z| > 1

= invalid (qNaNN) if € Gp and ¢ € {—00, o0}

= invalid (gNaN) if w € F' and |u| < min_angular_unitp and
z € FU{—o00,-0,+00}

= invalid (qNaNN) if w € {—00, —0,+00} and

z € FU{—o00,-0,+00}

= qNaN if 2 is a quiet NaN and w is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or u is a signalling NaN

5.3.7.10 Argument angular-unit arcus cosinus operation

The arccosu}- approximation helper function:
arccosuy. : I' X ' =R

arccosuy:(u, ) returns a close approximation to arccos(z) * u/(2 # 7) in R, with maximum
error max _error_sinup(u).

Further requirements on the arccosuj. approximation helper function:
arccosuy(u,1/2) = u/6
arccosuy(u,0) = u/4
arccosuy(u, —1/2) = u/3
arccosuy(u, —1) = u/2
arccosuy.(—u, z) = —arccosuy.(u, x)
The arccosup operation:

arccosup : I' x F'— I'U {underflow, invalid }
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arccosup(u, x)
= trans_resultp(arccosuy.(u, z))
if ue Gpand 2 € Fand 2| <1
= trans_resulty(u/4) if we Gpand 2 = -0

= invalid (¢NaN) if we Grand z € Fand |2 >1
= invalid (¢NalN) if w € Gpand ¢ € {—oc0, 00}
= invalid (qNaN) if w € F' and |u| < min_angular_unity and

z € FU{—o00,-0,+00}
= invalid (¢NaN) if u€ {—00,—0,400} and z € FU{—00,—-0,+00}
= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN

5.3.7.11 Argument angular-unit arcus operation

The arcu} approximation helper function:
arcuy, : X FxXF =R

arcuj.(u, z,y) returns a close approximation to arc(z,y) *u/(2+7)in R, with maximum error
max_error_tanup(u).

Further requirements on the arcu} approximation helper function:

arcuj(u,z,z) = u/8 if >0
arch(u 0 y) =u/4 ify >0
arcuj(u,z,—x) = 3% u/8 if 2 <0
arch(u x 0) =u/2 if 2 <0
arcuy(u, z, —y) = —arcuj(u, z,y) ify#0oraz>0
arcuy(—u, x,y) = —arcup(u, z,y)

The arcup operation:
arcup : ' X F' x F' = F'U{-0, underflow, invalid }

arcup(u,z,y) = trans_resultp(arcuy(u,z,y))
if w € Gy and 2,y € ' and (2 < 0 or y # 0)

= mulp(u,0) fueGprandaz e Fandz >0and y=10
= invalid (0) ifu€ Gpandax=0and y=20
= arcup(u,0,y) ifu e Gpand x=—-0and y € FU{—00,—0,400}

= negp(arcup(u,z,0)) ifuw€ Gprandy=—-0and 2 € F'U{—00,+o0}

= mulp(0,u) ifueGpanda=+ocandy € Fand y >0
= mulp(negr(0), u) if € Gpand 2 =+4occand y € Fand y <0
= nearesty(u/8)%inval? if w € Gy and # = 400 and y = 400

= nearesty(u/4) if u € Gpand 2 € F'and y = o0

= nearestp (3 + u/8)%invallf v € G and * = —oo and y = 400

= nearesty(u/2) ifueGpranda=—-occandy € Fandy>0
= nearesty(—u/2) if u € Gpand e =—-occand y € Fand y <0
= nearestp(—3 x u/8)7invaf?u € G and * = —oo and y = —oo

= nearesty(—u/4) ifueGrpandz € Fandy=—

= nearesty(—u/8)%inval? if w € GF and 2 = 400 and y = —oo

= invalid (qNaN) if w € F' and |u| < min_angular_unity and
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z € FU{—o00,-0,+00}

= invalid (gNaN) if u € {—o00,—0,400} and 2,y € FU{—00,—-0,+00}
= qNaN if u is a quiet NaN and not z nor y is a signalling NaN
= qNaN if 2 is a quiet NaN and not w nor y is a signalling NaN
= qNaN if y is a quiet NaN and not u nor z is a signalling NaN
= invalid (gNaN) if u is a signalling NaN or z is a signalling NaN or

y is a signalling NaN

5.3.7.12 Argument angular-unit arcus tangentus operation

The arctanu}. approximation helper function:
arctanuy. : ' X F' =R

arctanuy-(u, z) returns a close approximation to arctan(z) * /(2 % 7) in R, with maximum
error max _error_tanup(u).

Further requirements on the arctanuj. approximation helper function:
arctanuy(u, 1) = u/8
arctanuy(u, ) = u/4 if arctanuy(u,z) # arctan(z) * u/(2 * 7) and
x> 3xrp/epsilonp
arctanui.(u, —z) = —arctanuj.(u, x)
arctanuy(—u, z) = —arctanuy,(u, )
NOTE 1 - arctanufp(u,z) =~ u/(2xn) if |z| < fminNp
The arctanup operation:

arctanup : F' x F'— F U {-0,invalid, underflow}

arctanup(u, x)
= trans_resultp(arctanui(u, z))
ifueGprand 2 € Fand 2 #0

=0 ifueGrpand u>0and 2 =0
=-0 ifueGrpand u>0and x = -0
=-0 ifueGrpand u<0and 2z =0
=0 ifueGrpand u<0and z = -0
= trans_resultp(—u/4) ifu € Gpand 2 = —c0

= trans_resultp(u/4) if u e GF and 2 = 400

= invalid (gNaN) if w € F' and |u| < min_angular_unitp and

z € FU{—o00,-0,+00}
= invalid (gNaN) if u € {—o00,—0,400} and 2 € F U {—00,—-0,+00}
= qNaN if 2 is a quiet NaN and w is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or u is a signalling NaN

NOTE 2 - arctanup(u,z) = arcup(u, 1, ).

5.3.7.13 Argument angular-unit arcus cotangentus operation

The arccotu}. and arcctgu}. approximation helper functions:

arccotuz : I'x FF =+ R
arcctgu. : 'X ' =+ R
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arccotuy.(u, ) returns a close approximation to arccot(z) * u/(2* 7) in R, with maximum
error max_error_tanup(u).

arcctguy(u, x) returns a close approximation to arcctg(z) « u/(2 * ) in R, with maximum
error max_error_tanup(u).

There are two reasonable ways of selecting the principle value for the inverse of the cot oper.
It is best to leave it to the user/programmer to decide which one is the most appropriate in a
particular application. LIA-2 specifies both of them. Selecting just one is premature at the LIA
level.

Further requirements on the arccotu} and arccotu}, approximation helper functions:

arccotuy(u, 1) = u/8

arccotuy(u,0) = u/4

arccotuy(u, —1) = 3% u/8

arccotuy(u, ) < u/2 if >0

arccotuy(u, ) > u/2 if u<0

arccotuy(u, ) = u/2 if arccotut.(u, z) # arccot(z) * u/(2 * 7) and
x < =3 xrp/epsilonp

arccotuy(—u, z) = —arccotuy(u, x)

arcctgui-(u, z) = arccotuy.(u, x) if >0

arcctguy.(u, —z) = —arcctguy-(u, )

The arccotur operation:
arccotup : ' x F'— F'U {invalid, underflow}

arccotup(u, z) = trans_resultp(arccotuy,(u, x))
ifueGrandax el
= trans_resulty(u/4) if we Gpand 2 = -0

= trans_resulty(u/2) if we Gpand x = —c0
=0 ifueGrandu>0and v =+oo
=_-0 if uw€ G and v <0 and x = 400
= invalid (qNaN) if w € F' and |u| < min_angular_unity and

z € FU{—o00,-0,+00}
= invalid (¢NaN) if u€ {—00,—0,400} and z € FU{—00,—-0,+00}
= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN

NOTE - arceotup(u,z) = arcup(u, z,1).
The arcctgup operation:
arcctgup : ' X F' — F'U {invalid, underflow}

arcctgup(u, x) = trans_resultp(arcctgui-(u, v))
ifueGrandax el
= trans_resultp(—u/4) if w € Gp and z = -0

=-0 ifu € Grand v >0 and x = —c0
=0 ifueGrandu>0and v =+oo
=0 ifu € Grand v <0 and x = —c0
=_-0 if uw€ G and v <0 and x = 400
= invalid (qNaN) if w € F' and |u| < min_angular_unity and
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z € FU{—o00,-0,+00}

= invalid (gNaN) if u € {—o00,—0,400} and 2 € F U {—00,—-0,+00}
= qNaN if 2 is a quiet NaN and w is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or u is a signalling NaN

5.3.7.14 Argument angular-unit arcus secantus operation

The arcsecu}. approximation helper function:
arcsecuyp : F'xX F'— R

arcsecut-(u, x) returns a close approximation to arcsec(z) * u/(2 * 7) in R, with maximum
error max _error_tanup(u).

Further requirements on the arcsecu}. approximation helper function:

arcsecuy(u,2) = u/6

arcsecuy(u, —2) = u/3

arcsecuy(u, —1) = u/2

arcsecul-(u, ) < u/4 if 2 >0and u>0

arcsecui-(u, x) > u/4 if # <0and u>0

arcsecul-(u, r) = u/4 if aresecuy:(u, ) # arcsec(z) * u/(2 * 7) and

|z| > 3% rp/epsilony
arcsecuy(—u, x) = —arcsecu’-(u, )

The arcsecur operation:
arcsecup : ' x I' — F U {underflow, invalid }

arcsecup(u, ) = trans_resultp(arcsecuy(u, z))
ifuéeGrpandaz € Fand (2 <—-1lorz>1)

= invalid (gNaN) ifucGrpandz € Fand -1 <2 <1
= invalid (gNaN) if ue Grpand 2 = -0
= trans_resultp(u/4) if ue GF and 2 = —o0

= trans_resultp(u/4) if u e GF and 2 = 400

= invalid (gNaN) if w € F' and |u| < min_angular_unitp and

z € FU{—o00,-0,+00}
= invalid (gNaN) if u € {—o00,—0,400} and 2 € F U {—00,—-0,+00}
= qNaN if 2 is a quiet NaN and w is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (gNaN) if 2 is a signalling NaN or u is a signalling NaN

5.3.7.15 Argument angular-unit arcus cosecantus operation

The arccscuy, approximation helper function:
arcescuy : X =R

arccscuy-(u, z) returns a close approximation to arcesc(z) * u/(2 « w) in R, with maximum
error max _error_tanup(u).

Further requirements on the arcescuy approximation helper function:
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arcescuye(u, 2

(u, 1
arcescup(u, —x) = —arcescuy(u, x)
arcescup(—u, z) = —arcescuy(u, x)

%
F
arcescuy

The arccscup operation:
arcescup : F' x ' — F U {underflow, invalid }

arcescup(u, x) = trans_resultp(arcescuy,(u, x))
ifueGpanda € Fand (z>1ora<—1)

= invalid (qNaN) ifucGpand oz e Fand -1 <2 <1
= invalid (qNaN) if we Gpand 2 = -0
=-0 ifu € Grand v >0 and x = —c0
=0 ifueGrandu>0and v =+oo
= ifu € Grand v <0 and x = —c0
= -0 ifueGrandu<0and v =+
= invalid (qNaN) if v € F and u < min_angular_unity and
z € FU{—o00,-0,+00}
= invalid (¢NaN) if u€ {—00,—0,400} and z € FU{—00,—-0,+00}
= qNaN if x is a quiet NaN and u is not a signalling NaN
= qNaN if u is a quiet NaN and z is not a signalling NaN
= invalid (qNaN) if # is a signalling NaN or u is a signalling NaN

5.3.8 Operations for degree trigonometrics and inverse degree trigonometrics

degp : F'— I'U {-0,angle_too_big}

degr(z) = unitp (360, z)

sindp : I — F'U {—0, underflow, angle _too_big}

sindp(z) = sinup (360, )

cosdp : I' — F U{underflow, angle_too_big}

cosdp(z) = cosup (360, z)

cossindp : ' — ' x (FU{-0}) U {underflow, angle _too_big}
cossindp (x) = cossinup (360, z)

tandp : F'— F'U{-0, pole, floating_overflow, underflow, angle_too_big}
tandp(z) = tanur (360, z)

cotdp : F — F U {pole, floating_overflow, underflow, angle too_big}
cotdp(x) = cotur (360, x)

secdp 1 F'— F U {pole, floating_overflow, angle too_big}

secdp(x) = secur (360, z)

csedp : F'— F U {pole, floating_overflow, angle_too_big}

csedp(z) = escup (360, x)

arcsindp : I' — F U{underflow, invalid }

arcsindp(z) = arcsinup (360, z)

arccosdp : F'— F U {invalid}

arccosdp(z) = arccosup(360, z)

arcdp : F' x I' = F U {underflow, invalid }
arcdp(z,y) = arcup (360, z,y)
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arctandp : F' — F'U {underflow}
arctandp(z) = arctanur (360, z)

arccotdp : F'— I'U {underflow}
arccotdp(z) = arccotur (360, z)

arcctgdp : F'— F U {underflow}
arcctgdp(z) = arcctgup (360, z)
arcsecdp : /' — F U {invalid }
arcsecdp(x) = arcsecup (360, z)

arccsedp @ F'— F U {underflow, invalid }
arcescdp(z) = arcescup(360, z)

5.3.9 Operations for angular-unit conversions
5.3.9.1 Converting radian angle to argument angular-unit angle

Define the mathematical function:
rad_to_cycle: R X R = R

rad_to_cycle(x,v)
= arccos(cos(z)) * v/(2* )
if sin(z) > 0 and v # 0
= —arccos(cos(z)) * v/(2 % 7)
if sin(z) < 0 and v # 0
The rad_to_cycley, approximation helper function:
radtocycler : R X FF =R

rad_to_cycle}-(xz,v) returns a close approximation to rad_to_cycle(z,v) in R, with maximum
error max _error_radp, if |z| < big_angle_rg.

Further requirements on the rad_to_cycle}. approximation helper function:

radto_cycler.(n* 2« m+7/6,v)=v/12 if n € Z and |[n* 2+ 7+ 7/6| < big_angle_rg
rad_to_cycler:(n x2+m+7/4,v)=v/8 ifné€ Z and |nx2*x7+ 7/4| < bigangle_rp
radto_cycler.(n* 2«7 +7/3,v)=v/6 ifné€ Z and |[n*2« 7+ 7/3| < big_angle_rg
rad_to_cycler(n x2+ 7w +7/2,v)=v/4 ifné€ Z and |nx2*x7+ 7/2| < bigangle_rp
rad_to_cycle.(n+2x 7 +2x7/3,v)=v/3

ifneZand |n+2+7+2xn/3| < biganglerp
rad_to_cyclen.(n* 2« m+ 3+ mw/4,0v) =3 xv/8

if n € Z and [nx2* 7+ 3*7n/4| < big_anglerp
rad_to_cyclen.(n* 2«1+ 5+ 7w/6,0) =5 v/12

ifn€ Zand [nx2*7+5*x7/6| < big_anglerp
rad_to_cycler.(n* 2«7 +7,v) =v/2 if ne€ Z and |n*2+7+ x| < big_anglerp

rad_to_cycler.(—x,v) = —rad_to_cycley.(z,v)
if rad_to_cycle(z,v) # v/2
rad_to_cycler.(z, —v) = —rad_to_cycley.(z,v)

if rad_to_cycle(z,v) # v/2
The rad_to_cycler operation:

rad_to_cycler : F' x F'— F'U{underflow, angle_too_big, invalid}
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r(z,v)
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= trans_resultp(radto_cycler.(x,v))

=-0

if v e Gpand o € F and |z| < big_angle_rp
ifveGrand 2= -0

= angle_too_big(qNaN) if v € G and « € I' and |z| > big_angle_rp

= invalid (qNaN)
= invalid (qNaN)

= invalid (qNaN)
= qNaN

= qNaN
= invalid (qNaN)

if ve G and 2 € {—o0, 400}
if v € I and |v| < min_angular_cycler and

z € FU{—o00,-0,+00}
if v € {—00, —0,400} and

z € FU{—o00,-0,+00}
if x is a quiet NaN and v is not a signalling NaN
if v is a quiet NaN and 2 is not a signalling NaN
if z is a signalling NaN or v is a signalling NaN

5.3.9.2 Converting argument angular-unit angle to radian angle

Define the mathematical function:

cycle_to_rad :

cycle_to_rad

RXxR—=R
(u, z)

= arccos(cos(z x 2« 7 /u)) if sin(z * 2« 7/u) > 0
= — arccos(cos(z * 2 x 7/u))

if sin(z*2*7/u) <0

The cycle_to_rady approximation helper function:

cycle_to_rad

i XR =R

cycleto_rady.(u, z) returns a close approximation to cycle to_rad(u,z) in R, if u # 0, with

maximum error max_error_radp.
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Further requirements on the cycle_to_radj. approximation helper function:

cycle toradi-(u,n+ u+ ) = cycle to_rads(u, x)

cycle_to_rad

cycle_to_rads
cycle_to_rads
cycle_to_rads
cycle_to_rads
cycle_to_rads
cycle_to_rads
cycle_to_rad;

cycle_to_rad

ifneZz
(u,u/12) =7/6
F(u,u/8) =m/4
F(uvu/6) =7/3
F(uvu/4) =7/2
(u,u/3)=2%+m/3
T(u,3%u/8) =3*7/4
(u,5*u/12) = 5% 71/6
(uu/2) = 7
(u, —z) = —cycleto_rady(u, x)

The cycle_to_radr operation:

if cycleto_rad(u,z) # w

cycletoradp : F x F— F U{—0,underflow, angle_too_big, invalid }

cycle_to_rad

= trans resultp(cycleto_radi-(u, z))

-0
= angle_too_big
= invalid (qNaN)
= qNaN

if cyclep(u,x) € F

if cyclep(u,x) =

if cyclep(u,x) = angle too_big

1f cyclep(u, z) = invalid
(u,z) is a quiet NaN
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5.3.9.3 Converting argument angular-unit angle to (another) argument angular-
unit angle

Define the mathematical function:
cycle to_cycle : R X R xR =R

cycle to_cycle(u, x,v)
= arccos(cos(z x 2% 7/u)) x v/(2 % )
if u#0and v# 0and sin(z*2+7/u) >0
= —arccos(cos(z * 2 x 7 /u)) * v/(2 % 7)
if u#0and v# 0and sin(z*2+7/u) <0

The cycleto_cycle}- approximation helper function:
cycleto_cyclel, : ' x R X FF =R

cycle_to_cycley.(u, z,v) returns a close approximation to cycle_to_cycle(u,z,v) in R if u # 0
and |z /u| < big_angle_up, with maximum error max _error_radp.

Further requirements on the cycle_to_cycle} approximation helper function:

cycleto_cycley.(u, nx u+ x,v) = cycle to_cycle(u, z, v)
ifne 2

cycleto_cycley(u, u/12,v) = v/12

cycleto_cycley.(u, u/8,v) = v/8

cycleto_cycley.(u, u/6,v) = v/6

cycleto_cycley,(u,u/4,v) =v/4

cycleto_cycley.(u,u/3,v) =v/3

cycleto_cycley(u, 3 u/8,v) =3 % v/8

cycle to_cycleq(u,5* u/12,v) =5+ v/12

cycleto_cycley.(u, u/2,v) = v/2

(

cycle to_cycle.(u, —z,v) = —cycleto_cyclet(u, z,v)

if cycle_to_cycle(u,z,v) # v/2
cycleto_cycley.(—u, z,v) = —cycle_to_cycler-(u, z,v)

if cycle_to_cycle(u,z,v) # v/2
cycleto_cycley.(u, x, —v) = —cycle_to_cycler-(u, z,v)

if cycle_to_cycle(u,z,v) # v/2
The cycle_to_cycler operation:
cycleto_cyclep : F x F x F'— FU{—0,underflow, angle_too_big, invalid }

cycle to_cyclep(u, z,v)
= trans_resultp(cycleto_cycley-(u, x,v))

if v € Gf and cyclep(u,z) € F
=-0 if v € GF and cyclep(u,z) = —0
= angle_too_big if v € G and cyclep(u, z) = angle_too_big
= invalid (gNaN) if v € GF and cyclep(u, z) = invalid
= invalid (gNaN) if v € F and v < min_angular_cycler and
u, 2 € FU{—00,-0,+00}
= invalid (gNaN) if v e {—00,-0,400} and u,z € F U {—00,—0,+00}
= qNalN if cyclep(u,x) is a quiet NaN and
v is not a signalling NaN
= qNaN if v is a quiet NaN and
cyclep(u, z) # invalid
= invalid (gNaN) if v is a signalling NaN
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5.3.9.4 Degree angle conversions to and from other angular units

rad_to_degp : I' — F U{underflow, angle_too_big}

rad_to_degr(z)= rad_to_cycler(x,360)

deg_toradp : F — F U {—0, underflow, angle_too_big}

deg_to_radp(z) = cycle_to_radr(360, z)

cycletodegr : F x F'— F U {—0, underflow, angle_too_big, invalid }
cycle to_degp(u, x) = cycle_to_cycler(u, x,360)

deg_to_cycler : F' x F — F U {-0, underflow, angle_too_big, invalid}
deg_to_cyclep(z,v) = cycleto_cycler (360, z, v)

5.4 Conversion operations

Fixed point string formats and floating point string formats should have formats for —0, 400,
—00, quiet and signalling NaNs. Integer string formats may have formats for such values.

NOTES

1 In ordinary string formats for numerals, the string “Hello world!” is an example of a

signalling NaN.

2 This part of ISO/TEC 10967does not specify any string formats, not even for the special
values —0, 400, —oo, and quiet NalN, but possibilities include the strings used in the text of
this part of ISO/IEC 10967, as well as strings like “+infinity” or “positiva odndligheten”
etc, and the strings used may depend on preference settings. String formats for numerical

values, and if and how they may depend on preference settings, is also an issue for bindings
or programming language specifications. It is not an issue for this part of ISO/TEC 10967.

5.4.1 Integer to integer conversions

I and I’ represent different integer data types (even if the sets I and I’ are the same). At least
one of I and I’ conform to LIA-1.
NOTE 1 - If both are I and I’ are conforming to ISO/TEC 10967-1, then this conversion
is covered by ISO/TEC 10967-1. This operation generalises the cuvt;_; of ISO/TEC 10967-

1:1994, with respect to that one of the integer types in the conversion need not be conforming

to ISO/IEC 10967-

1.

convert;_p: I — I' U {integer_overflow}

convert;_p(z)=

resultp (z)

-0

—00

400

0
integer_overflow
integer_overflow
qNaN

invalid (qNaN)

ifeel
if + = —0 and —0 is available in the target type
if © = —o00 and —oo is available in the target type

if © = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if z is a quiet NaN and quiet NaN is

available in the target type
if « is a signalling NaN [sNaNwithout notification?]

NOTE 2 — This covers, among other things, “input” and “output” of integer type values,
including the possibility of overflow (for either input or output).
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5.4.2 Floating point to integer conversions

I'is an ISO/IEC 10967-1 conforming integer type. F' is an ISO/IEC 10967-1 conforming floating

point type.

NOTE - The operations in this clause are more specific than the floating point to integer
conversion in ISO/IEC 10967-1:1994 which allows any rounding.

roundingr_ g : F' — I U {integer_overflow}

roundingp_(x)
= result;(round(z))
=-0

—00

=4

=0

= integer_overflow

= integer_overflow
= qNaN

= invalid (gNaN)

floorp_; : F' — I U{integer_overflow}

floorp_ () = result;(|z])
=-0

—00

=4

0

= integer_overflow

= integer_overflow
= qNaN

= invalid (gNaN)

ife el
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if x = —o0 and —oo is not available in the target type
if x = 400 and 400 is not available in the target type
if x is a quiet NaN and quiet NaN is

available in the target type
if z is a signalling NaN [sNaNwithout notification?]

ife el
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if x = —o0 and —oo is not available in the target type
if x = 400 and 400 is not available in the target type
if x is a quiet NaN and quiet NaN is

available in the target type
if z is a signalling NaN [sNaNwithout notification?]

ceilingrp_1 : F' — I U {integer_overflow}

ceilingr_1(x) = result;([z])
=-0
= -0
=4
=0
= integer_overflow
= integer_overflow
= qNaN

= invalid (gNaN)

ife el
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if x = —o0 and —oo is not available in the target type
if x = 400 and 400 is not available in the target type
if x is a quiet NaN and quiet NaN is

available in the target type
if z is a signalling NaN [sNaNwithout notification?]

5.4.3 Integer to floating point conversions

convert}©4et . I — F'U {floating_overflow}

nearest

convert}Slr (a3 resultp(x, nearesty)

ifeel
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type
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=4

=0

= floating_overflow
= floating_overflow
= qNaN

= invalid (qNaN)
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if © = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if z is a quiet NaN and quiet NaN is

available in the target type
if « is a signalling NaN [sNaNwithout notification?]

The following two operations are to support interval arithmetic.

ifeel
if + = —0 and —0 is available in the target type
if © = —o00 and —oo is available in the target type

if © = 400 and 400 is available in the target type

convertds : [ — I U {floating_overflow}
convertd®f(z)= resultp(z, downp)

-0

= -0

=4

=0

= floating_overflow
= floating_overflow
= qNaN

= invalid (qNaN)

if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if z is a quiet NaN and quiet NaN is

available in the target type
if « is a signalling NaN [sNaNwithout notification?]

converty’ . : I — F U {floating_overflow}

converty, p(x)= resultp(x, upr)
=-0
= -0
=4
=0
= floating_overflow

= floating_overflow
= qNaN

= invalid (qNaN)

ifeel
if + = —0 and —0 is available in the target type
if © = —o00 and —oo is available in the target type

if © = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if z is a quiet NaN and quiet NaN is

available in the target type
if x is a signalling NaN [sNaNwithout notification?]

NOTE - Integer to nearest floating point conversions are covered by ISO/TEC 10967-1. T.e.

nearest

cvtyp = convert}S'5°*" when both I and I conform to LIA-1.

5.4.4 Floating point to floating point conversions

F and F' represent different floating point data types (even if the sets F' and F’ are the same).

At least one of F' and F’ conform to LIA-1.

68

convert 4"« F — F' U {floating_overflow, underflow}

convertFaEst ()
= resultp/ (z, nearestp)
=-0
= —00
=4
=0

= floating_overflow
= floating_overflow
= qNaN

if © € F' [gen. cvtp_pr of LIA-1]

if + = —0 and —0 is available in the target type

if © = —o00 and —oo is available in the target type

if © = 400 and 400 is available in the target type

if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if z is a quiet NaN and quiet NaN is
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available in the target type
if x is a signalling NaN [sNaNwithout notification?]

The following two operations are to support interval arithmetic.

convert$¥n, . F — I’ U {floating_overflow, underflow}

convert®Wh, (z)

= resultp (x, downgp)

= floating_overflow
= floating_overflow

-0
—00
400
0

qNaN

invalid (qNaN)

ife el
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if x = —o0 and —oo is not available in the target type
if x = 400 and 400 is not available in the target type
if x is a quiet NaN and quiet NaN is

available in the target type
if z is a signalling NaN [sNaNwithout notification?]

converty, .+ I' — F' U {floating_overflow, underflow}

converty! ()

= resultp (x, upp)

= floating_overflow
= floating_overflow

NOTES

-0
—00
400
0

qNaN

invalid (qNaN)

ife el
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if x = —o0 and —oo is not available in the target type
if x = 400 and 400 is not available in the target type
if x is a quiet NaN and quiet NaN is

available in the target type
if z is a signalling NaN [sNaNwithout notification?]

1 Floating point to nearest floating point conversions are covered by ISO/IEC 10967-1 when

both types conform to ISO/TEC 10967-1.

2 This covers, among other things, “input” and “output” of floating point type values, for
floating point string formats.

5.4.5 Floating point to fixed point conversions

D is a fixed point type (essentially LID scaled, but it may be limited). A fixed point type D shall
be a subset of R, characterised by a radix, rp € Z (> 2), a density, dp € Z (> 0), and if it is
limited a maximum positive value, dmazp € D* (> 1). Given these values, the following sets are

defined:

D*={n/(rf) | neZ}

D =D~

= D* N [-dmaxp,dmazp]

Fixed point rounding helper functions:

if D is unlimited
if D is limited

downp : R — D” is a rounding function that rounds towards negative infinity.

upp : R — D* is a rounding function that rounds towards positive infinity.
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nearestp : R — D™ is a rounding function that rounds to nearest, ties round to even last

digit.

The fixed point result helper function, resultp, is like resulty, but for a fixed point type. It
will return overflowif the rounded result is not representable:

resultp : R x (R — D*) — D U {overflow}

resultp(z, rnd)= rnd(z)
=0
=0
= overflow

if rnd(z) € D and (rnd(z) # 0 or z > 0)

if rnd(z) =0 and 2 < 0 and —0 available

if rnd(z) = 0 and 2 < 0 and —0 not available
if zinR and rnd(z) ¢ D

F is a floating point type conforming to LIA-1. D is a fixed point type, it cannot conform to
LIA-1, since fixed point types are not covered by LIA-1.

converti£ s« I — DU {-0, overflow}

convert 45 ()

= resultD(x,nearestD)
=-0

—00

=4

=0

= overflow

= overflow
= qNaN

= invalid (qNaN)
down

converty@h « F'— DU {overflow}

convert®h (z)

= resultp(z, downp)

[l
|
o

= invalid (qNaN)

converty, , : F'— D U{—0,overflow}

converty, (z)
= resultp(z, upp)
-0

I
I
8
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ifx el
if + = —0 and —0 is available in the target type
if © = —o00 and —oo is available in the target type

if © = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if z is a quiet NaN and quiet NaN is

available in the target type
if « is a signalling NaN [sNaNwithout notification?]

ifx el
if + = —0 and —0 is available in the target type
if © = —o00 and —oo is available in the target type

if © = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if  is a quiet NaN and quiet NaN

is available in the target type
if « is a signalling NaN [sNaNwithout notification?]

ifx el
if + = —0 and —0 is available in the target type
if © = —o00 and —oo is available in the target type

if © = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if © = —o00 and —oo is not available in the target type
if © = 400 and 400 is not available in the target type
if z is a quiet NaN and quiet NaN is

available in the target type
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if z is a signalling NaN [sNaNwithout notification?]

1 The type D need not be visible in the programming language. D may be a subtype of
strings, according to some format. Even so, no type for strings need be present in the
programming language.

2 This covers, among other things, “output” of floating point type values, to fixed point
string formats. E.g. a binding may say that float _to fixed_string(x, m, n) is bound
to convertnearestp (Sm,n(x) where Sy, , is strings of length m, representing fixed point
values in (LID) scaled (10, n). The binding should also detail how NaNs, signed zeroes and
infinities are represented in S, ,, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may

overflow.)

5.4.6 Fixed point to floating point conversions

F is a floating point type conforming to ISO/IEC 10967-1. D is a fixed point type, it cannot
conform to ISO/TEC 10967-1, since fixed point types are not covered by ISO/IEC 10967-1.

nearest

convertyVE*" : D — F U {floating_overflow, underflow}

nearest
convertF e ()

resultp(x, nearesty)
-0

—00

400

0

overflow

overflow

qNaN

invalid (qNaN)

ifeebD
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if x = —o0 and —oo is not available in the target type
if x = 400 and 400 is not available in the target type
if x is a quiet NaN and quiet NaN is

available in the target type
if z is a signalling NaN [sNaNwithout notification?]

convert®sn. . D — F U {floating_overflow, underflow}

convertn.(z)

resultp(z, downr)
-0

—00

400

0

overflow
overflow

qNaN

invalid (qNaN)

ifeebD
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
if x = —0 and —0 is not available in the target type
if x = —o0 and —oo is not available in the target type
if x = 400 and 400 is not available in the target type
if x is a quiet NaN and quiet NaN is

available in the target type
if z is a signalling NaN [sNaN without notification?]

convert]y . : D — F U {floating_overflow, underflow}

convertyy ()

resultp(x, upr)

ifeebD
if x = —0 and —0 is available in the target type
if x = —o0 and —oo is available in the target type

if x = 400 and 400 is available in the target type
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=0 if x = —0 and —0 is not available in the target type
= overflow if © = —o00 and —oo is not available in the target type
= overflow if © = 400 and 400 is not available in the target type
= qNaN if z is a quiet NaN and quiet NaN is
available in the target type
= invalid (qNaN) if z is a signalling NaN [sNaN without notification?]
NOTE - This covers, among other things, “input” of floating point type values, from

fixed point string formats. E.g. a binding may say that string to float(s) is bound to
convert@fﬂaiﬁtF(s) where Sy, , is strings of length m, where m is the length of s, and n is the
number of digits after the “decimal symbol” in s. The binding should also detail how NaNs,
signed zeroes and infinities are represented in Sy, ,, as well as the precise format of the strings
representing ordinary values.

5.5 Numerals

Each numeral is an operation. Thus, this clause introduces a very large number of operations,
since the number of numerals is in principle infinite.

5.5.1 Numerals for integer types

A numeral, denoting a mathematical value n in Z, for an integer type, I, results in
resulty(n)

For each 1SO/IEC 10967-1 conforming integer type there shall be integer numerals for all
non-negative values of I. Integer numeral representations using radix 10 should be available.
NOTES

1 Negative values (except mininty if minint; = —mawzint; — 1) can be obtained by using
the negation operation (negy).

2 Other radices may also be available for integer numerals, and the radix used may be part
of determining the goal integer type. E.g., radix 10 may be for signed integer types, and
radix 8 or 16 may be for unsigned integer types.

3 Syntaxes for numerals for different integer types need not be different, nor need they be
the same. LIA-2 does not further specify the format for integer numerals. That is an issue
for bindings.

4 Overflow for numerals can be detected at “compile time”, and warned about.

5.5.2 Numerals for floating point types

A fractional numeral, denoting a mathematical value z in R, for a floating point type, F’, shall
normally result in:

resultp(z, nearesty)

shall in a round towards negative infinity circumstance result in:
resultp(z, downg)

shall in a round towards positive infinity circumstance result in:

resultp(z, upr)
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If 7ec5b59r = true then the directed roundings shall be available also for floating point
numerals. The rounding circumstance should be statically determined, if other than the normal
is at all available.

For each ISO/IEC 10967-1 conforming floating point type, I, there shall be fractional numerals
for all radix 10 limited precision and limited range expressible non-negative values of R. The
precision and range for the numerals shall be large enough to allow all non-negative values of F
to be reachable.

There shall be a numeral for positive infinity. There shall be numerals for quiet and signalling
NaNs.

NOTES

1 Negative values (including negative 0, —0) can be obtained by using the negation operation
(negr).

2 Other radices may also be available for floating point numerals.
Integer numerals may also be fractional numerals, i.e. their syntaxes need not be different.
Nor need syntaxes for numerals for different floating point types be different, nor need they

be the same. ISO/TEC 10967-2 does not specify the syntax for numerals. That is an issue
for bindings or programming language specifications.

6 Notification

Notification is the process by which a user or program is informed that a arithmetic opera-
tion cannot be performed so that a result within the error bounds is returned. Specifically, a
notification shall occur when any such operation returns one of the exceptional values: inte-
ger_overflow, undefined, invalid, pole, underflow, floating_overflow, and angle_too_big.
The exceptional value involved is called the kind of notification that occurs.

Notification shall be performed according to the requirements of clause 6 of ISO/IEC 10967-1.
If notifications are handled by a recording of indicators (see clause 6.1.2 of ISO/IEC 10967-1),
the implementation shall provide (and document) a continuation value for the result of the failed
operation, if that value differs from what is specified in ISO/IEC 10967-2.

An implementation shall suppress spurious notifications.

NOTE 1 - E.g., an intermediate overflow on computing approximations to z2 or y”? during the
calculation of hypotp(x,y) ~ \/2? + y?). This is clear from the ISO/TEC 10967-2 specification
of the hypotp operation.

2 If an operation opp, for the corresponding mathematical function f, is such that f(x) very
closely approximates #, when |z| < fminN g, then opp(z) returns « for |¢| < fminNp, and
does not signal an exception if there 1s no denormalisation loss. For details, see the individ-
ual operation specifications for expmlp, Inlpp, sinhp, arcsinhp, tanhp, arctanhp, sing,
arcsing, tang, and arctanp.

Floating point datatypes that satisfy the requirements of TEC 559 have special values in
addition to the values in F. These are: —0, 400, —oo, signaling NaNs (sNalN), and quiet
NaNs (qNaN). Such values may be passed as arguments to operations, and used as results or
continuation values. Floating point types that do not fully conform to IEC 559 might also have
values corresponding to —0, +00, —oo, or NaN.

Most operations specified in ISO/IEC 10967-2 return invalid(qNaN) when passed a signaling
NaN (sNaN) as an argument. Most operations specified in ISO/IEC 10967-2 return gNaN,
without any notification when passed a quiet NaN (qNalN) as an argument.

The results of passing special values to operations is found in the operation specifications.
NOTES
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3 The different kinds of notifications occur under the following circumstances:

a) invalid: when an argument is not valid for the operation, and no value in F* or any
special value result makes mathematical sense.

b) pole: when the input operand corresponds to a pole of the mathematical function
approximated by the operation.

c) integer_overflow: when the (integer) result is outside of the range of the result
datatype.

d) floating overflow: when a sufficiently closely approximating result of the operation
has a magnitude that 1s too large to be accurately represented in the result datatype.

e) underflow: when a sufficiently closely approximating result of the operation has a
magnitude that is too small to be accurately represented in the result datatype.

f) angle too_big: when the magnitude of the angle argument of a trigonometric oper-
ation exceeds the maximum value of the argument for which the density of floating
point values is deemed sufficient for the operation to make sense. See clause 5.3.5 and
the detailed discussion in clause A.5.3.5.

4 See A.6 for a discussion of the omission of an underflow notification under the circum-
stances mentioned above.

5 The difference between the pole and floating overflow notifications is that the first
corresponds to a true mathematical singularity, and the second corresponds to a well-
defined mathematical result that happens to lie outside the range of F.

6 Signalling NaNs are not produced by any operation in ISO/TEC 10967-2.

6.1 Continuation values

Continuation values of —0, 400, —oo, and NalN are required only if the parameter itec_559  has
the value true. If the implementation can represent such special values in the result datatype,
they should be used according to the specifications in ISO/IEC 10967-2. The distinction between
signaling and quiet NalNs is required only if the implementation is capable of making such a
distinction.

When the notification process requires a continuation value, the following requirements (or-
ganized by notification kind) shall be satisfied for operations with floating point result.

For a invalid notification, the continuation value shall be a quiet NaN, unless specified
explicitly otherwise.

If there are quiet NaNs among the arguments, a quiet NalN shall be used as the continuation
value, unless specified explicitly otherwise.

For a floating_overflow notification, the continuation value shall be as given in parentheses
following the exception value in the specification.

For a pole notification, the continuation value shall be as given in parentheses following the
exception value in the specification.

For an underflow notification, the continuation value shall be one of fminN, —fminN, or a
subnormal value.
For a angle_too_big notification, the continuation value shall be a NaN.
NOTES
1 The prescribed continuation values for floating_overflow and pole are 400 or —co.

2 In order to avoid angle_too_big notifications, and to maintain a high accuracy, implemen-
tors are encouraged to provide, and programmers encouraged to use, the angle normalisa-
tion operations specified in 5.3.6.1,5.3.7.1, and 5.3.8.
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7 Relationship with language standards

A computing system often provides some of the operations specified in ISO/IEC 10967-2 within
the context of a standard programming language. The requirements of the present standard shall
be in addition to those imposed by the relevant programming language standards.

This standard does not define the syntax of arithmetic expressions. However, programmers
need to know how to reliably access the operations defined in this standard.

NOTE 1 - Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation used to invoke each operation specified in

this part of ISO/TEC 10967.

NOTE 2 - For example, the radian arc sine operation (arcsing(z)) might be invoked as

arcsin(x) in Pascal [5] and Ada [6]
asin(x) in C [9] and Fortran [3]
(asin x) in Common Lisp and ISLisp

An implementation shall document the semantics of arithmetic expressions in terms of com-
positions of the operations specified in clause 5 of this part of ISO/IEC 10967and of clause 5 of
ISO/IEC 10967-1.

NOTE 3 - TFor example, if = is declared to be single precision (SP) floating point, and
calculation is done in single precision, then the expression

arcsin(x)
might translate to
aresingp(x)

If the language in question did all computations in double precision (DP) floating point, the
above expression might translate to

cvtDp_>5p (arcsinpp(cvtgp_,pp (l‘)))

Alternatively, if x was declared to be an integer, and the expected result datatype is single
precision float, the above expression might translate to

cvtpp_sp(arcsinpp(cvtipp(x)))

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include

a) Insertion of operations, such as data type conversions or changes in precision.

b) Replacing operations (or entire subexpressions) with others, such as “cos(-x)” — “cos(x)”
(exactly the same result) or “pi - arccos(x)” — “arccos(-x)” (more accurate result) or
“exp(x)-1" — “expm1(x)” (more accurate result if # > —1, less accurate result if < —1,
different notification behaviour).

¢) Evaluating constant subexpressions.

d) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced, and the
notifications generated) need be documented. Only the range of permitted transformations need
be documented. It is not necessary to describe the specific choice of transformations that will be
applied to a particular expression. (See the Fortran standard [3], particularly clauses 7.1.2 and
7.1.7, for an example of documentation in this area.)
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The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 4 — 1t is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.
Control over changes of precision is particularly useful.

8 Documentation requirements

In order to conform to ISO/IEC 10967-2, an implementation shall include documentation pro-
viding the following information to programmers.

2)
h)

i)

NOTE 1 — Much of the documentation required in this clause is properly the responsibility
of programming language or binding standards. An individual implementation would only
need to provide details if it could not cite an appropriate clause of the language or binding
standard.

A list of the provided operations that conform to ISO/IEC 10967-2.

For each maximum error parameter, the value of that parameter. Only parameters that are
relevant to the provided operations need be given.

The value of the parameter big_angle_rrg and the definition of the parameter function
brg_angle_up.

For the nearesty function, the rule used for rounding halfway cases.

For each conforming operation, the continuation value provided for each notification con-
dition. Specific continuation values that are required by ISO/IEC 10967-2 need not be
documented. If the notification mechanism does not make use of continuation values (see
clause 6), continuation values need not be documented.

NOTE 2 - Implementations that do not provide infinities or NaNs will have to document
any continuation values used in place of such values.

For each conforming operation, how the results depend on the rounding mode, if rounding
modes are provided. Operations may be insensitive to the rounding mode, or sensitive to
it, but even then need not heed the rounding mode.

For each conforming operation, the notation to be used for invoking that operation.
For each maximum error parameter, the notation to be used to access that parameter.

The notation to be used to access the parameters big_angle_rp and big_angle_up(u).

Since the integer and floating point types used in conforming operations shall satisfy the
requirements of ISO/IEC 10967-1, the following information shall also be provided by any con-
forming implementation.

J)

76

The translation of arithmetic expressions into combinations of the operations provided by
any part of ISO/IEC 10967, including any use made of higher precision. (See clause 7 of
ISO/IEC 10967-1.)

The methods used for notification, and the information made available about the violation.

(See clause 6 of ISO/IEC 10967-1.)

The means for selecting among the notification methods, and the notification method used
in the absence of a user selection. (See 6.3 of ISO/IEC 10967-1.)

The means for selecting the modes of operation that ensure conformity.
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n) When “recording of indicators” is the method of notification, the datatype used to represent
Ind, the method for denoting the values of Ind (the association of these values with the
subsets of E' must be clear), and the notation for invoking each of the “indicator” operations.

(See 6.1.2 of ISO/IEC 10967-1.)

In interpreting 6.1.2 of ISO/IEC 10967-1, the set of indicators E shall be interpreted as
including all exceptional values listed in the signatures of conforming operations. In partic-
ular, £/ need to contain pole and angle_too_big.
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Annex A

(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology — Lan-
guage independent arithmetic — Part 2: Elementary numerical functions (LIA-2). This allows the
standard itself to be concise.

A.1 Scope
A.1.1 Specifications included in ISO/TEC 10967-2

This part of ISO/IEC 10967 (LIA-2) is intened to define the meaning of some additional operations
on integer and floating point types as specified in ISO/IEC 10967-1. ISO/IEC 10967-2 does not
specify any additional arithmetic datatypes, though fixed point datatypes are used in some of the
specifications for conversion operations.

The specifications for the operations covered by ISO/IEC 10967-2 are given in Sufficient detail
to

a) support detailed and accurate numerical analysis of arithmetic algorithms, enable a precise
determination of conformity or non-conformity,

b) prevent exceptions (like overflow) from going undetected.

A.1.2 Specifications not within the scope of ISO/IEC 10967-2

ISO/IEC 10967-2 is not concerned with techniques for the implementation of portable numerical
functions.

ISO/IEC 10967-2 does not provide specifications for operations which involve no arithmetic
processing. It also omits operations for the support of specialised mathematical domains such as
linear algebra, statistics, and symbolic processing. Such domains deserve separate standardisa-
tion.

A.2 Conformity

Conformanity to this standard is dependent on the existence of language binding standards.
Each language committee is encouraged to produce a binding standard covering at least those
operations already required by the language standard and also specified in ISO/IEC 10967-2.

The term “language standard” in the previous paragraph is used in a generalised sense to
include other computing entities such as calculators, spread sheets, and database query languages
to the extent that they provide the operations covered in ISO/IEC 10967-2.

Suggestions for bindings are provided in Annex C. Annex C has partial binding examples for
a number of existing languages and ISO/IEC 10967-2.

In addition to the bindings for the operations in ISO/IEC 10967-2, it is also necessary to
provide bindings for the maximum error parameters and big angle parameters. Annex C contains
suggestions for these bindings.

To conform to this standard, in the absence of a binding standard, an implementation should
create a binding, following the suggestions in Annex C.
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A.3 Normative references
A.4 Symbols and definitions
A.4.1 Symbols

The sequence types [I] and [F] appear as input to a few operations. In effect, a sequence is a
finite linearly ordered collection of elements which can be indexed from 1 to the length of the
sequence. Equality of two or more elements with different indices is possible.

A helper function from ISO/IEC 10967-1 is used in the conversion of input data into internal
form. This function, resulty, is defined in clause 5.2.6 of ISO/IEC 10967-1, has the following
signature:

resultp : R X (R — F*) — F U {floating_overflow, underflow}

The first input to resulty is the computed result before rounding, and the second input is the
rounding function to be used.

For all values € R, and any rounding function rnd in (R — F*), the following shall apply:
For z = 0 or fminN < |z| < fmax:
resultp(z, rnd)=rnd(z)
For |z| > fmax:

resultp(z, rnd)=rnd(z) if |rnd(z)| = fmaz
= floating_overflow otherwise

For 0 < |z| < fminN:

resultp(z, rnd)=rnd(z) or underflow if |rnd(z)| = fminN
= rnd(z) or underflow if |rnd(z)| € Fp, denorm = true, and
rnd has no denormalization loss at
= underflow otherwise

An implementation is allowed to choose between rnd(z) and underflow in the region between 0
and fminN. However, a denormalised value for rnd(z) can be chosen only if denorm is true and
no denormalisation loss occurs at . An implementation shall document how the choice between
rnd(z) and underflow is made.

A second helper function wrapy produces x if # € I and a wrapped result otherwise. The
definition in clause 5.1.2 of ISO/IEC 10967-1:1994 is

wrapr: Z — 1
wrapy(xz) = & + J * (mazint — minint 4 1) for some j € 2

A.4.2 Definitions

A.5 Specifications for the numerical functions
A.5.1 Additional basic integer operations

A.5.1.1 The integer result and wrap helper functions

The result; helper function notifies overflow when the result cannot be represented in 1.

The wrap; helper function wraps the result into a value that can be represented in I. The
result is wrapped in such a way that the value returned can be used in extended range integer
arithmetic.
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A.5.1.2 Integer maximum and minimum operations
A.5.1.3 Integer positive difference (monus, diminish) operation
A.5.1.4 Integer power and arithmetic shift operations

The integer arithmetic shift operations can be used to implement integer multiplication and
integer division more quickly in special cases.

A.5.1.5 Integer square root (rounded to nearest integer) operation
A.5.1.6 Divisibility and even/odd test operations
A.5.1.7 Greatest common divisor and least common multiple operations

The greatest common divisor is useful in reducing a fraction (a rational number) to its lowest
terms, without loosing accuracy.

The least common multiple is useful in converting two fractions (rational numbers) to have
the same denominator.

A.5.1.8 Support operations for extended integer range
These operations would typically be used to extend the range of the highest level supported by

the underlying hardware of an implementation.

The two parts of an integer product, mul_ovy(z,y) and mul_wrap;(x,y) together provide the
complete integer product. Similarly for addition and subtraction.

The use of wrap; guarantees that integer_overflow will not occur.
A.5.2 Additional basic floating point operations
A.5.2.1 The rounding and floating point result helper functions
A.5.2.2 Floating point maximum and minimum operations
A.5.2.3 Floating point positive difference (monus, diminish) operation
A.5.2.4 Round, floor, and ceiling operations

Since fmaxy always has an integral value according to ISO/IEC 10967-1, no overflow can occur
for these operations.

A.5.2.5 Operation for remainder after division and round to integer (IEEE remain-

der)

The remainder after division and round to integer (IEC 559 remainder) is an exact operation,
even if the floating point datatype only conforms to ISO/IEC 10967-1, but not to the more specific
IEC 559.

Remainder after floating point division and floor to integer cannot be exact. For a small
negative nominator and a positive denominator, the resulting value looses much absolute accuracy
in relation to the original value. Such an operation is therefore not included in ISO/IEC 10967-2.

See also the radian and the argument angular-unit normalisation operations (5.3.6.1, 5.3.7.1).
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A.5.2.6 Square root and reciprocal square root operations

The inverses of squares are double valued, the two possible results having the same magnitude with
opposite signs. For a non-zero result, [ISO/IEC 10967-2 requires that each of the corresponding
operations return a positive result.

There is no ambiguity in the result for sqrip(z): the existence of an ambiguity would require
that the corresponding mathematical function could yield a result exactly half-way between two
successive floating point numbers. Such a number would require exactly (p+1) digits for its exact
representation. The square of such a number would require at least (2p 4 1) digits, which could
not equal the p-digit number z.

The extensions sqrtp(400) = 400 and s¢rip(—0) = —0 are mandated by IEC 559. LIA-2
requires that these axioms hold for implementations which support infinities and signed zeros.
However, it should be noted that while the second is harmless, the first may lead to erroneous
results: a +o0o generated by an addition or subtraction is just barely outside of the normalised
range of numbers. Hence its square root would be well within the representable range. The
possibility that LIA-2 should require that sqrtp(4+oc) = undefined was considered, but rejected
because of the principle of regarding arguments as exact, even if they are not exact. In addition
sqrip(400) = oo for is already required by IEC 559.

Note that the requirement that sqrtp(z) = invalid(gNalN) for z strictly less than zero is
mandated by TEC 559. It follows that NaNs generated in this way represent imaginary values,
which would become complex through addition and subtraction, and even imaginary infinities on
multiplication by ordinary infinities.

The rsqrtp operation will increase performance for scaling a vector into a unit vector. Such
an operation involves division of each component of the vector by the magnitude of the vector
or, equivalently and with higher performance, multiplication by the reciprocal of the magnitude.

A.5.2.7 Support operations for extended floating point precision

These operations would typically be used to extend the precision of the highest level supported
by the underlying hardware of an implementation.

The major motivation for including them in LIA-2 is to provide a capability for accurately
evaluating residuals in an iterative procedure. The residuals give a measure of the error in
the current solution. More important they can be used to estimate a correction to the current
solution. The accuracy of the correction depends on the accuracy of the residuals. The residuals
are calculated as a difference in which the number of leading digits cancelled increases as the
accuracy of the solution increases. A doubled precision calculation of the residuals is usually
adequate to produce a reasonably efficient iteration.

For the basic floating point arithmetic doubled precision operations, the high parts are calcu-
lated the corresponding floating point operations.

There is no intent to provide a set of operations suitable for the implementation of a complete
package for the support of calculations at an arbitrarily high level of precision.

If addp(x,y) rounds to nearest then the high and low parts represent = 4 y exactly.

The product of two numbers, each with p digits of precision, is always exactly representable in
at most 2p digits. The high and low parts of the product will always represent the true product.

The remainder for division is more useful than a 2p-digit approximation. The remainder will
be exactly representable if the high part differs from the true quotient by less than one ulp. The
true quotient can be constructed p digits at a time by division of the successive remainders by
the divisor.
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The remainder for square root is more useful than a low part for the same reason that the
remainder is more useful for division. The remainder for the square root operation will be
exactly representable only if the high part is correctly rounded to nearest, as is required by the
specification for sqrip.

A.5.2.8 Extended precision multiply

This operation is intended for the case that there exist at least two floating point datatypes F
and F”, such that the product of two numbers of type F' is always exactly representable in type
.

To obtain higher precision for multiplication, in the absence of a suitable level of precision F’,
a programmer can exploit the paired mulp and mul_lop operations.

A.5.2.9 Extended precision multiply and add

This operation should multiply using a 2p-digit accumulator, add the third argument, with the
result rounded by the rounding rule to the original p-digit level of precision.

A.5.2.10 Exact summation operation

This operation can be used in conjunction with doubled precision multiplication to generate an
exact inner product. An important application is in the calculation of residuals for an iterative
solution of a system of linear equations, A * x = b where A is an n by n matrix and z and b are
n-vectors. If zq is the current solution, then the correction u is given by A% uw = b — A % xg. The
term A x x¢ is a vector of inner products.

A.5.3 Elementary transcendental floating point operations
A.5.3.1 Specification format

The terms “numerical function” and “mathematical function” are used to distinguish between a
method for approximating a mathematical function and the approximated mathematical function
itself.

The signature of an operation identifies the arithmetic datatypes for the input operands and
the output produced by a operation. The datatypes in the signature of an operation also appear
as subscripts to the name of the operation. For some operations the exceptional value invalid is
produced only by input values of —0, 400, —oc, or sNalN. For these operations the signature
does not contain invalid. In general, LIA-2 does not specify operations in terms of identities like

powerp(z,y) = expr(mulp(y, Inp(z))
in order to avoid an implied requirement that a particular algorithm be used to implement the
operation, an algorithm which in addition may result in less accuracy than may be otherwise
attainable.
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A.5.3.1.1 Maximum error requirements

max_error_opr measures the discrepancy between the computed value opr(z) and the true math-
ematical value f(z) in ulps of the true value. The magnitude of the error bound is thus available
to a program from the computed value opp(z). Note that for results at an exponent boundary
for F, y, the error away from zero is in terms of ulpr(y), whereas the error toward zero is in
terms of ulpp(y)/rr, which is the ulp of values slightly smaller in magnitude than y.

Within limits, accuracy and performance may be varied to best meet customer needs. Note
also that LIA-2 does not prevent a vendor from offering two or more implementations of the
various operations.

The operation specifications define the domain and range for the operations. The computa-
tional domain and range are more limited for the operations than for the corresponding math-
ematical functions because the arithmetic datatypes are subsets of R and Z. Thus the actual
domain of expp(z) is approximately given by

In(fming) <z <In(fmazp)

The actual range extends over I, although there are values, v € F, for which there is no z € F
satisfying

expr(z) = v.

The numerical functions may produce any of the exceptional values integer _overflow, floating_overflow,
underflow, invalid, pole, or angle too_big.

The thresholds for the integer overflow, floating_overflow, and underflow notifications
are determined by the parameters defining the arithmetic datatypes.

The threshold for an undefined notification is determined by the domain of input arguments
for which the mathematical function being approximated is defined.

The pole notification is the operation’s counterpart of a mathematical pole of the mathemat-
ical function being approximated by the operation.

The threshold for angle_too_big is determined by the parameters big_angle rr and big_angle up
supplied by the implementation.

LIA-2 imposes a fairly tight bound on the maximum error allowed in the implementation of
each operation. The tightest possible bound is given by requiring rounding to nearest, for which
the accompanying performance penalty is often unacceptably high. LIA-2 requires rounding to
nearest for only a few operations.

The parameters maxz_error_opr will be documented by the implementation for each such
parameter required by LIA-2. A comparison of the values of these parameters with the values of
the specified maximum value for each such parameter will give some indication of the “quality”
of the routines provided. Further, a comparison of the values of this parameter for two versions
of a frequently used operation will give some indication of the accuracy sacrifice made in order
to gain performance.

Language bindings are free to modify the error limits provided in the specifications for the
operations to meet the expected requirements of their users.

Material on the implementation of high accuracy operations is provided in for example [30,
32, 38].
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A.5.3.1.2 The trans_result helper function
A.5.3.1.3 Sign requirements

A.5.3.1.4 Monotonicity requirements
A.5.3.1.5 1IEC 559 special values

The signed zeros, infinities, and NaNs introduced in IEC 559, are implemented in many current
implementations, and can be expected to become a standard part of floating point calculations.
These special values can be generated as continuation values in such implementations, via literals
for these values, and as the true result when appropriate.

It follows that they can occur as input to arithmetic operations on any implementation which
supports them. Implementations which provide these special values may conform to IEC 559.
Moreover, implementations which do not support these special values are required to document
such alternative actions as they provide.

A report ([36]) issued by the ANSI X3J11 committee discusses possible ways of exploiting
these features. The report identifies some of its suggestions as controversial and cites [32] as
justification.

The next four clauses summarise the specifications of IEC 559 on the creation and propagation
of signed zeros, infinities, and NaNs. They also include some discussion of material in [32, 33, 30].

[EC 559 regards 0 and —0 as almost indistinguishable. The sign is supposed to indicate
the direction of approach to zero. The sign is reliable for a zero generated by underflow in
a multiplication or division operation. It is not reliable for a zero generated by an implied
subtraction of two floating point numbers with the same value, for which case the zero is arbitrarily
given a + sign. The phrase “implied subtraction” indicates either the addition of two oppositely
signed numbers or the subtraction of two like signed numbers.

On occurrence of floating overflow or division of a non-zero number by zero, an implementation
conforming to IEC 559 sets the appropriate status flag (if trapping is not enabled) and then
continues execution with a result of +00 or —oo.

IEC 559 states that the arithmetic of infinities is that associated with mathematical infinities.
Thus, an infinity times, plus, minus, or divided by a non-zero floating point number yields an
infinity for the result; no status flag is set and execution continues. These rules are not necessarily
valid for infinities generated by overflow, thought they are valid if the infinitary arguments are
exact.

NaNs are generated by invalid operations on infinities, 0/0, and the square root of a negative
number (other than —0). Thus NaNs can represent unknown real or complex values, as well as
totally undefined values.

IEC 559 requires that the result of any of its basic operations with one or more NaN inputs
shall be a NaN. This principle is not extended to the numerical functions by [32, 36].

The controversial specifications in [36] are based on an assumption that all of these special
operands represent finite non-zero real-valued numbers; see [32, 33].

The LIA-2 policy for dealing with signed zeros, infinities, and NalNs is as follows:

a) The output is a NaN for any operation for which one (or more) inputs is a NaN. There is
no notification.

b) If a mathematical function h(z) is such that ~(0) = 0, the corresponding operation opp(z)
returns z if # € {0, -0} and h has a positive derivative at 0, and opp(z) returns negp () if
z € {0, -0} and h has a negative derivative at 0.
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¢) For an input value, z, of 0, —0, +00, or —oco, the output value of the operation op(z) is

lim h(z)

zZ—x

where the an approach to zero if from the positive side if # = 0, and the approach is from
the negative side if z = —0.

There is no notification if the limit exists, is finite, and is path independent. The returned
value is 400 or —oo if the limiting value is unbounded, and the approach is towards an
infinity. The returned value is pole(+o0) or pole(—o0) if the limiting value is unbounded,
and the approach is towards zero.

If the limit does not exist the value returned is invalid, and a notification occurs, with a
continuation value of gINaN if appropriate.

A.5.3.2 Hypotenuse operation

The hypotr operation can produce an overflow only if both arguments have magnitudes very close
to the overflow threshold. Care must be taken in its implementation to either avoid or properly
handle overflows and underflows which might occur in squaring the arguments. The function
approximated by this operation is mathematically equivalent to complex absolute value, which
is needed in the calculation of the modulus and argument of a complex number. It is important
for this application that an implementation satisfy the constraint on the magnitude of the result
returned.

LIA-2 does not follow the recommendations in [32] and in [33] that
hypotg (+00,gNaN) = +oo
hypotp(—oo,gNaN) = +oo
hypotr(qNaN, +00) = +00
hypotr(qNaN, —o0) = +00

which are based on the claim that a gINalN represents an (unknown) real valued number. This
claim is not always valid, though it may sometimes be.

A.5.3.3 Operations for exponentiations and logarithms

For all of the exponentiation operations, overflow occurs for sufficiently large values of the argu-
ment(s).
There is a problem for powerp(z,y) if both z and y are zero:

— Ada raises an exception for the operation that is close in semantics to powerg when both
arguments are zero, in accordance with the fact that 0° is mathematically undefined.

— The X/OPEN Portability Guide specifies for pow(0,0) a return value of 1, and no notifi-
cation. This specification agrees with the recommendations in [30, 32, 33, 36].

The specification in LIA-2 follows Ada, and returns invalid for powery(0,0) (with the contin-
uation value 1), because of the risks inherent in returning a result which might be inappropriate
for the application at hand.

The specifications for input of +o0c or —oo are non-controversial, and are consistent with the
behaviour of the mathematical function z¥.

The arguments of powerp are floating point numbers. No special treatment is provided for
integer floating point values, which may be approximate. The cases for integer values of the
arguments are covered by the operations powerpy and powery.
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The result of the powerp operation is invalid for negative values of the base z. The reason
is that the floating point exponent y might imply an implicit extraction of an even root of z,
which would have a complex value for negative . This constraint is explicit in Ada, and is widely
imposed in existing numerical packages provided by vendors.

Along any curve defined by y = k/In(z) the mathematical function z¥ has the value ef Tt
follows that some of the limiting values for 2¥ depend on the choice of k, and hence are undefined,
as indicated in the specification.

There is an accuracy problem with an algorithm based on the following identity:
oY — r@}/:long (z)

The integer part of the product y xlog, (z) defines the exponent of the result and the fractional
part defines the reduced argument. If the exponent is large, and one calculates pp digits of
this intermediate result, there will be fewer than pp digits for the fraction. Thus, in order to
obtain a reduced argument accurately rounded to p digits, it may be necessary to calculate an
approximation to y * log, (z) to a few more than log, (emazp)+ pr base rp digits.

The special exponential operations, corresponding to 2% and 10%, have specifications which
are minor variations on those for ezpp(z). Accuracy and performance can be increased if they
are specially coded, rather than evaluated as expp(mulp(z,Ing(2))) or powergp(2, ).

Similar comments hold for the base 2 and base 10 logarithmic operations.

A.5.3.4 Operations for hyperbolics and inverse hyperbolics

The hyperbolic sine operation, sinhp(z), will overflow if |z| is in the immediate neighbourhood
of In(2 % fmaz), or greater.

The hyperbolic cosine operation, coshp(z), will overflow if || is in the immediate neighbour-
hood of In(2 * fmaz), or greater.

The hyperbolic cotangent operation, cothp(z), has a pole at z = 0.

The inverse of cosh is double valued, the two possible results having the same magnitude with
opposite signs. The value returned by arccoshy is always greater than or equal to 1.

The inverse hyperbolic tangent operation arctanhp(z) has poles at = +1 and at = —1.

The inverse hyperbolic cotangent operation arccothyp(x) has poles at # = +1 and at z = —1.

A.5.3.5 Introduction to operations for trigonometrics
A.5.3.6 Operations for radian trigonometrics and inverse radian trigonometrics

The real trigonometric functions sin(z), cos(z), tan(z), cot(z), sec(z), and csc(z) are all periodic
in the (real) argument 2. The period for sin, cos, sec, and csc is 2 x 7 radians (360 degrees). The
period for tan and cot is = radians (180 degrees).

There are three ways in which a limitation on the accuracy of a trigonometric operation can

be identified:

— The first is related to the fact that the density of floating point values gets sparser as the
magnitude of the values increases. For arguments known to be exact, sparsity implies no
accuracy problems.

For a trigonometric operation, the number of floating point values per period gets sparser as
the magnitude of the argument increases. Hence, for approximately computed arguments,
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there is a maximum argument for which the sparsity will pose no problem. The Ada

lpr/2]
F

standard suggests the value r for radian reduction.

— For reduction of an argument given in radians, implementations use one or several approxi-
mate value(s) of = (or of a multiple of 7), valid to, say, n digits. It follows that the division
implied in the argument reduction cannot be valid to more than n digits, which implies a
maximum absolute angle value for which the reduction yields an accurate reduced angle
value.

ISO/IEC 10967-2 defines two parameters for the identification of the maximum argument for
which the trigonometric operations are guaranteed to satisfy the accuracy requirements: one,
big_arg_rp, refers to operations with radian arguments. The other, big_arg_up, refers to opera-
tions with angular unit (including degree) arguments.

An implementation must support a maximum argument parameter for which a set of trigono-
metric operations is implemented. The value of each of the parameters is determined by the
implementation.

The argument reduction techniques for radians described in [38] avoid the inaccuracies men-
tioned above. Moreover, at least for currently available floating point implementations, this
techniques can produce p digit reduced arguments with an error bound of ulp/2.

All six functions have an essential singularity at infinity. In addition

— tan and sec have poles at odd multiples of 7/2 radians (90 degrees).

— cot and csc have poles at multiples of 7 radians (180 degrees).

All four of the corresponding operations with poles may produce floating_overflow for arguments
sufficiently close to the poles of the functions.

The pole notifications cannot occur if a non-zero argument is in radians because 7 is not
representable in I, except when the pole occurs at 0. For the angular unit argument trigonometric
operations a continuation value of 400 has been chosen arbitrarily for a pole which occurs for a
positive argument.

The operations may produce underflow for arguments sufficiently close to their zeros.

For a denormalised argument z, the sinp and tanp operations can return z for the result,
with very high accuracy. Similarly, for a denormalised argument, cosy and secp can return a
result of 1.0 with very high accuracy.

At present only Ada specifies trigonometric operations with angular unit argument. 1SO/TEC
10967-2 has adopted angular unit argument operations in order to encourage uniformity among
languages which might include such operations in the future. The angular units in T appear to
be particularly important and have therefore been given a tighter error bound requirement. An
implementation can of course have the same (tighter) error bound for all angular units.

Few languages require the functions with the argument in degrees. However, they are almost
universally provided for Fortran.

The tanp operation produces no pole notifications if its argument is an element of F. The
reason is that the poles of tan(z) are at odd multiples of 7/2, which are not representable in F'.

The mathematical cotangent function has a pole at the origin. For a system which supports
signed zeros and infinities, the continuation values are 400 and —oo for arguments of 0 and —0
respectively.

Although the mathematical function sec has poles at odd multiples of 7 /2, the secy operation
will not generate them because such arguments are not representable in F'. The situation is the
same as for the tangent function in radians.
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The corresponding mathematical functions are multiple valued. They are rendered single
valued by defining a principal value range. This range is closely related to a branch cut in
the complex plane for the corresponding complex function. Among the numerical functions this
branch cut is “visible” only for the arctan2 operation.

The principal value ranges are not uniquely determined.

The invalid and underflow notifications are the only notifications produced by the inverse
trigonometric functions.

The arc function has a branch cut along the negative real axis. For 2 < 0 the function has a
discontinuity from —rx to +7 as y passes through zero from negative to positive values. Thus for
x < 0, systems supporting signed zeros can handle the discontinuity as follows:

arcp(z,—0) = —nearestp(w)
arcp(z,0) = +nearestp ()

The values given for the operation arcg(z,y) for the four combinations of signed zeros for z and
y are those given in [32]. There is a problem for input values of 400 or —oo for this operation.
The following table of values is given in [32] for the value of arcp(z,y) with at least one of the
arguments infinite:

Infinite arguments
T y arcp(z,y)
+o0 b>0 0
) ) /4
b<0 +o0 /2
—00 +o0 3x7/4
—00 b>0 T
—00 b< -0 -7
—00 —00 —3x7/4
b<-0| - —7/2
) —00 —r/4
too | b< -0 —0

where b represents a finite number.

If one of # and y is infinite and the other is finite, the result tabulated is consistent with that
obtained by a conventional limiting process. ISO/IEC 10967-2 provides these results.

However, the results of 7/4, —7/4, 3 n/4, and —3 * 7 /4 corresponding to infinite values for
both z and y, are of questionable validity.

A.5.3.7 Operations for argument angular unit trigonometrics and inverse argument
angular unit trigonometrics

If the angular unit argument, u, is such that u/4 € F, the tanup operation has poles at odd
multiples of u/4. This is the case for degrees (u = 360).

As for tanug, if the angular unit argument, w, is such that u/4 € F the secur operation has
poles at odd multiples of u/4.

The same comments hold for the arcup operation as for arcp operation, except that the
discontinuity in the mathematical function is from —u/2 to +u/2.
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A.5.3.8 Operations for degree trigonometrics and inverse degree trigonometrics

Few languages require the trigonometric operations with angles in degrees. However, they are
almost universally provided for Fortran. Performance can probably be gained by implementing
them as functions of the single argument z measured in degrees, rather than using the two
argument forms.

A.5.3.9 Operations for angular-unit conversions
A.5.4 Conversion operations

Clause 5.2 of ISO/IEC 10967-1 covers conversions from an integer type to another integer type
and to a floating point type.

A.6 Notification

The reason for omitting notification for underflow for an operation for which the corresponding
mathematical function satisfies f(z) ~ a if |z| < fminN is as follows: such an underflow can
happen only if the input operand x is a denormalised number. Hence a notification must have
already been returned when its denormalisation was created. Nothing is gained by “repeating”
the notification, particularly since the calculation of f(z) is very accurate (relative error much
less than epsilong/2).

A.6.1 Continuation values

An implementation which supports notification by a recording of indicators (ISO/IEC 10967-1,
clause 6.1.2) must supply values to be used if execution is to be continued following occurrence of
a floating_overflow, underflow, or undefined. For systems which also support signed zeros,
infinities and NalNs, LIA-2 specifies how these entities are used for continuation values. Other
implementations must supply continuation values and document the values selected.

A.7 Relationship with language standards

A.8 Documentation requirements
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Annex B

(informative)

Partial conformity

If an implementation of an operation fulfills all relevant requirements according to the norma-
tive text in LIA-2, except the ones relaxed in this annex, the implementation of that operation
is said to partially conform to LIA-2.

LIA-2 has the following max error requirements for full conformity.
max _error_hypotp € [0.5,1]

maz_error_expr € [0.5, 1.5« rnd_errorg]
max_error_powerp € [max_error_expr, 2« rnd_errorg]

maz_error_sinhp € [0.5,2 % rnd_errorg]
max_error_tanhy € [max_error_sinhp,2 * rnd_errorg]

maz_error_sing € [0.5,1.5 % rnd_errory]
max_error_tang € [max_error_sing,2 « rnd_errorg]

max_error_sinup : I' — F'U {invalid }
mazx_error_tanup : F'— F U{invalid }

For u € G, the max_error_sinup(u) parameter shall be in the interval [maz_error_sing,2].
The max_error_sinup(u) parameter shall be equal to maz_error_sing if u € T.

For u € G, the max_error tanup (u) parameter shall be in the interval [maz_error_tang,4].
The max_error_tanup(u) parameter shall be equal to max_error tang if u € T.

In a partially conforming implementation the max error parameters may be greater than what
is specified by LIA-2. The max error parameter values given in an implementation must still
adequately reflect the accuracy of the relevant operations, if a claim of partial conformity is
made. A partially conforming implementation must document which max error parameters have
greater values than specified by LIA-2.

LTA-2 has a number of extra accuracy requirements in section 5.3. These are detailed in the
paragraphs beginning “Further requirements on the op} approximation helper function”. In a
partially conforming implementation these further requirements need not be fulfilled. The values
returned must still be within the max error bounds that are given by the max error parameters,
if a claim of partial conformity is made. A partially conforming implementation must document
which ‘further requirements’ that are not fulfilled by the implementation.
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Annex C
(informative)

Example bindings for specific languages

This annex describes how a computing system can simultaneously conform to a language
standard (or publicly available specification) and to ISO/IEC 10967-2. It contains suggestions
for binding the “abstract” operations specified in ISO/IEC 10967-2 to concrete language syntax.

Portability of programs can be improved if two conforming LIA-2 systems using the same
language agree in the manner with which they adhere to LIA-2. For instance, LIA-2 requires
that the parameter big_angle_rp be provided (if any conforming , but if one system provides it by
means of the identifier BigAngle and another by the identifier MaxAngle, portability is impaired.
Clearly, it would be best if such names were defined in the relevant language standards or binding
standards, but in the meantime, suggestions are given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote “de facto” portability by following these suggestions on their
own.

The languages covered in this annex are

Ada

Basic

C and C++

Fortran

Java

ISLisp and Common Lisp
Modula-2

Pascal and Extended Pascal

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’
calculators, and database ‘query languages’) are suitable for conformity to ISO/IEC 10967-2.

In this annex, the parameters, operations, and exception behaviour of each language are
examined to see how closely they fit the requirements of ISO/IEC 10967-2. Where parameters,
constants, or operations are not provided by the language, names and syntax are suggested.

This annex describes only the language-level support for ISO/IEC 10967-2. An implementation
that wishes to conform must ensure that the underlying hardware and software is also configured
to conform to ISO/IEC 10967-2 requirements.

A complete binding for ISO/IEC 10967-2 will include, or refer to, a binding for ISO/IEC
10967-1. In turn, a complete binding for the ISO/IEC 10967-1 will include a binding for IEC 559.
Such a joint LIA-2/LIA-1/IEC 559 binding should be developed as a single binding standard. To
avoid conflict with ongoing development, only the ISO/IEC 10967-2 specific portions of such a
binding are presented in this annex.

C.1 General comments

Most language standards permit an implementation to provide, by some means, the parameters
and operations required by ISO/IEC 10967-2 that are not already part of the language. The
method for accessing these additional parameters and operations depends on the implementation
and language, and is not specified in ISO/IEC 10967-2 nor exemplified in this annex. It could
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include external subroutine libraries; new intrinsic functions supported by the compiler; constants
and functions provided as global “macros”; and so on.

Most language standards do not constrain the accuracy of elementary numerical functions, or
specify the subsequent behaviour after a serious arithmetic violation occurs.

In the event that there is a conflict between the requirements of the language standard and
the requirements of ISO/IEC 10967-2, the language binding standard should clearly identify the
conflict and state its resolution of the conflict.

C.2 Ada

The programming language Ada is defined by ISO/IEC 8652:1995, Information Technology —
Programming Languages — Ada [6].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Ada datatype Boolean corresponds to the ISO/TEC 10967-1 datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one floating point
datatype. The notations INT and FLT are used to stand for the names of one of these datatypes
in what follows.

The additional integer operations are listed below, along with the syntax used to invoke them:

mazy(z,y) INT Vax(xz, y)

ming(z,y) INT’Min(z, y)

max_seqr(zs) Max (zs) T
min_seq(xs) Min(zs) T
dimy(z,y) Dim(z, y) T
powery(z,y) T k% Yy

sqrty(z) Sqrt(z) T
dividesy(z,y) Divides(z, ¥) T
eveny(x) Even(z) T
oddy(z) 0dd (=) T
gedi(2,y) Ged(z, y) f
lemy(z,y) Lem(z, y) T
ged_seqr(xs) Ged(xs) T
lem_seqr(xs) Lem(as) T
add_wrapyr(z,y) Add wrap(z, ¥) T
add_ovy(z,y) Add_over(z, y) T
sub_wrapyr(z,y) Sub_wrap(x, y) T
sub_ovy(z,y) Sub_over(z, ¥) T
mul wrapr(z, y) Mul wrap(z, ¥) T
mul_ovr(z, y) Mul _over(z, ¥) T

where z and y are expressions of type INT and where zs is an expression of type array of INT.

The additional basic floating point operations are listed below, along with the syntax used to
invoke them:
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mazp(z, y)
mmazp(x,y)
mming(z,y)
mazx_seqp(zs)
min_seqp(xs)
mmaz _seqp(zs)
mmin_seqr(xs)

dimp(z,y)
roundingp(x)
floorg(z)
ceilingp(x)
rounding_restp(x)
floor restp(z)
cetling_restp(x)
sqrtp(x)
rsqrip(x)
iremp(z,y)

addlop(z,y)
sublop(x,y)
mul lop(z,y)
divorestp(z,y)
sqrt_restp(x
add3p(z,y, =
add3_-midp(z,y, z)
mul_addp(z,y, z)
dprodp_ri(z,y)
sump(zs)

< ~—
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FLTMax(x, y)
FLT Min(x, y)
Mmax(z, ¥)
Mmin(z, ¥)
Max(zs)
Min(zs)

Mmax (zs)
Mmin(zs)

Dim(zx, y)

FLT’Unbiased Rounding(a)
FLT’Floor(z)

FLT’Ceiling(w)

(xz = FL1T’Unbiased Rounding(z))
(z = FLT’Floor(x))

(x = FLT"Ceiling(z))

Sqrt(z)

Rsqrt(z)

FLT’Remainder(x, ¥)

Add low(x, ¥)
Sublow(x, y)
Mul low(z, ¥)
Div_rest(x, y)
Sqrt_rest(z)
Add(z, y, z2)
AddMid(z, y, 2)
Mul_add(z, y, z)
Prod(z, ¥)
Sum(xs)

—tn e =t —te —e —i-

R T T S S e

where z, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

max_err_hypot g

max_€err_erpr
max_err_powerg

max_err_sinhg
max_err_tanhp

big_angle_rgp
Max_err_sing
mazx_err_tang

brg_angle_ur
max_err_sinup(u)
mazx_err_tanup(u)

Err_hypotenuse(z)

Err_exp(z)
Err_power(z)

Err_sinh(z)
Err_tanh(z)

Big radian_angle(z)
Err_sin(z)
Err_tan(z)

Big angle(x)
Err sin cycle(u)
Err_tan cycle(u)

—t —t —t-

—t —t —t-
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where & and u are expressions of type FLT. Several of the parameter functions are constant for

each type (and library), the argument is then used only to differentiate among the floating point
types.
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hypotp(z,y)

expr(x)
expmlp(z)
powerp (b, y)
powerpy(b, z)
powermlp (b, y)
cap2p(z)
explOp(z)

Inp(z)
Inlpp(z)
lOgF(b7 x)
loglpr(b, x)
log2p(x)
logl0p(x)

sinhp(x)
coshp(x)
tanhp(z)
cothp(x)
sechp(x)
cschp(z)

arcsinhp(x)
arccoshp(z)
arctanhp(z)
arccothp(z)
arcsechp(x)
arceschp(x)

rad_nearest_azispg(x)
rad_of fset_azisp(x)

arcsing(x)
arccosp(x)
arcp(z,y)

arctang(x)
arccotp(z)

Hypotenuse(z, ¥)

Exp(x)
ExpM1(z)

b xx y

b *x*x z
PowerM1(b, ¥)
Exp2(x)
Exp10(2)

Log(a)
Logl1P(a)
Log(z, b)
LogiP(xz, b)
Log2(x)
Log10(a)

Sinh(x)
Cosh(x)
Tanh(z)
Coth(x)
Sech(x)
Csch(x)

Arcsinh(z)
Arccosh(z)
Arctanh(z)
Arccoth(z)
Arcsech(xz)
Arccsch(z)

Rad_nearest_axis(x)
Rad_offset_axis(x)
Rad(z)

Sin(x)

Cos(x)

Tan(z)

Cot(x)

Sec(x)

Csc(x)

Arcsin(z)
Arccos(z)

Arctan(y, z), or Arccot(z, ¥)

Arctan(z)
Arccot(z)

—t —t —t-

—t —t —t-

—t —t —t-
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arcctgp(z)
arcsecp ()
arcesep(x)

cycle nearest_axisyp(u,x)

cycle of fset_azisp(u,x)
cyclep(u, )
(u,2)
cosup(u,x)
tanup (u, )
cotup(u, x)
secup(u, x)
)

stnuF

escup(u, x

arcsinup(u, x)
arccosup(u, x)
arcup(u, x,y)
arctanup(u, x)
arccotup(u, x
(
(
(

arccscup\u,

arcctgup(u,

arcsecup (u,x

e e’ S e

deg_nearest_azisp(u,x)
degof fset_azisp(u,x)
degp(z)

sindp(z)

cosdp(z)
tandp(z)
cotdp(x)
secdp(x)
csedp(x)

arcsindp(x)
arccosdp(x)
arcdp(z,y)
arctandp(x
arccotdp(x
arcctgdp(x
(
(

)

arcsecdp
arcescdp(x

X

)
)
)
)

rad_to_cyclep(z, u)
cycle to_radp(u, x)
cycle to_cyclep(u, z,v)
rad_to_degp(x)
deg_to_radp(z)
deg_to_cyclep(x,v)

ISO/IEC CD 10967-2.3:1998(E)

(Sign(a)*Arccot(Abs(x)))

Arcsec(x)
Arccsc(x)

Cycle nearest_axis(z,u)
Cycle offset axis(x,u)

Cycle(z,u)
Sin(z,u)
Cos(x,u)
Tan(z,u)
Cot(x,u)
Sec(x,u)
Csc(x,u)

Arcsin(z,u)
Arccos(x,u)

—t —t —t-

Arctan(y,x,u) or Arccot(z,y,u)

Arctan(z, Cycle=>u)
Arccot(z, Cycle=>u)

(Sign(a)*Arccot(Abs(x), Cycle=>u))

Arcsec(x,u)
Arccsc(x,u)

Cycle nearest_axis(z, 360.0)
Cycle offset_axis(xz, 360.0)
Cycle(z, 360.0)

Sin(x, 360.
Cos(x, 360.
Tan(z, 360.
Cot(x, 360.
Sec(x, 360.
Csc(x, 360.

Arcsin(z, 360.0)
Arccos(z, 360.0)
Arctan(y,z, 360.0), or Arccot(z,y, 360.0)

0)
0)
0)
0)
0)
0)

—t —t —t-

Arctan(z, Cycle=>360.0)
Arccot(z, Cycle=>360.0)
(Sign(a)*Arccot(Abs(x), Cycle=>360.0))

Arcsec(z, 360.0)
Arccsc(z, 360.0)

Rad_to_cycle(z, u)
Cycle_to_rad(u, z)
Cycle_to_cycle(u, z, v)

Rad_to_deg(z)
Deg _to_rad(z)

Deg to_cycle(x, v)

1
1

—t e —e —e = —i-
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cycle to_degp(u, x)

Cycle_to_deg(u, )

Third Committee Draft

where b, z, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Type conversions in Ada are always explicit and usually use the destination datatype name
as the name of the conversion function. Few of them fullfill the requirements in this standard,

however.

roundingr_1(y)
floorp_1(y)
ceilingr_1(y)

col’f_, pearest(x)
cotd_, pown(z)
cuti_,pp()

cuth_, pearest(y)
colp_, mearest(y)
cuth_, pearest(y)
colp_, mearest(y)
colp_, mearest(y)
et own(y)
cvtd._, pown(y)
vt prown(y)
cvlie, pip(y)
ol pp(y)
ot pnp(y)

cvlp_, pearest(y)

colp_, prearest(y)
cuth_ pearest(y)
cvtd_, pown(y)
cvth, prown(y)
cvlipp(y)

el pip(y)

cvl’h_, pearest(z)
cvt},_ pearest(z)
col'’hy,_ pearest(z)
cotd, , pown(z)
cvth, ., pown(z)
cvt_,pp(z)
cvthy,pp(2)
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INT2(x)
Get(s,n,w)
Put(s,z,base?)
Get(f7,n,w?)
Put(f7,z,w?,base?)

INT(FLT’Unbiased Rounding(y))

INT(FLT’Floor(y))

INT(FLT’Ceiling(y))

FLT Nearest(z)
FLT Down(z)
FLTUp(x)

FLT2(y)
Get(s,n,w)
Put(s,z,a?,e?)
Get(f?,m,w?)
Put(f7,x,17,a%,e?)
FLT2Down(y)

Get _Down(s,m,w)
Put Down(s,z,a?,e?)
FLT2Up(y)

Get Up(s,m,w)

Put Up(s,z,a?,e?)

FXD(y)
Put(s,y,a?,e?)
Put(f7,y,17,a7,e?)
FXD Down(y)

Put Down(s,z,a?,e?)
FXDUp(y)

Put Up(s,z,a?,e?)

FLT(z)
Get(s,n,w?)
Get(f7,n,w?)
FLT Doun(z)

Get _Down(s,m,w)
FLTUp(z)

Put Up(s,z,a?,e?)

convert from string s
convert to string s
input from text file f
output to textfile f

—t —t —t-

convert from string s
convert to string s
input from text file f
output to text file f

T

convert from string s
convert to string s

T

fconvert from string s
fconvert to string s

—t —t —t =i

—t —te —t —t-
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where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type. INTZ2is the integer datatype that corresponds to
I’. A 7 above indicates that the parameter is optional.

Ada provides non-negative numerals for all its integer and floating point types. The default
base is 10, but all bases from 2 to 16 can be used. There is no differentiation between the numerals
for different floating point types, nor between numerals for different integer types, but integer
numerals (without a point) cannot be used for floating point types, and ‘real’ numerals (with a
point) cannot be used for integer types. Integer numerals can have an exponent part though.
The details are not repeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numeric
Literals, clause 3.5.4 Integer Types, and clause 3.5.6 Real Types.

Numerals for infinity...

String formats for numerals (same as numerals in Ada programs?).

C.3 BASIC

The programming language BASIC is defined by ISO/IEC 10279:1991, Information Technology
— Programming Languages — Full BASIC [12].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the ISO/IEC 109672 for that operation. For
each of the marked items a suggested identifier is provided.

The BASIC datatype 7777 corresponds to the LIA-1 datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) Min(z, y) T
mazy(z,y) Max(z, y) T
min_seqr(xs) Min(zs) T
max_seqr(zs) Max (zs) T
dimy(z,y) Dim(z, y) T
sqrty(z) Sqrt(z) T
powery(z,y) T Rk Yy T
divides(z,y) Divides(z, ¥) T
eveny(x) Even(z) T
odd(z) 0dd (=) T
gedi(z,y) Ged(z, y) f
lemy(z,y) Lem(z, y) T
ged_seqr(xs) Ged(xs) T
lem_seqr(xs) Lem(as) T
add_wrapy(z,y) Add wrap(x, ¥) T
add_ovy(z,y) Add_over(z, ¥) T
sub_wrapr(z,y) Sub_wrap(z, y) T
sub_ovy(z,y) Sub_over(z, y) T
mul wrapy(z,y) Mul wrap(x, ¥) T
mul_ovy(z,y) Mul over(z, ¥) T
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where z and y are expressions of type INT and where zs is an expression of type array of INT.

The additional non-transcendental floating point operations are listed below, along with the
syntax used to invoke them:

mazp(z,y)
min_seqp(xs)
max_seqp(xs)

roundingr(z)

floorgp(x)
ceilingp(x)

dimp(z,y)
add3p(z,y, z)
sump(zs)
dprodp_ri(z,y)
mul_addp(z,y, 2)
iremp(z,y)
sqrip(z)
rsqrip(z)

add_lop(z,y)
sublop(x,y)
mul lop(x,y)
div_restp(z,y)
sqrt_restp(x)

Min(z, y)
Max(z, y)
Min(zs)
Max(zs)

Rounding(a)
Floor(z)
Ceiling(a)

Dim(zx, y)
Add(z, y, z2)
Sum(xs)

Prod(z, ¥)

Mul _add(z, y, z)
Remainder(z, y)
Sqrt(z)
Rsqrt(z)

Add_low(z, ¥)
Sub_low(z, y)
Mul low(z, ¥)
Div_rest(z, ¥)
Sqrt_rest(z)

—t —t —t =i

—- —t e =t —te — —i-

—te —te —e = =i

where @, y and z are expressions of type FLT, and where zs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

max _err_hypotp

Max _err_expp
max_err_powerp (b, z)

max_err_sinhg
max_err_tanhp

brg_angle_rgp
Max_err_sing
mazx_err_tang

brg_angle_up
mazx_err_sinug(u)
mazx_err _tanup(u)

Err_hypotenuse(z)

Err_exp(z)
Err_power(b, z)

Err_sinh(z)
Err_tanh(z)

Big radian_angle(z)
Err_sin(ax)
Err_tan(z)

Big_angle(a)
Err_sin cycle(u)
Err_tan cycle(u)

—t —t —t-

—t —t —t-

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

types.

100



Third Committee Draft

hypotr(z,y)

capr(2)
expmlp(z)
powerpr(b, z)
powerg (b, y)
powermlp(b,y)
cap2p(z)
explOp(x)

Inp(z)
Inlpp(z)
lOgF(b7 x)
loglpr(b, x)
log2p(x)
logl0p(2)

sinhp(x)
coshp(x)
tanhp(x)
cothp(x)
sechp(z)
cschp(z)

arcsinhp(x)
arccoshp(z)
arctanhp(z)
arccothp(z)
arcsechp(x)
arceschp(x)

rad_nearest_azisg(x)
rad_of fset_axisp(x)

ISO/IEC CD 10967-2.3:1998(E)

Hypotenuse(z, ¥)

Exp(x)
ExpM1(z)
Ipower (b, z)
Power (b, y)
PowerM1(b, ¥)
Exp2(x)
Exp10(2)

Log(a)
Logl1P(a)
Log(z, b)
LogiP(xz, b)
Log2(x)
Log10(a)

Sinh(x)
Cosh(x)
Tanh(z)
Coth(x)
Sech(x)
Csch(x)

Arcsinh(z)
Arccosh(z)
Arctanh(z)
Arccoth(z)
Arcsech(xz)
Arccsch(z)

Nearest_axis(z)
Offset_axis(x)

—t e —te —te — —i-

—t —t —t-

—t e —te —te — —i- —t —t —t-

—t —t —t-

radp(z) Rad(x)

sing(x) Sin(z) (when in radian mode)

cosp(x) Cos(z) (when in radian mode)

tanp(z) Tan(z) (when in radian mode)

cotp(x) Cot(x) (when in radian mode)

secp(x) Sec(x) (when in radian mode) T
csep () Csc(x) (when in radian mode) T
arcsing(x) Arcsin(z) (when in radian mode)
arccosp(x) Arccos(z) (when in radian mode)
arctanp(z) Arctan(z) (when in radian mode)

arccotp(z) Arccot(z) (when in radian mode)

arcctgp(z) (Sign(z)*Arccot (Abs(z))) (when in radian mode)
arcsecp () Arcsec(xz) T
arcesep(x) Arcecsc(x) T
arcp(z,y) Angle(z, y) (when in radian mode)
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cycle_nearest_azisy(u, x)

cycle_of fset_azisp(u,x)
cyclep(u, )
sinup (u, x)
cosup (u, )
tanup (u, )
cotup (u, )
secup(u,x)
cscup(u, x)

(u, 2)
arccosup(u, x)
arctanup (u, x)

arcsinup

arccotup(u, x
(
(
(

arccscuplu, r

arcctgup(u,

arcsecup (u,x

)
)
)
)
arcup(u, x,y

deg_nearest_azisg(u, )
deg_of fset_azisp(u, )
degp(z)

sindp(x)

cosdp(z)

tandp(x)

cotdp(x)

secdp(x)

csedp(x)

arcsindp(x)
arccosdp(x)
arctandp(x)
arccotdp(x
arcctgdp(x
arcsecdp(

arcesedp(z
arcdp(z,y)

X

)
)
)
)

rad_to_cyclep(z, u)
cycle toradp(u, x)
cycle to_cyclep(u, z,v)

Nearest_axis(z,u)
Offset_axis(z,u)
Cycle(u,z)
Sin(u,z)
Cos(u,z)
Tan(u,z)
Cot(u,x)
Sec(u,z)
Csc(u,z)

Arcsin(u,z)
Arccos(u,z)
Arctan(u,z)
Arccot(u,z)

(Sign(a)*Arccot(u,Abs(2)))

Arcsec(u,z)
Arccsc(u,z)
Angle(u,x, y)

Nearest_axis(x)
Offset_axis(z)
Degree(x)

Sin(z) (when in degree
Cos(x) (when in degree
Tan(z) (when in degree
Cot(x) (when in degree
Sec(z) (when in degree
Csc(x) (when in degree

mode
mode
mode
mode
mode

)
)
)
)
)
)

mode

Third Committee Draft
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Arcsin(z) (when in degree mode)

Arccos(z) (when in degree mode)

Arctan(z) (when in degree mode)

Arccot(z) (when in degree mode)
(Sign(z)*Arccot (Abs(z))) (when in degree mode)
Arcsec(z) (when in degree mode) T
Arccsc(z) (when in degree mode) T
Angle(z,y) (when in degree mode)

Rad_to_cycle(z, u)
Cycle to_rad(u, x)
Cycle_to_cycle(u, z,

v)

—t —t —t-

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Type conversions in BASIC...
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roundingr_1(y) Rounding (y)

floorp_1(y) Floor(y)

ceilingr_1(y) Ceiling(y)

cvtnearest;_,p(x) T
cvtdowny_p(x) T
cvtupr e (z) }

cvtnearestp_ g (y)
cvtdownp_ i (y)

cotupp_mr (y)

—t —t —t-

cvtnearestp_,p(y)

cvtdowng_,p(y)
cotupr—p(y)

—t —t —t-

cvtnearestp_,p(z)
cvtdownp_p(z)

cvtupp—r(2)

—t —t —t-

where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type.

BASIC provides non-negative base 10 numerals for all its integer and floating point types.

C.4 C and C++4

The programming language C is defined by ISO/IEC 9899:1990, Information technology — Pro-
gramming languages — C'[9]. The programming language C++ is defined by ISO/IEC |, Informa-
tion Technology — Programming Languages — C++.

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the ISO/IEC 109672 for that operation. For
each of the marked items a suggested identifier is provided.

Integer valued parameters and derived constants can be used in preprocessor expressions.
The LIA-1 datatype Boolean is implemented in the C datatype int (1 = true and 0 = false).

Every implementation of C has integral datatypes int, long int,unsigned int, and unsigned
long int which conform to the LIA-1.

NOTE - The conformity of short and char (signed or unsigned) is not relevant since values
of these types are promoted to int (signed or unsigned) before computations are done.

C has three floating point datatypes that (can) conform to LIA-1: float, double, and long
double.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) imin(z, y) T
mazy(z,y) imax(z, y) T
min_seqr(xs) imin_arr(zs) T
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max_seqr(zs) imax_arr(zs) T
dimy(z,y) idim(z, y) T
sqrty(z) isqrt(z) T
powery(z,y) ipower(z, y) T

dividesy(z,y) divides(z, ¥) T
eveny(x) z%h2=0

oddy(z) x %h21=0

gedr(z,y) ged(z, y) 1
lemy(z,y) lem(z, ) T
ged_seqr(xs) ged_arr(xs) T
lem_seqr(xs) lem_arr(as) T

add_wrapyr(z,y)
add_ovy(z,y)
sub_wrapyr(z,y)
sub_ovy(z,y)
mul wrapr(z, y)
mul_ovr(z, y)

add wrap(z, )
add_over(z, y)
sub_wrap(z, y)
sub_over(z, ¥)
mul wrap(z, y)
mul _over(z, ¥)

—t e —te —te — —i-

where 2 and y are expressions of type INT and where s is an expression of type INT]].

The additional non-transcendental floating point operations are listed below, along with the
syntax used to invoke them:

where 2, y and z are expressions of type FLT, and where xs is an expression of type FLT]].
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ming(z,y)
mazp(z,y)
min_seqp(xs)
max_seqp(xs)

roundingr(z)
floorgp(x)
1

ceilingp(x)

dimp(z,y)
add3p(z,y, z)
sump(zs)
dprodp_ri(z,y)
mul_addp(z,y, 2)
iremp(z,y)
sqrip(z)
rsqrip(z)

add_lop(z,y)
sublop(x,y)
mul lop(x,y)
div_restp(z,y)
sqrt_restp(x)

min(x, y)
max(x, y)
min_arr(axs)
max_arr(xs)

round(z)
ffloorf(x), ffloor(x), ffloorl(x)

ceiling(a)

dim(z, ¥)

add(z, y, z)

sum(zs)

7?77 (x, y)

mul_add(z, y, z)
remainder(z, y)

sqrtf(z), sqrt(z), sqrtl(z)
rsqrt(z)

add_low(zx, y)
sub_low(zx, y)
mul_low(x, y)
div_rest(z, y)
sqrt_rest(z)

—t —t —t =i
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The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

max_err_hypot g

MAT _err_expp
max_err_powerp (b, z)

max_err_sinhg
max_err_tanhp

brg_radian_angler
Max_err_Sing
mazx_err_tang

brg_angler
max_err_sinup(u)
mazx_err_tanup(u)

Err_hypotenuse(z)

Err_exp(z)

Err_power(b, z)

Err_sinh(z)
Err_tanh(z)

Big radian_angle(z)

Err sin(z)
Err_tan(z)

Big angle(x)

Err sin cycle(u)
Err_tan cycle(u)

—t —t —t-

—t —t —t-

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

types.
hypotp(z,y)

expr(z)
expmlp(z)
powerpr(b, z)
powerg(b, y)
powermlp(b,y)
cap2p(z)
explOp(x)

Inp(z)
Inlpp(z)
lOgF(b7 x)
loglpr(b, x)
log2p(x)
logl0p(2)

sinhp(x)
coshp(x)
tanhp(x)
cothp(x)
sechp(z)
cschp(z)

arcsinhp(x)
arccoshp(z)
arctanhp(z)
arccothp(z)

hypotenuse(z, y)

exp(z)
expml(z)
poweri(b, z)
power (b, y)
powermi (b, y)
exp2(z)
exp10(z)

1n(x)
Inip(z)
log(b, 2)
logip(b, )
log2(a)
log10(x)

sinh(x)
cosh(x)
tanh(z)
coth(x)
sech(x)
csch(x)

asinh(x)
acosh(x)
atanh(x)
acoth(x)

—te =t —e = =i

—t —t —t-

—t —t —t-

105



ISO/IEC CD 10967-2.3:1998(E)

106

arcsechp(x)
arceschp(x)

rad_nearest_azispg(x)
rad_of fset_azisp(x)
radp(z)

sing ()
cosp(x)
tanp(z)
cotp(x)
secp(x)
csep ()

arcsing(x)
arccosp(x)
arctang(x)

cycle_nearest_azisy(u, x)
cycle_of fset_azisp(u,x)
cyclep(u, )
sinup (u, x)
cosup (u, )
tanup (u, )
cotup (u, )
secup(u,x)
cscup(u, x)

(u, 2)
arccosup(u, x)
arctanup (u, x)

arcsinup

arccotup(u, x
(
(
(

arccscuplu, r

arcctgup(u,

arcsecup (u,x

)
)
)
)
arcup(u, x,y

deg_nearest_azisg(u, )
deg_of fset_azisp(u, )
degp(z)

sindp(x)

cosdp(z)

tandp(x)

cotdp(x)

asech(z)
acsch(z)

nearest_axis(x)
offset_axis(x)
radian(x)
sin(x)

cos(x)

tan(z)

cot(x)

sec(x)

csc(x)

asin(x)

acos(x)

atan(x)

acot(x)
(sign(a)*acot(abs(x)))
asec(x)

acsc(x)

angle(x, y)

nearest_axisu(u, z)
offset_axisu(u, z)
cycle(u, z)
sinuu, z)
cosulu, z)
tanu(u, z)
cotulu, z)
seculu, z)
csculu, z)

asinu(u, z)

acosuu, z)

atanuu, z)

acotuu, z)
(sign(a)*acotulu, abs(xz)))
asecuu, z)

acscuu, z)

angleu(u, z, ¥y)

nearest_axisu(360.0, z)
offset_axisu(360.0, z)
cycle(360.0, z)
5inu(360.0, z)
cosu(360.0, z)
tanu(360.0, z)
cotu(360.0, z)

Third Committee Draft
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secdp(x) secu(360.0, x) T
csedp(x) cscu(360.0, x) T
arcsindp(x) asinu(360.0, z) T
arccosdp(x) acosu(360.0, z) T
arctandp(x) atanu(360.0, z) T
arccotdp(x) acotu(360.0, z) T
arcctgdp(x) (sign(z)*acotu(360.0, abs(z))) T
arcsecdp(z) asecu(360.0, z) T
arcesedp () acscu(360.0, z) T
arcdp(z,y) angleu(360.0, z,y) T
rad_to_cyclep(z, u) radian_to_cycle(z, u) T
cycle to_radp(u, x) cycle_to_radian(u, z) T
cycle to_cyclep(u, z,v) cycle to cycle(u, x, v) T

where b, x, y, v, and v are expressions of type FLT, and z is an expressions of type INT

converty_p(x) T

roundingr_1(y) rounding(y) T
floorp—1(y) floor(y)
ceilingr_1(y) ceil(y)

cvtnearest;_,p(x)
cvtdowny_p(x)

cvtupr g ()

—t —t —t-

cvtnearestp_ g (y)
cvtdownp i (y)

cvtupp _ g (y)

—t —t —t-

cvtnearestp_,p(y)
cvtdowng_,p(y)
cotupr—p(y)

—t —t =i

cvtnearestp_,p(z)
cvtdownp_p(z)

cvtupp—r(2)

—t —t —t-

where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type.

C provides non-negative numerals .......
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C.5 Fortran

The programming language Fortran is defined by ISO/IEC 1539:1991, Information technology —
Programming languages — FORTRAN [3].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Fortran datatype LOGICAL corresponds to the LIA-1 datatype Boolean.

Every implementation of Fortran has one integer data type, denoted as INTEGER, and two
floating point data type denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to offer additional INTEGER types with a different range and
additional REAL types with different precision or range, parameterized with the KIND parameter.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) min0(z, y)

mazy(z,y) max0(z, y)

min_seq(xs) minO(xs[l], s[2], ..., as[n])
max_seqr(zs) max0(xs[l], xs[2], ..., as[n])

dimy(z,y) dim(z, y)

sqrty(z) isqrt(z) T
powery(z,y) T k% Yy

dividesy(z,y) divides(z, ¥) T
eveny(x) even(x) T
oddy(z) odd(x) T
gedi(2,y) ged(z, y) f
lemy(z,y) lem(z, ) T
ged_seqr(xs) ged(zs) T
lem_seqr(xs) lem(as) T
add_wrapyr(z,y) add_wrap(x, y) T
add_ovy(z,y) add_over(z, y) T
sub_wrapyr(z,y) sub_wrap(z, ) T
sub_ovy(z,y) sub_over(z, y) T
mul wrapr(z, y) mul wrap(z, ¥) T
mul_ovr(z, y) mul _over(z, y) T

where # and y are expressions of type INT and where zs is an expression of type ARRAY OF INT.

The additional non-transcendental floating point operations are listed below, along with the
syntax used to invoke them:

ming(z,y) amini(z, y)

mazp(z,y) amaxi(z, y)

min_seqp(xs) aminl (xzs[l], as[2], ..., as[n])
max_seqp(xs) amax1(xs[l], xs[2], ..., as[n])
floorgp(x) floor(x)

roundingr(z)
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ceilingp(x)

dimp(z,y)
add3p(z,y, z)
sump(zs)
dprodp_pi(z,y)
mul_addp(z,y, z)
iremp(z,y)
sqrtp(x)
rsqrip(x)

addlop(z,y)
sublop(x,y)
mul lop(z,y)
divorestp(z,y)
sqrt_restp(z)

ceil(x)

dim(z, ¥)
add(z, y, z)
sum(zs)

7?77 (x, y)
mul_add(z, vy, z)
remainder(z, ¥)
sqrt(z)
rsqrt(z)

addlow(x, y)
sub_low(x, y)
mul _low(z, y)
div_rest(x, y)
sqrt_rest(z)

ISO/IEC CD 10967-2.3:1998(E)

—- —te —te —e = =i

—te =t —e = =i

where z, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

max_err_hypot g

MAT _err_expp
max_err_powerp (b, z)

max_err_sinhg
max_err_tanhp

big_angle_rgp
Max_err_sing
mazx_err_tang

brg_angle_ur
max_err_sinup(u)
mazx_err_tanup(u)

err hypotenuse(x)

err_exp(a)
err power(b, z)

err_sinh(xz)
err_tanh(z)

big radian_angle(a)
err_sin(z)
err_tan(z)

big_angle(a)
err sin cycle(u)
err_tan_cycle(u)

—t —t —t-

—t —t —t-

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

types.

hypotr(z,y)

powerpr(b, z)
powerp (b, y)
powermlp(b,y)
expr(z)
expmlp(z)
cap2p(z)
explOp(x)

hypotenuse(z, y)

b *x z

b **x y
powerm1 (b, y)
exp(z)
expml(z)
exp2(z)
exp10(z)

—t —t —t-
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logp(b, z)
loglpp(b, x)
Inp(z)
Inlpp(z)
log2p(x)
logl0p(x)

sinhp(x)
coshp(x)
tanhp(z)
cothp(x)
sechp(x)
cschp(z)

arcsinhp(x)
arccoshp(z)
arctanhp(z)
arccothp(z)
arcsechp(x)
arceschp(x)

rad_nearest_azispg(x)
rad_of fset_azisp(x)

arcsing(x)
arccosp(x)
arctang(x)

cycle_nearest_azisy(u, x)
cycle_of fset_azisp(u,x)

cyclep(u, )
sinup (u, x)
cosup (u, )
tanup (u, )
cotup (u, )
secup(u,x)

logbase(b, )
logbaselp(b, z)
log(x)

logip(a)
log2(a)
log10(x)

sinh(x)
cosh(x)
tanh(z)
coth(x)
sech(x)
csch(x)

asinh(x)
acosh(x)
atanh(x)
acoth(x)
asech(x)
acsch(x)

rad nearest_axis(z)
rad_offset_axis(x)
rad(x)
sin(x)
cos(x)
tan(z)
cot(x)
sec(x)
csc(x)

asin(x)
acos(x)
atan(x)
acot(x)

(sign(a)*acot(abs(z)))

asec(z)
acsc(z)
atan2(y, =)

cycle nearest_axis(u,z)
cycle offset axis(u,z)

cycle(u,z)
sinu(u,z)
cosu(u,z)
tanu(u,z)
cotulu,z)
secu(u,z)

Third Committee Draft
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cscup(u, x)

arcsinup(u, x)
arccosup(u, x)
arctanup(u, x)
arccotup(u,

(
(
(
(

arccscup\u,

arcctgup(u,

arcsecup (u,x

)
)
)
)
arcup(u, x,y

deg_nearest_azisp(u,x)
degof fset_azisp(u,x)
degp(z)

sindp(z)

cosdp(z)
tandp(z)
cotdp(x)
secdp(x)
csedp(x)

arcsindp(x)
arccosdp(x)
arctandp(x)
arccotdp(x)
arcctgdp(x)
arcsecdp(z)
arcesedp ()
arcdp(z,y)

X

rad_to_cyclep(z, u)
cycle to_radp(u, x)
cycle to_cyclep(u, z,v)

where b, x, y, v, and v are expressions of type FLT, and z is an expressions of type INT

Type conversions in Fortran...

converty_p(x)

roundingr_1(y)
floorp_1(y)
ceilingr_1(y)

cvtnearest;_,p(x)
cvtdowny_p(x)

cvtupr g ()

cvtnearestp_ g (y)

csculu,z)

asinuu,z)
acosulu,z)
atanuu,z)
acotuu,z)

ISO/IEC CD 10967-2.3:1998(E)
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(sign(a)*acotulabs(z),u))

asecuu,z)
acsculu,z)
atan2u(u,z,y)

degree nearest_axis(a)
degree offset_axis(x)

degrees(a)
sind(x)
cosd(x)
tand(z)
cotd(x)
secd(x)
cscd(x)

asind(x)
acosd(x)
atand(x)
acotd(x)

(sign(a)*acotd(abs(z)))

asecd(z)
acscd(z)
atan2d(y,x)

rad to_cycle(z, u)
cycle to_rad(u, z)
cycle_to cycle(u, z, v)

INT2(x)

nint(y))
floor(y)
ceiling(y)

—te e e —e —ie — —i —i- —te e e —ie e e — —fe —i- —t —t —t-

—t —t —t-

—t —t —t-
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cvtdownp_pr (y)
cvtupp_ ()

cvtnearestp_,p(y)

cvtdowng_,p(y)
cotupr—p(y)

cvtnearestp_,p(2)

cvtdownp_p(z)
cvtupp—r(2)

Third Committee Draft

—t —t —t-

1
1
1

where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type.

Fortran provides non-negative numerals for all its integer and floating point types.

C.6 Java

The programming language Java is defined by SUN Microsystems...

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Java datatype Boolean corresponds to the LIA-1 datatype Boolean.

Every implementation of Java has integral types int, long int,unsigned int, and unsigned
long int which (can) conform to the LIA-1.

Java has three floating point types that (can) conform to LIA-1: float, double, and long
double.

The additional integer operations are listed below, along with the syntax used to invoke them:

112

min[($7 y)
maz(z,y)
min_seq(xs)
max_seqr(zs)

dim[($, y)
sqrty(z)
powery(z,y)

dividesy(z,y)
eveny(x)
oddy(z)
gedr(z,y)
lemy(z,y)
ged_seqr(xs)
lem_seqr(xs)

add_wrapyr(z,y)
add_ovy(z,y)

imin(z, y)
imax(x, y)
imin_arr(as)
imax_arr(xs)

idim(z, y)
isqrt(x)
ipower(z, y)

divides(z, y)
xh2=0

x %h21'=0
gcd(z, y)
lem(e, y)
gcd_arr(zs)
lcm arr(zxs)

add_wrap(x, y)
add_over(x, y)

1
1
1
1

—t —t —t-

—t —te —t —t-
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sub_wrapr(z,y)
sub_ovy(z,y)
mul wrapy(z,y)
mul_ovy(z,y)

sub_wrap(z, y)
sub_over(z, y)
mul wrap(z, y)
mul over(z, ¥)

ISO/IEC CD 10967-2.3:1998(E)
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where z and y are expressions of type INT and where zs is an expression of type array of INT.

The additional non-transcendental floating point operations are listed below, along with the

syntax used to invoke them:

ming(z,y)
mazp(x,y)
min_seqp(xs)
mazx_seqp(zs)

floorg(z)
roundingp(x)
ceilingp(x)

dimp(z,y)
add3p(z,y, z)
sump(zs)
dprodp_ri(z,y)
mul_addp(z,y, z)
iremp(z,y)
sqrtp(x)
rsqrip(x)

addlop(z,y)
sublop(x,y)
mul lop(z,y)
divorestp(z,y)
sqrt_restp(z)

min(x, y)
max(x, y)
min_arr(zs)
max_arr(zs)

ffloor(xz)
round(z)
ceiling(a)

dim(z, ¥)
add(z, y, z)
sum(zs)

7?77 (x, y)
mul_add(z, y, z)
remainder(z, ¥)
sqrt(z)
rsqrt(z)

addlow(x, y)
sub_low(x, y)
mul _low(z, y)
div_rest(x, y)
sqrt_rest(z)

—- —t e —e —e = —i- —t —t —te —t —t-

—te —te —e = =i

where z, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

max_err_hypot g

max_€err_erpr

max_err_powerp (b, z)

max_err_sinhg
max_err_tanhp

brg_radian_angler
Max_err_sing
mazx_err_tang

brg_angler
max_err_sinup(u)

Err_hypotenuse(z)

Err_exp(z)
Err power (b, z)

Err_sinh(z)
Err_tanh(z)

Big radian_angle(z)

Err sin(z)
Err_tan(z)

Big angle(x)
Err sin cycle(u)
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mazx_err _tanup(u) Err_tan_cycle(u) T

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for

each type (and library), the argument is then used only to differentiate among the floating point
types.
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hypotp(z,y)

hypotenuse(z, y)

expr(x) exp(z)

expmlp(z) expml(z)

powerpy(b, z) poweri(b, z) T
powerp (b, y) power (b, y) T
powermlp (b, y) powerml (b, y) T
exp2p(x) exp2(x) T
explOp(z) exp10(z) T
Inp(z) 1n(z)

Inlpp(x) Inip(a)

logp(b, z) log(b, z) T
loglpp(b, x) loglp(b, ) T
log2p(z) log2(x) T
logl0p(x) logl0(x)

sinhp(x) sinh(x)

coshp(x) cosh(x)

tanhp(z) tanh(z)

cothp(x) coth(x) T
sechp(x) sech(x) T
cschp(z) csch(a) T
arcsinhp(x) asinh(z)

arccoshp(z) acosh(z)

arctanhp(z) atanh(z)

arccothp(z) acoth(z) T
arcsechp(x) asech(z) T
arceschp(x) acsch(z) T

rad_nearest_azispg(x)
rad_of fset_azisp(x)

nearest_axis(z)
offset_axis(x)

—t —t —t-

radp(z) radian(a)

sing(z) sin(w)

cosp(x) cos(a)

tanp(z) tan(x)

cotp(x) cot(a) T
secp(x) sec(w) T
csep () csc(a) T
arcsing(x) asin(z)

arccosp(x) acos(z)

arctang(x) atan(z)
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arcescep(x
arcr (e, y)

cycle nearest_axisyp(u,x)
cycle of fset_azisp(u,x)
cyclep(u, )
sinup(u, )
cosup(u,x)
tanup (u, )
cotup(u, x)
secup(u, x)
cscup(u, x)

arcsinup(u, x)

arccotup
arcctgur
arcsecur
arecscup
arcup(u, x,y

deg_nearest_azisp(u,x)
degof fset_azisp(u,x)
degp(z)

sindp(z)

cosdp(z)
tandp(z)
cotdp(x)
secdp(x)
csedp(x)

arcsindp(x)
arccosdp(x)
arctandp(x)
arccotdp(x
arcctgdp(x
arcsecdp (
arcesedp(z
arcdp(z,y)

X

)
)
)
)

rad_to_cyclep(z, u)
cycle to_radp(u, x)
cycle to_cyclep(u, z,v)

ISO/IEC CD 10967-2.3:1998(E)

acot(x)
(sign(a)*acot(abs(x)))
asec(x)

acsc(x)

angle(x, y)

nearest_axisu(u, z)
offset_axisu(u, z)
Cycle(u, x)
sinuu, z)
cosulu, z)
tanu(u, z)
cotulu, z)
seculu, z)
csculu, z)

asinu(u, z)

acosuu, z)

atanuu, z)

acotuu, z)
(sign(a)*acotulu, abs(xz)))
asecuu, z)

acscuu, z)

angleu(u, , y)

nearest_axisu(360.0, z)
offset_axisu(360.0, z)
cycle(360.0, z)

5inu(360.0, z)
cosu(360.0, z)
tanu(360.0, z)
cotu(360.0, z)
secu(360.0, z)
cscu(360.0, z)
asin(360.0, z)
acos(360.0, z)
atan(360.0, z)

acot(360.0, z)

(sign(a)*acot(360.0, abs(x)))

asec(360.0, z)
acsc(360.0, z)
angle(360.0, z,y)

radian to _cycle(z, u)
cycle to_radian(u, z)
cycle_to cycle(u, z, v)

B i T B S S —te e e =t —e —e —i —i- B e T S S S —te =t —e = =i

—te e e =t —e — — —i-

—t —t —t-
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where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

converty_p(x) T

floorp_1(y) floor(y)
roundingr_j(y) round (y) T
ceilingr_1(y) ceil(y)

cvtdowny_p(x)
cutnearest;_, g (z)

cvtupr g ()

—t —t —t-

cvtdownp_pr (y)
cvtnearestp_ g (y)

cotupp g (y)

—t —t =i

cvtdowng_,p(y)
cvtnearestp_,p(y)

cvtupp_p(y)

—t —t —t-

cvtdownp_p(z)
cvtnearestp_,p(2)

cvtupp—r(2)

—t —t —t-

where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type.

Java provides non-negative numerals .......

C.7 1ISLisp and Common Lisp

The programming language 1SLisp is defined by ISO/IEC CD 13816.2, Information Technology
— Programming Languages — Lisp .

The programming language Common Lisp is under development by ANSI X3J13.The standard
will be based on the definition contained in Common Lisp the Language.

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatype Boolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp and of ISLisp has one unbounded integer datatype.
Any mathematical integer is assumed to have a representation as a Common Lisp or ISLisp data
object, subject only to total memory limitations.

Common Lisp has four floating point types: short-float, single-float, double-float, and
long-float. Not all of these floating point types must be distinct.
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The additional integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) (min z ¥)

mazy(z,y) (max z y)

min_seqr(xs) (min.zs) or (min 21 2o ... x,)
max_seqr(zs) (max.zs) or (max 21 2y ... )
dimy(z,y) (dim z ¥) T
sqrty(z) (isqrt 2) T
powery(z,y) (power = y) T
divides(z,y) (dividesp = ¥) T
eveny(x) (evenp )

odd(z) (oddp z)

gedi(z,y) (ged z y)

lemy(z,y) (lcm z ¥)

ged_seqr(xs) (ged.xs) or (ged zy 3 ... @)
lem_seqr(xs) (lem.zs) or (lem 21 22 ... )
add_wrapy(z,y) (add wrap = y) T
add_ovy(z,y) (add_over z y) T
sub_wrapr(z,y) (sub_wrap = y) T
sub_ovy(z,y) (sub_over z y) T
mul wrapy(z,y) (mul wrap = y) T
mul_ovy(z,y) (mul_over z y) T

where z and y are expressions of type INT and where xs is an expression of type list of INT.

The additional non-transcendental floating point operations are listed below, along with the
syntax used to invoke them:

ming(z,y) (min z ¥)

mazp(x,y) (max z y)

min_seqp(xs) (min.zs) or (min 21 2o ... x,)
mazx_seqp(zs) (max.zs) or (max 21 2y ... )
floorg(z) (ffloor z)

roundingp(x) (fround z)

ceilingp(x) (fceiling z)

dimp(z,y) (dim z ¥) T
add3p(z,y, z) (add z y 2) T
sump(zs) (sum xs) T
dprodp_pi(x,y) (prod z= ¥) T
mul_addp(z,y, z) (mul_add = y z) T
iremp(z,y) (remainder z y) T
sqrtp(x) (sqrt z)

rsqrip(x) (rsqrt z) T

addlop(z,y)
sublop(x,y)
mul lop(z,y)
divorestp(z,y)

(add_low = y)
(sub_low z y)
(mul_low = y)
(div_rest z vy)

—t —te —t —t-
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sqrt_restp(x)

(sqrt_rest z)

Third Committee Draft

where z, y and z are data objects of the same floating point type, and where zs is an data objects

that are lists of data objects of the same floating point type

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

max _err_hypotp

AT _€rr_expr
max_err_powerp (b, z)

max_err_sinhg
max_err_tanhp

brg_radian_angler
Max_err_sing
mazx_err_tang

brg_angler
mazx_err_sinug(u)
mazx_err _tanup(u)

(err_hypotenuse z)

(err_exp z)
(err_power b z)

(err_sinh z)
(err_tanh z)

(big_radian_angle )
(err_sin z)
(err_tan z)

(big_angle 2)
(err_sin _cycle u)
(err_tan_cycle u)

—t —t —t-

—t —t —t-

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

types.
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hypotp(z,y)

expr(x)
expmlp(z)
powerpy(b, z)
powerp (b, y)
powermlp (b, y)
exp2p(x)
explOp(x)

Inp(z)
Inlpp(z)
lOgF(b7 x)
loglpr(b, x)
log2p(x)
logl0p(x)

sinhp(x)
coshp(x)
tanhp(z)
cothp(x)
sechp(x)
cschp(z)

(hypotenuse z y)

(expt z)
(expml z)
(expt b 2)
(expt b y)
(expml b y)
(exp2 z)
(expl10 z)

(log 2)
(logip 2)
(log b 2)
(loglp b )
(log2 x)
(logl0 2)

(sinh z)
(cosh x)
(tanh z)
(coth x)
(sech z)
(csch x)

—t —t —t- —t —t =i

—t —t —t-
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arcsinhp(x)
arccoshp(z)
arctanhp(z)
arccothp(z)
arcsechp(x)
arceschp(x)

rad_nearest_azisg(x)
rad_of fset_axisp(x)

cycle nearest_axisyp(u,x)

cycle of fset_azisp(u,x)
cyclep(u, )
(u,2)
cosup(u,x)
tanup (u, )
cotup(u, x)
secup(u, x)
cscup(u, x)

stnuF

arccscup
arcup(u, x,y

deg_nearest_azisp(u,x)
degof fset_azisp(u,x)
degr(x)

(asinh z)
(acosh z)
(atanh z)
(acoth z)
(asech xz)
(acsch z)

(rad nearest_axis x)
(rad offset_axis x)
(radians z)

(sin 2)

(cos )

(tan z)

(cot )

(sec x)

(csc a)

(asin z)
(acos )
(atan z)
(acot )

(* (sign z) (acot (abs z)))

(asec z)
(acsc z)
(atan2 vy =)

(cycle nearest_axis u x)
(cycle offset_axis u z)

(cycle u z)
(sinU u x)
(cosU u x)
(tanU u x)
(cotU u x)
(secU u x)
(cscU u x)
(asinU u x
(acosU u x
(atanU u x
(acotU u x

(* (sign z) (acotU u (abs z)))

(asecU u z)
(acscU u z)
(atan2U v y )

(cycle nearest_axis 360 z)
(cycle offset_axis 360 z)

(cycle 360 z)

ISO/IEC CD 10967-2.3:1998(E)

—t —t —t- —t —t —t-

—t —t —t-
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sindp(x) (sinU 360 2) T
cosdp(z) (cosU 360 z) T
tandp(x) (tanU 360 z) T
cotdp(x) (cotU 360 2) T
secdp(x) (secU 360 z) T
csedp(x) (cscU 360 2) T
arcsindp(x) (asinU 360 z) T
arccosdp(x) (acosU 360 z) T
arctandp(x) (atanU 360 z) T
arccotdp (x) (acotU 360 z) T
arcctgdp(x) (* (sign z) (acotU 360 (abs z))) T
arcsecdp(x) (asecU 360 z) T
arcesedp () (acscU 360 z) T
arcdp(z,y) (atan2U 360 y z) T
rad_to_cyclep(z, u) (rad_to_cycle z u) T
cycle toradp(u, x) (cycle_to_rad u x) T
cycle to_cyclep(u, z,v) (cycle_tocycle u z v) T

where b, z, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Type conversions in Common Lisp and in ISLisp...

convert;_p(x) z (only one integer type)

roundingr_1(y) (round y)

floorp_1(y) (floor y)

ceilingr_1(y) (ceiling y)

cutnearest;_, g (z) T
cvtdowny_p(x) T
cvtupr e (z) }

cvtnearestp_ g (y)
cvtdownp_pr (y)

cotupp . (y)

—t —t —t-

cvtnearestp_,p(y)

cvtdowng_,p(y)
cotupr—p(y)

—t —t —t-

cvtnearestp_,p(2)
cvtdownp_p(z)

cvtupp—r(2)

—t —t —t-

where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type.

Common List and ISLisp provides non-negative base 10 numerals for all its integer and floating
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point types. There is no differentiation between the numerals for different floating point datatypes,
nor between numerals for different integer types, and integer numerals can be used for floating
point values. The details are not repeated here, see ....

C.8 Modula 2

The programming language Modula-2 is defined by ISO/IEC | Information Technology — Pro-
gramming Languages — Modula-2 .

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Modula-2 datatype Boolean corresponds to the LIA-1 datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) Imin(z, y) T
mazy(z,y) Imax(z, y) T
min_seqr(xs) IminArr(zs) T
max_seqr(zs) ImaxArr(zs) T
dimy(z,y) Idim(z, y) T
sqrty(z) Isqrt(z) T
powery(z,y) Ipower(z, y) T
divides(z,y) Divides(z, ¥) T
eveny(x) (not 0dd(z))

odd(z) 0dd (=)

gedi(z,y) Ged(z, y) f
lemy(z,y) Lem(z, y) T
ged_seqr(xs) GedArr (as) T
lem_seqr(xs) LemArr (2s) T
add_wrapy(z,y) AddWrap(z, y) T
add_ovy(z,y) AddOver(z, y) T
sub_wrapr(z,y) SubWrap(z, y) T
sub_ovy(z,y) SubQver(z, y) T
mul wrapy(z,y) MulWrap(z, y) T
mul_ovy(z,y) MulOver(z, ¥) T

where z and y are expressions of type INT and where xs is an expression of type array [] of
INT.

The additional non-transcendental floating point operations are listed below, along with the
syntax used to invoke them:

ming(z,y) Min(z, y) T
mazp(x,y) Max(z, y) T
min_seqp(xs) MinArr(zs) T
mazx_seqp(zs) MaxArr(zs) T
roundingp(x) Rounding(x) T
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floorgp(x)
ceilingp(x)

dimp(z,y)
add3p(z,y, z)
sump(zs)
dprodp_ri(z,y)
mul_addp(z,y, 2)
iremp(z,y)
sqrip(z)
rsqrip(z)

add_lop(z,y)
sublop(x,y)
mul lop(x,y)
div_restp(z,y)
sqrt_restp(x)

Floor(z)
Ceiling(a)

Dim(zx, y)
Add(z, y, z2)
Sum(xs)

Prod(z, ¥)
MulAdd(z, y, z)
Remainder(z, y)
Sqrt(z)
Rsqrt(z)

AddLow(z, ¥)
SubLow(zx, y)
MulLow(z, ¥)
DivRest(x, y)
SqrtRest (z)

Third Committee Draft

—- —t e —te —te — —i- —t

—te —te —e = =i

where z, y and z are expressions of type FLT, and where zs is an expression of type array []
of FLT.

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

max _err_hypotp

AT _€rr_expr
max_err_powerp (b, z)

max_err_sinhg
max_err_tanhp

brg_radian_angler
Max_err_sing
mazx_err_tang

brg_angler
mazx_err_sinug(u)
mazx_err _tanup(u)

Err_hypotenuse(z)

Err_exp(z)
Err_power(b, z)

Err_sinh(z)
Err_tanh(z)

Big radian_angle(z)
Err_sin(ax)
Err_tan(z)

Big_angle(a)
Err_sin cycle(u)
Err_tan cycle(u)

—t —t —t-

—t —t —t-

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

types.
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hypotp(z,y)

-
expmlp(z)
powerpy(b, z)
powerp (b, y)
powermlp (b, y)
cap2p(z)
explOp(z)

Hypotenuse(z, ¥)

Exp(x)
ExpM1(z)
PowerI(b, z)
Power (b, y)
PowerM1(b, ¥)
Exp2(x)
Exp10(2)

—t e —e —e = —i-



Third Committee Draft

Inp(z)
Inlpp(z)
lOgF(b7 x)
loglpr(b, x)
log2p(x)
logl0p(2)

sinhp(x)
coshp(x)
tanhp(x)
cothp(x)
sechp(z)
cschp(z)

arcsinhp(x)
arccoshp(z)
arctanhp(z)
arccothp(z)
arcsechp(x)
arceschp(x)

rad_nearest_azisg(x)
rad_of fset_axisp(x)

cycle nearest_axisyp(u,x)
cycle of fset_azisp(u,x)

cyclep(u, )
sinup(u, )
cosup(u,x)
tanup (u, )
cotup(u, x)

Ln(z)
Ln1P(z)
Log(z, b)
LogiP(xz, b)
Log2(x)
Log10(a)

Sinh(x)
Cosh(x)
Tanh(z)
Coth(x)
Sech(x)
Csch(x)

Arcsinh(z)
Arccosh(z)
Arctanh(z)
Arccoth(z)
Arcsech(xz)
Arccsch(z)

nearest_axis(x)
offset_axis(x)
Radian(z)
Sin(x)

Cos(x)

Tan(z)

Cot(x)

Sec(x)

Csc(x)

Arcsin(z)
Arccos(x)
Arctan(z)
Arccot(x)

(Sign(a)*Arccot(Abs(x)))

Arcsec(x)
Arccsc(x)
Angle(a, y)

nearest_axisU(u, z)
offset_axisU(u, z)
Cycle(u, x)
SinUCu, z)
CosU(u, z)
TanU(u, z)
CotU(u, z)

—t e =t —te — —i- —tn e =t —te —e —i- —te =t —e = =i

—t —t —t-

—t —t —t =i
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—tn e e =i —e —ie —i-

ISO/IEC CD 10967-2.3:1998(E)

123



ISO/IEC CD 10967-2.3:1998(E)

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT
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secup(u,x)
cscup(u, x)

(u, 2)
arccosup(u, x)
arctanup (u, x)

arcsinup

arccotup(u, x
(
(
(

arccscuplu, r

arcctgup(u,

arcsecup (u,x

)
)
)
)
arcup(u, x,y

sindp(x)
cosdp(z)
tandp(x)
cotdp(x)
secdp(x)
csedp(x)
deg_nearest_azisg(u, )
deg_of fset_azisp(u, )
degp(z)

arcsindp(x)
arccosdp(x)
arctandp(x)
arccotdp(x
arcctgdp(x
arcsecdp(

arcesedp(z
arcdp(z,y)

X

)
)
)
)

rad_to_cyclep(z, u)
cycle toradp(u, x)
cycle to_cyclep(u, z,v)

converty_p(x)

roundingr_1(y)
floorp_1(y)
ceilingr_1(y)

cutnearest;_, g (z)
cvtdowny_p(x)

cvtupr g ()

SecU(u, z)
CscUCu, z)

ArcsinU(u, z)

ArccosU(u, z)

ArctanU(u, z)

ArccotU(u, z)
(Sign(a)*ArccotU(u, Abs(z)))
ArcsecU(u, z)

ArccscU(u, z)

AngleU(u, z, y)

SinU(360.0, x)
CosU(360.0, z)
TanU(360.0, z)
CotU(360.0, z)
SecU(360.0, z)

CscU(360.0, z)
nearest_axisU(360.0, z)
offset_axisU(360.0, z)
Cycle(360.0, z)

ArcsinU(360.0, z)

ArccosU(360.0, z)

ArctanU(360.0, z)

ArccotU(360.0, z)
(Sign(a)*ArccotU(360.0, Abs(z)))
ArcsecU(360.0, z)

ArccscU(360.0, z)

AngleU(360.0, x,y)

Radian to_cycle(z, u)
Cycle_to_radian(u, z)
Cycle_to cycle(u, z, v)

Round (y)

Third Committee Draft

—t

—te e —te e = — —te —i-

—t e —e —ie = — —te —i- B T I S e

—t —t —t-

—t —t —t-



Third Committee Draft ISO/IEC CD 10967-2.3:1998(E)

cvtnearestp_, g (y)
cvtdownp_ i (y)

cotupp_mr (y)

—t —t —t-

cvtnearestp_,p(y)

cvtdowng_,p(y)
cotupr—p(y)

—t —t —t-

cvtnearestp_,p(z)
cvtdownp_p(z)

cvtupp—r(2)

—t —t —t-

where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type.

Modula-2 provides non-negative numerals .......

C.9 Pascal and Extended Pascal

The programming language Extended Pascal is defined in ISO/IEC 10206:1991 Information tech-
nology — Programming languages — Extended Pascal [11]. The programming language ISO Pascal
is defined by ISO/IEC 7185:1990, Information technology — Programming languages — Pascal [5].
The programming language ANSI/IEEE Pascal is defined in ANSI/IEEE 770/X3.97-1983 [17].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Pascal datatype Boolean corresponds to the LIA-1 datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

min[($7 y)
maz(z,y)
min_seqr(xs)
max_seqr(zs)

dim[($, y)
sqrty(z)
powery(z,y)

divides(z,y)
eveny(x)
odd(z)
gedr(z,y)
lemy(z,y)
ged_seqr(xs)
lem_seqr(xs)

add_wrapy(z,y)
add_ovy(z,y)

Imin(z, y)
Imax(x, y)
IminArr(xs)
ImaxArr(xs)

Idim(z, y)
Isqrt(z)
Ipower(z, y)

Divides(x, y)
(not 0dd(z))
0dd(z)

Ged(z, ¥)
Lem(z, ¥)
GedArr(xs)
LemArr (as)

AddWrap(z, y)
AddQOver(x, y)

1
1
1
1

—t —t —t-

—t —t —t- =i

— —t-
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sub_wrapyr(z,y)
sub_ovy(z,y)
mul wrapr(z, y)
mul_ovr(z, y)

SubWrap(z, )
SubOver(z, y)
MulWrap(z, y)
MulOver(z, y)

Third Committee Draft

—t —t —t =i

where z and y are expressions of type INT and where zs is an expression of type array of INT.

The additional non-transcendental floating point operations are listed below, along with the

syntax used to invoke them:

ming(z,y)
mazp(z,y)
min_seqp(xs)
max_seqp(xs)

roundingr(z)

floorgp(x)
ceilingp(x)

dimp(z,y)
add3p(z,y, z)
sump(zs)
dprodp_ri(z,y)
mul_addp(z,y, 2)
iremp(z,y)
sqrip(z)
rsqrip(z)

add_lop(z,y)
sublop(x,y)
mul lop(x,y)
div_restp(z,y)
sqrt_restp(x)

Min(z, y)
Max(z, y)
MinArr(zs)
MaxArr(zs)

Rounding(a)
Floor(z)
Ceiling(a)

Dim(zx, y)
Add(z, y, z2)
Sum(xs)

Prod(z, ¥)
MulAdd(z, y, z)
Remainder(z, y)
Sqrt(z)
Rsqrt(z)

AddLow(z, ¥)
SubLow(zx, y)
MulLow(z, ¥)
DivRest(z, y)
SqrtRest (z)

—- —t e —e —e = —i- —t —t =i —t —te —t —t-

—te —te —e = =i

where @, y and z are expressions of type FLT, and where zs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:

mazx_err_hypotp Err_hypotenuse(z) ¥
Mmax_err_expr Err_exp(z) ¥
max_err_powerp (b, z) Err_power(b, z) T
maz_err_sinhp Err_sinh(z) ¥
maz_err_tanhp Err_tanh(z) ¥

big_radian_angler Big radian_angle(z) i
Err sin(z) ¥
1

Err_tan(z)

Max_err_sing
mazx_err_tang

brg_angler
mazx_err_sinug(u)

Big_angle(a) i
Err_sin cycle(u) ¥
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mazx_err_tanup(u) Err_tan_cycle(u) T

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

types.

hypotr(x,y) Hypotenuse(x, ¥) T
expr(z) Exp(z)

expmlp(z) ExpM1(z) T
powerpr(b, z) PowerI(b, z) T
powerg (b, y) Power (b, y) T
powermlp(b,y) PowerM1(b, y) T
exp2p(x) Exp2(2) T
explOp(x) Exp10(z) T
Inp(z) Ln(z)

Inlpp(z) LniP(z) T
logp(b, x) Log(z, b) T
loglpr(b, ) LogiP(z, b) T
log2p(z) Log2(x) T
logl0p(2) Logl10(x) T
sinhp(x) Sinh(z) T
coshp(x) Cosh(z) T
tanhp(x) Tanh(z) T
cothp(x) Coth(z) T
sechp(z) Sech(z) T
cschp(z) Csch(z) T
arcsinhp(x) Arcsinh(z) T
arccoshp(z) Arccosh(z) T
arctanhp(z) Arctanh(z) T
arccothp(z) Arccoth(z) T
arcsechp(x) Arcsech(z) T
arceschp(x) Arccsch(z) T
sing(z) Sin(x)

cosp(x) Cos(x)

tanp(z) Tan(z) T
cotp(x) Cot () T
secp(x) Sec(x) T
csep () Csc(a) T
rad_nearest_azisg(x) nearest_axis(z) T
rad_of fset_axisp(x) offset_axis(x) T
radp(z) Radian(z) T
arcsing(x) Arcsin(z) T
arccosp(x) Arccos(xz) T
arctanp(z) Arctan(z)
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arcesep(x
arcr(z, y)

sinup (u, x)
cosup (u, )
tanup (u, )
cotup (u, )
secup(u,x)
cscup(u, x)
cycle_nearest_azisy(u, x)
cycle_of fset_azisp(u,x)
cyclep(u, )

(u, 2)
arccosup(u, x)
arctanup (u, x)

arcsinup

arccotup(u, x
(
(
(

arccscuplu, r

arcctgup(u,

arcsecup (u,x

)
)
)
)
arcup(u, x,y

sindp(x)
cosdp(z)
tandp(x)
cotdp(x)
secdp(x)
csedp(x)
deg_nearest_azisg(u, )
deg_of fset_azisp(u, )
degp(z)

arcsindp(x)
arccosdp(x)
arctandp(x)
arccotdp(x
arcctgdp(x
arcsecdp(

arcesedp(z
arcdp(z,y)

X

)
)
)
)

rad_to_cyclep(z, u)
cycle toradp(u, x)
cycle to_cyclep(u, z,v)

Arccot(x)
(Sign(a)*Arccot(Abs(x)))
Arcsec(x)

Arccsc(x)

Angle(a, y)

SinUCu, z)
CosU(u, z)
TanU(u, z)
CotU(u, z)
SecU(u, z)
CscUCu, z)
nearest_axisU(u, z)
offset_axisU(u, z)
Cycle(u, x)

ArcsinU(u, z)
ArccosU(u, z)
ArctanU(u, z)
ArccotU(u, z)

(Sign(a)*ArccotU(u, Abs(z)))

ArcsecU(u, z)
ArccscU(u, z)
AngleU(u, z, y)

SinU(360.0, x)
CosU(360.0, z)
TanU(360.0, z)
CotU(360.0, z)
SecU(360.0, z)
CscU(360.0, z)

nearest_axisU(360.0, z)
offset_axisU(360.0, z)
Cycle(360.0, z)

Arcsin(360.0, z)
Arccos(360.0, z)
Arctan(360.0, z)
Arccot(360.0, z)

(Sign(z)*Arccot(360.0, Abs(x)))

Arcsec(360.0, z)
Arccsc(360.0, z)
Angle(360.0, x,y)

RadianToCycle(z, u)
CycleToRadian(u, z)
CycleToCycle(u, z, v)
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where b, x, y, v, and v are expressions of type FLT, and z is an expressions of type INT

converty_p(x) T

floorr—(y) Floor(y)
roundingr_1(y) Round (y) T
ceilingr_1(y)

cvtdowny_p(x)
cvtnearest;_,p(x)

cvtupr g ()

—t —t —t-

cvtdownp i (y)
cvtnearestp_ g (y)

cotupp_ i (y)

—t —t =i

cvtdowng_,p(y)
cvtnearestp_,p(y)

cvtupp_p(y)

—t —t —t-

cvtdownp_p(z)
cvtnearestp_,p(z)

cvtupp—r(2)

—t —t —t-

where z is an expressions of type INT, y is an expressions of type FLT, and z is an expressions
of type FXD, where FXD is a fixed point type.

Pascal provides non-negative numerals .......
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