
SC22/WG11 N462

INTERNATIONAL ISO/IEC
STANDARD 10967-2

Fourth committee draft

1999-09-30

Information technology |

Language independent arithmetic |

Part 2: Elementary numerical functions

Technologies de l'information |
Arithm�etique ind�ependante de langage |

Partie 2: Fonctions num�eriques �el�ementaires

FINAL COMMITTEE DRAFT
September 30, 1999 18:52

Editor:
Kent Karlsson
IMI, Industri-Matematik International
Kungsgatan 12
SE-411 19 G�oteborg
SWEDEN
Telephone: +46-31 10 22 44
Facsimile: +46-31 13 13 25
E-mail: keka@im.se

Reference number
ISO/IEC CD 10967-2.4:1999(E)

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Contents

1 Scope 1
1.1 Inclusions . 1
1.2 Exclusions . 2

2 Conformity 2

3 Normative references 3

4 Symbols and de�nitions 4
4.1 Symbols . 4

4.1.1 Sets and intervals . 4
4.1.2 Operators and relations . 4
4.1.3 Mathematical functions . 4
4.1.4 Datatypes and exceptional values . 5

4.2 De�nitions of terms . 6

5 Speci�cations for the numerical functions 9
5.1 Basic integer operations . 9

5.1.1 The integer result and wrap helper functions 9
5.1.2 Integer maximum and minimum . 10
5.1.3 Integer diminish . 10
5.1.4 Integer power and arithmetic shift . 10
5.1.5 Integer square root . 11
5.1.6 Divisibility tests . 11
5.1.7 Integer division and remainder . 11
5.1.8 Greatest common divisor and least common positive multiple 12
5.1.9 Support operations for extended integer range 13

5.2 Basic oating point operations . 13
5.2.1 The rounding and oating point result helper functions 14
5.2.2 Floating point maximum and minimum . 15
5.2.3 Floating point diminish . 17
5.2.4 Round, oor, and ceiling . 17
5.2.5 Remainder after division with round to integer 18
5.2.6 Square root and reciprocal square root . 18
5.2.7 Support operations for extended oating point precision 19

5.3 Elementary transcendental oating point operations 21
5.3.1 Maximum error requirements . 21
5.3.2 Sign requirements . 21
5.3.3 Monotonicity requirements . 22
5.3.4 The trans result helper function . 22
5.3.5 Hypotenuse . 22
5.3.6 Operations for exponentiations and logarithms 23

c ISO/IEC 1999

All rights reserved. No part of this publication may be reproduced or utilised in any form or by any means,
electronic or mechanical, including photocopying and micro�lm, without permission in writing from the publisher.

ISO/IEC Copyright OÆce � Case Postale 56 � CH-1211 Gen�eve 20 � Switzerland

Printed in Switzerland

i

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.6.1 Integer power of argument base 23
5.3.6.2 Natural exponentiation . 24
5.3.6.3 Natural exponentiation, minus one 24
5.3.6.4 Exponentiation of 2 . 25
5.3.6.5 Exponentiation of 10 . 26
5.3.6.6 Exponentiation of argument base 26
5.3.6.7 Exponentiation of one plus the argument base, minus one 27
5.3.6.8 Natural logarithm . 28
5.3.6.9 Natural logarithm of one plus the argument 28
5.3.6.10 2-logarithm . 28
5.3.6.11 10-logarithm . 29
5.3.6.12 Argument base logarithm . 29
5.3.6.13 Argument base logarithm of one plus each argument 30

5.3.7 Operations for hyperbolic elementary functions 30
5.3.7.1 Hyperbolic sine . 31
5.3.7.2 Hyperbolic cosine . 31
5.3.7.3 Hyperbolic tangent . 32
5.3.7.4 Hyperbolic cotangent . 32
5.3.7.5 Hyperbolic secant . 33
5.3.7.6 Hyperbolic cosecant . 33
5.3.7.7 Inverse hyperbolic sine . 33
5.3.7.8 Inverse hyperbolic cosine . 34
5.3.7.9 Inverse hyperbolic tangent . 34
5.3.7.10 Inverse hyperbolic cotangent . 35
5.3.7.11 Inverse hyperbolic secant . 35
5.3.7.12 Inverse hyperbolic cosecant . 35

5.3.8 Introduction to operations for trigonometric elementary functions 36
5.3.9 Operations for radian trigonometric elementary functions 36

5.3.9.1 Radian angle normalisation . 37
5.3.9.2 Radian sine . 38
5.3.9.3 Radian cosine . 38
5.3.9.4 Radian tangent . 39
5.3.9.5 Radian cotangent . 39
5.3.9.6 Radian secant . 39
5.3.9.7 Radian cosecant . 40
5.3.9.8 Radian cosine with sine . 40
5.3.9.9 Radian arc sine . 40
5.3.9.10 Radian arc cosine . 41
5.3.9.11 Radian arc tangent . 41
5.3.9.12 Radian arc cotangent . 42
5.3.9.13 Radian arc secant . 43
5.3.9.14 Radian arc cosecant . 44
5.3.9.15 Radian angle from Cartesian co-ordinates 44

5.3.10 Operations for trigonometrics with given angular unit 45
5.3.10.1 Argument angular-unit angle normalisation 45
5.3.10.2 Argument angular-unit sine . 46
5.3.10.3 Argument angular-unit cosine . 47
5.3.10.4 Argument angular-unit tangent . 47
5.3.10.5 Argument angular-unit cotangent 48
5.3.10.6 Argument angular-unit secant . 48
5.3.10.7 Argument angular-unit cosecant 49

ii

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.3.10.8 Argument angular-unit cosine with sine 49
5.3.10.9 Argument angular-unit arc sine 50
5.3.10.10 Argument angular-unit arc cosine 50
5.3.10.11 Argument angular-unit arc tangent 51
5.3.10.12 Argument angular-unit arc cotangent 51
5.3.10.13 Argument angular-unit arc secant 52
5.3.10.14 Argument angular-unit arc cosecant 53
5.3.10.15 Argument angular-unit angle from Cartesian co-ordinates 53

5.3.11 Operations for angular-unit conversions . 54
5.3.11.1 Converting radian angle to argument angular-unit angle 54
5.3.11.2 Converting argument angular-unit angle to radian angle 55
5.3.11.3 Converting argument angular-unit angle to (another) argument

angular-unit angle . 56
5.4 Conversion operations . 57

5.4.1 Integer to integer conversions . 58
5.4.2 Floating point to integer conversions . 58
5.4.3 Integer to oating point conversions . 59
5.4.4 Floating point to oating point conversions 59
5.4.5 Floating point to �xed point conversions . 60
5.4.6 Fixed point to oating point conversions . 61

5.5 Numerals as operations in the programming language 62
5.5.1 Numerals for integer datatypes . 62
5.5.2 Numerals for oating point datatypes . 62

6 Noti�cation 63
6.1 Continuation values . 63

7 Relationship with language standards 63

8 Documentation requirements 64

Annexes

A Partial conformity 67
A.1 Maximum error relaxation . 67
A.2 Extra accuracy requirements relaxation . 67
A.3 Relationships to other operations relaxation . 68

B Rationale 69
B.1 Scope . 69

B.1.1 Inclusions . 69
B.1.2 Exclusions . 69

B.2 Conformity . 70
B.3 Normative references . 70
B.4 Symbols and de�nitions . 70

B.4.1 Symbols . 70
B.4.1.1 Sets and intervals . 70
B.4.1.2 Operators and relations . 70
B.4.1.3 Mathematical functions . 70
B.4.1.4 Datatypes and exceptional values 71

B.4.2 De�nitions of terms . 71
B.5 Speci�cations for the numerical functions . 72

iii

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

B.5.1 Basic integer operations . 72
B.5.1.1 The integer result and wrap helper functions 72
B.5.1.2 Integer maximum and minimum 72
B.5.1.3 Integer diminish . 73
B.5.1.4 Integer power and arithmetic shift 73
B.5.1.5 Integer square root . 73
B.5.1.6 Divisibility tests . 73
B.5.1.7 Integer division and remainder . 73
B.5.1.8 Greatest common divisor and least common positive multiple . . . 74
B.5.1.9 Support operations for extended integer range 74

B.5.2 Basic oating point operations . 74
B.5.2.1 The rounding and oating point result helper functions 75
B.5.2.2 Floating point maximum and minimum 76
B.5.2.3 Floating point diminish . 76
B.5.2.4 Round, oor, and ceiling . 76
B.5.2.5 Remainder after division and round to integer 76
B.5.2.6 Square root and reciprocal square root 76
B.5.2.7 Support operations for extended oating point precision 77

B.5.3 Elementary transcendental oating point operations 78
B.5.3.1 Maximum error requirements . 78
B.5.3.2 Sign requirements . 78
B.5.3.3 Monotonicity requirements . 79
B.5.3.4 The trans result helper function 79
B.5.3.5 Hypotenuse . 79
B.5.3.6 Operations for exponentiations and logarithms 79
B.5.3.7 Operations for hyperbolic elementary functions 80
B.5.3.8 Introduction to operations for trigonometric elementary functions 81
B.5.3.9 Operations for radian trigonometric elementary functions 82
B.5.3.10 Operations for trigonometrics given angular unit 84
B.5.3.11 Operations for angular-unit conversions 84

B.5.4 Conversion operations . 85
B.5.5 Numerals as operations in the programming language 85

B.5.5.1 Numerals for integer datatypes . 85
B.5.5.2 Numerals for oating point datatypes 85

B.6 Noti�cation . 86
B.6.1 Continuation values . 87

B.7 Relationship with language standards . 87
B.8 Documentation requirements . 87

C Example bindings for speci�c languages 89
C.1 General comments . 90
C.2 Ada . 90
C.3 BASIC . 95
C.4 C . 98
C.5 C++ . 103
C.6 Fortran . 108
C.7 Haskell . 113
C.8 Java . 118
C.9 Common Lisp . 123
C.10 ISLisp . 127
C.11 Modula-2 . 132
C.12 Pascal and Extended Pascal . 136

iv

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

C.13 PL/I . 140
C.14 SML . 145

D Bibliography 151

v

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialised system for world-wide standardization. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular �elds of
technical activity. ISO and IEC technical committees collaborate in �elds of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

In the �eld of information technology, ISO and IEC have established a joint technical commit-
tee, ISO/IEC JTC 1, Implementation of information technology. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national bodies casting a
vote.

International Standard ISO/IEC 10967-2 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Sub-Committee SC 22, Programming languages, their environments and system software
interfaces.

ISO/IEC 10967 consists of the following parts, under the general title Information technology
| Language independent arithmetic:

{ Part 1: Integer and oating point arithmetic

{ Part 2: Elementary numerical functions

{ Part 3: Complex oating point arithmetic and complex elementary numerical functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

vi

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Introduction

Portability is a key issue for scienti�c and numerical software in today's heterogeneous computing
environment. Such software may be required to run on systems ranging from personal computers
to high performance pipelined vector processors and massively parallel systems, and the source
code may be ported between several programming languages.

Part 1 of ISO/IEC 10967 speci�es the basic properties of integer and oating point types that
can be relied upon in writing portable software.

The aims for this Part, Part 2 of ISO/IEC 10967, are extensions of the aims for Part 1: to en-
sure adequate accuracy for numerical computation, predictability, noti�cation on the production
of exceptional results, and compatibility with language standards.

The content of this Part is based on Part 1, and extends Part 1's speci�cations to speci�ca-
tions for operations approximating real elementary functions, operations often required (usually
without a detailed speci�cation) by the standards for programming languages widely used for
scienti�c software. This Part also provides speci�cations for conversions between the \internal"
values of an arithmetic datatype, and a very close approximation in, e.g., the decimal radix. It
does not cover the further transformation to decimal string format, which is usually provided by
language standards. This Part also includes speci�cations for a number of other functions deemed
useful, even though they may not be stipulated by language standards.

The numerical functions covered by this Part are computer approximations to mathematical
functions of one or more real arguments. Accuracy versus performance requirements often vary
with the application at hand. This is recognised by recommending that implementors support
more than one library of these numerical functions. Various documentation and (program avail-
able) parameters requirements are speci�ed to assist programmers in the selection of the library
best suited to the application at hand.

vii

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

Annex B is intended to be read in parallel with the standard.

Notes and annexes B to D are for information only.

viii

FINAL COMMITTEE DRAFT ISO/IEC FCD 10967-2.4:1999(E)

Information technology |

Language independent arithmetic |

Part 2: Elementary numerical functions

1 Scope

This Part of ISO/IEC 10967 de�nes the properties of numerical approximations for many of the
real elementary numerical functions available in standard libraries for a variety of programming
languages in common use for mathematical and numerical applications.

An implementor may choose any combination of hardware and software support to meet the
speci�cations of this Part. It is the computing environment, as seen by the programmer/user,
that does or does not conform to the speci�cations.

The term implementation of this Part denotes the total computing environment pertinent
to this Part, including hardware, language processors, subroutine libraries, exception handling
facilities, other software, and documentation.

1.1 Inclusions

The speci�cations of Part 1 of are included by reference in this Part.

This Part provides speci�cations for numerical functions for which all operand values are
of integer or oating point datatypes satisfying the requirements of Part 1. Boundaries for
the occurrence of exceptions and the maximum error allowed are prescribed for each speci�ed
operation. Also the result produced by giving a special value operand, such as an in�nity, or a
NaN, is prescribed for each speci�ed oating point operation.

This Part covers most numerical functions required by the ISO/IEC standards for Ada [11],
Basic [17], C [18], C++ [19], Fortran [23], ISLisp [25], Pascal [28], and PL/I [30]. In particular,
speci�cations are provided for

a) some additional integer operations,

b) some additional non-transcendental oating point operations, including maximum and min-
imum operations,

c) exponentiations, logarithms, hyperbolics, and

d) trigonometrics, both in radians and for argument-given angular unit with degrees as a
special case.

This Part also provides speci�cations for

e) conversions between integer and oating point datatypes (possibly with di�erent radices)
conforming to the requirements of Part 1, and

1. Scope 1

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

f) the conversion operations used, for example, in text input and output of integer and oating
point numbers,

g) the results produced by an included oating point operation when one or more operand
values are IEC 60559 special values, and

h) program-visible parameters that characterise certain aspects of the operations.

1.2 Exclusions

This Part provides no speci�cations for:

a) Numerical functions whose operands are of more than one datatype (with one exception).
This standard neither requires nor excludes the presence of such \mixed operand" opera-
tions.

b) An interval datatype, or the operations on such data. This standard neither requires nor
excludes such data or operations.

c) A �xed point datatype, or the operations on such data. This standard neither requires nor
excludes such data or operations.

d) A rational datatype, or the operations on such data. This standard neither requires nor
excludes such data or operations.

e) Complex, matrix, statistical, or symbolic operations. This standard neither requires nor
excludes such data or operations.

f) The properties of arithmetic datatypes that are not related to the numerical process, such
as the representation of values on physical media.

g) The properties of integer and oating point datatypes that properly belong in language
standards or other spci�cation. Examples include

1) the syntax of numerals and expressions in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms for
numerals by any speci�c programming language or library,

3) the precedence of operators,

4) the consequences of applying an operation to values of improper datatype, or to unini-
tialised data,

5) the rules for assignment, parameter passing, and returning value,

6) the presence or absence of automatic datatype coercions.

Furthermore, this Part does not provide speci�cations for:

h) how numerical functions should be implemented,

i) which algorithms are to be used for the various operations.

2 Conformity

It is expected that the provisions of this Part of ISO/IEC 10967 will be incorporated by reference
and further de�ned in other International Standards; speci�cally in language standards and in
language binding standards.

2 Conformity

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

A binding standard speci�es the correspondence between one or more operations and param-
eters speci�ed in this Part and the concrete language syntax of some programming language.
More generally, a binding standard speci�es the correspondence between certain operations and
the elements of some arbitrary computing entity. A language standard that explicitly provides
such binding information can serve as a binding standard.

Conformity to this Part is always with respect to a speci�ed set of operations. Conformity to
this Part implies conformity to Part 1 for the integer and oating point datatypes used.

When a binding standard for a language exists, an implementation shall be said to conform
to this Part if and only if it conforms to the binding standard. In the case of conict between a
binding standard and this Part, the speci�cations of the binding standard takes precedence.

When a binding standard covers only a subset of the operations de�ned in this Part, an im-
plementation remains free to conform to this Part with respect to other operations independently
of that binding standard.

When no binding standard for a language and some operations speci�ed in this Part exists,
an implementation conforms to this Part if and only if it provides one or more operations that
together satisfy all the requirements of clauses 5 through 8 that are relevant to those operations.
The implementation shall then document the binding.

An implementation is free to provide operations that do not conform to this Part, or that are
beyond the scope of this Part. The implementation shall not claim or imply conformity to this
Part with respect to such operations.

An implementation is permitted to have modes of operation that do not conform to this Part.
A conforming implementation shall specify how to select the modes of operation that ensure
conformity.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See annex C for suggested language bindings.

2 A complete binding for this Part will include (explicitly or by reference) a binding for Part 1
as well, which in turn may include (explicitly or by reference) a binding for IEC 60559 as
well.

3 It is not possible to conform to this Part without specifying to which set of operations
conformity is claimed.

3 Normative references

The following standards contain provisions which, through reference in this text, constitute provi-
sions of this Part. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this Part are encouraged to investigate
the possibility of applying the most recent edition of the standards indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards.

IEC 60559:1989, Binary oating-point arithmetic for microprocessor systems.

ISO/IEC 10967-1:1994, Information technology | Language independent arithmetic
| Part 1: Integer and oating point arithmetic.

3. Normative references 3

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

4 Symbols and de�nitions

4.1 Symbols

4.1.1 Sets and intervals

In this Part, Z denotes the set of mathematical integers, R denotes the set of classical real
numbers, and C denotes the set of complex numbers over R. Note that Z � R � C.

[x; z] designates the interval fy 2 R j x 6 y 6 zg,
]x; z] designates the interval fy 2 R j x < y 6 zg,
[x; z[designates the interval fy 2 R j x 6 y < zg, and
]x; z[designates the interval fy 2 R j x < y < zg.

NOTE { The notation using a round bracket for an open end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.2 Operators and relations

All pre�x and in�x operators have their conventional (exact) mathematical meaning. The con-
ventional notation for set de�nition and manipulation is also used. In particular this Part uses

) and , for logical implication and equivalence
+, �, =, jxj, bxc, dxe, and round(x) on reals
� for multiplication on reals
<, 6, =, 6=, >, and > between reals
max on non-empty upwardly closed sets of reals
min on non-empty downwardly closed sets of reals
[, \, �, 2, 62, �, �, *, 6=, and = with sets
� for the Cartesian product of sets
! for a mapping between sets
j for the divides relation between integers

For x 2 R, the notation bxc designates the largest integer not greater than x:

bxc 2 Z and x� 1 < bxc 6 x

the notation dxe designates the smallest integer not less than x:

dxe 2 Z and x 6 dxe < x+ 1

and the notation round(x) designates the integer closest to x:

round(x) 2 Z and x� 0:5 6 round(x) 6 x+ 0:5

where in case x is exactly half-way between two integers, the even integer is the result.

The divides relation (j) on integers tests whether an integer i divides an integer j exactly:

ijj , (i 6= 0 and i � n = j for some n 2 Z)
NOTE { ijj is true exactly when j=i is de�ned and j=i 2 Z).

4.1.3 Mathematical functions

This Part speci�es properties for a number of operations numerically approximating some of the
elementary functions. The following ideal mathematical functions are de�ned in Chapter 4 of the
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [48] (e is
the Napierian base):

4 Symbols and de�nitions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

ex, xy,
p
x, ln, logb,

sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh, arctanh, arccoth, arcsech, arccsch,
sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot, arcsec, arccsc.

Many of the inverses above are multi-valued. The selection of which value to return, the
principal value, so as to make the inverses into functions, is done in the conventional way. The only
one over which there is some di�erence of conventions is the arccot function. Conventions there
vary for negative arguments; either a positive return value (giving a function that is continuous
over zero), or a negative value (giving a sign symmetric function). In this Part arccot refers to
the continuous inverse function, and arcctg refers to the sign symmetric inverse function.

arccosh(x) > 0, arcsech(x) > 0,
arcsin(x) 2 [��=2; �=2], arccos(x) 2 [0; �], arctan(x) 2]��=2; �=2[,
arccot(x) 2]0; �[, arcctg(x) 2]��=2; �=2], arcsec(x) 2 [0; �], arccsc(x) 2 [��=2; �=2].

NOTES

1 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [48]
uses the notation arccot for what is called arcctg in this Part.

2 e = 2:71828:::. e is not in F .

4.1.4 Datatypes and exceptional values

For pairs, de�ne:

fst((x; y)) = x
snd ((x; y)) = y

Square brackets are used to write �nite sequences of values. [] is the sequence containing no
values. [s], is the sequence of one value, s. [s1; s2], is the sequence of two values, s1 and then s2,
etc. The colon operator is used to prepend a value to a sequence: x : [x1; :::; xn] = [x; x1; :::; xn].

[S], where S is a set, denotes the set of �nite sequences, where each value in each sequence is
in S.

NOTE 1 { It is always clear from context, in the text of this Part, if [X] is a sequence of one
element, or the set of sequences with values from X . It is also clear from context if [x1; x2] is
a sequence of two values or an interval.

The datatype Boolean consists of the two values true and false.

Integer datatypes and oating point datatypes are de�ned in Part 1.

The following symbols are de�ned in Part 1, and used in this Part.

Exceptional values:
underow.

Integer parameters:
bounded I , maxint I , and minintI .

Integer helper function:
wrapI .

Integer operations:
negI , addI , subI , and mulI .

Floating point parameters:
rF , pF , eminF , emaxF , denormF , and iec 559F .

Derived oating point constants:
fmaxF , fminF , fminNF , fminDF , and epsilonF .

Floating point rounding constants:
rnd errorF .

4.1.4 Datatypes and exceptional values 5

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

Floating point value sets related to F :
F �, FD, and FN .

Floating point helper functions:
eF , resultF , and rndF .

Floating point operations:
negF , addF , subF , mulF , divF , and ulpF .

Floating point datatypes that conform to Part 1 shall, for use with this Part, have a value
for the parameter pF such that pF > 2 �maxf1; logrF (2 � �)g, and have a value for the parameter
eminF such that eminF 6 �pF � 1.

NOTES

2 This implies that fminNF < 0:5 � epsilonF=rF in this Part, rather than just fminNF 6

epsilonF .

3 These extra requirements, which do not limit the use of any existing oating point datatype,
are made 1) so that angles in radians are not too degenerate within the �rst two cycles, plus
and minus, when represented in F , and 2) in order to justly allow avoiding the underow
noti�cation in speci�cations for the expm1F and ln1pF operations.

4 F should also be such that pF > 2 + logrF (1000), to allow for a not too coarse angle
resolution anywhere in the interval [�big angle rF ; big angle rF]. See clause 5.3.9.

Three new exceptional values, overow, invalid, and pole, are introduced in this Part re-
placing tree other exceptional values used in Part 1. One new exceptional value, absolute
precision underow, is introduced in this Part with no correspondence in Part 1. invalid and
pole are in this Part used instead of the unde�ned of Part 1. overow is used instead of the
integer overow and oating overow of Part 1. Bindings may still distinguish between in-
teger overow and oating overow. The exceptional value absolute precision underow
is used when the given oating point angle value argument is so big that even a highly accurate
result from a trigonometric operation is questionable, due to the fact that the density of oating
point values has decreased signi�cantly at these big angle values. For the exceptional values, a
continuation value may be given in parenthesis after the exceptional value.

The following symbols represent oating point values de�ned in IEC 60559 and used in this
Part:

���0, +1+1+1, �1�1�1, qNaN, and sNaN.

These oating point values are not part of the set F , but if iec 559F has the value true, these
values are included in the oating point datatype corresponding to F .

NOTE 5 { This Part uses the above �ve special values for compatibility with IEC 60559. In
particular, the symbol ���0 (in bold) is not the application of (mathematical) unary � to the
value 0, and is a value logically distinct from 0.

The speci�cations cover the results to be returned by an operation if given one or more of the
IEC 60559 special values���0, +1+1+1,�1�1�1, orNaNs as input values. These speci�cations apply only
to systems which provide and support these special values. If an implementation is not capable
of representing a ���0 result or continuation value, the actual result or continuation value shall be
0. If an implementation is not capable of representing a prescribed result or continuation value
of the IEC 60559 special values +1+1+1, �1�1�1, or qNaN, the actual result or continuation value is
binding or implementation de�ned.

4.2 De�nitions of terms

For the purposes of this Part, the following de�nitions apply:

accuracy: The closeness between the true mathematical result and a computed result.

arithmetic datatype: A datatype whose non-special values are members of Z, R, or C.

6 Symbols and de�nitions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

NOTE 1 { This standard speci�es requirements for integer and oating point datatypes.
Complex numbers are not covered here, but will be included in a subsequent Part of
ISO/IEC 10967 [5].

continuation value: A computational value used as the result of an arithmetic operation when
an exception occurs. Continuation values are intended to be used in subsequent arithmetic
processing. A continuation value can be a value in F or an IEC 60559 special value.
(Contrast with exceptional value. See 6.1.2 of Part 1.)

denormalisation loss: A larger than normal rounding error caused by the fact that subnormal
values have less than full precision. (See 5.2.5 of Part 1 for a full de�nition.)

denormalised, denormal: The non-zero values of a oating point type F that provide less than
the full precision allowed by that type. (See FD in 5.2 of Part 1 for a full de�nition.)

error: (1) The di�erence between a computed value and the correct value. (Used in phrases like
\rounding error" or \error bound".)

(2) A synonym for exception in phrases like \error message" or \error output". Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable �nite numeric result from �nite
arguments. This might arise because no such �nite result exists mathematically, or because
the mathematical result cannot be represented with suÆcient accuracy.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the
occurrence of an exception. Exceptional values are not used in subsequent arithmetic pro-
cessing. (See clause 5 of Part 1.)

NOTES

2 Exceptional values are used as part of the de�ning formalism only. With respect to
this Part, they do not represent values of any of the datatypes described. There is no
requirement that they be represented or stored in the computing system.

3 Exceptional values are not to be confused with the NaNs and in�nities de�ned in
IEC 60559. Contrast this de�nition with that of continuation value above.

helper function: A function used solely to aid in the expression of a requirement. Helper
functions are not visible to the programmer, and are not required to be part of an imple-
mentation.

implementation (of this Part): The total arithmetic environment presented to a programmer,
including hardware, language processors, exception handling facilities, subroutine libraries,
other software, and all pertinent documentation.

literal: A syntactic entity denoting a constant value without having proper sub-entities that are
expressions.

monotonic approximation: An operation opF : ::: � F � ::: ! F , where the other arguments
are kept constant, is a monotonic approximation of a predetermined mathematical function
h : R! R if, for every a 2 F and b 2 F ,

a) h is monotonic non-decreasing on [a; b] implies opF (:::; a; :::) 6 opF (:::; b; :::),

b) h is monotonic non-increasing on [a; b] implies opF (:::; a; :::) > opF (:::; b; :::).

monotonic non-decreasing: A function h : R ! R is monotonic non-decreasing on a real
interval [a; b] if for every x and y such that a 6 x 6 y 6 b, h(x) and h(y) are well-de�ned
and h(x) 6 h(y).

4.2 De�nitions of terms 7

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

monotonic non-increasing: A function h : R ! R is monotonic non-increasing on a real
interval [a; b] if for every x and y such that a 6 x 6 y 6 b, h(x) and h(y) are well-de�ned
and h(x) > h(y).

normalised: The non-zero values of a oating point type F that provide the full precision allowed
by that type. (See FN in 5.2 of Part 1 for a full de�nition.)

noti�cation: The process by which a program (or that program's end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a noti�cation.
(See clause 6 of Part 1 for details.)

numeral: A numeric literal. It may denote a value in Z or R, ���0, an in�nity, or a NaN.

numerical function: A computer routine or other mechanism for the approximate evaluation
of a mathematical function.

operation: A function directly available to the user/programmer, as opposed to helper functions
or theoretical mathematical functions.

pole: A mathematical function f has a pole at x0 if x0 is �nite, f is de�ned, �nite, monotone,
and continuous in at least one side of the neighbourhood of x0, and lim

x!x0
f(x) is in�nite.

precision: The number of digits in the fraction of a oating point number. (See 5.2 of Part 1.)

rounding: The act of computing a representable �nal result for an operation that is close to the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see 5.2.6 of Part 1). (See also A.5.2.6 of Part 1 for some examples.)

rounding function: Any function rnd : R ! X (where X is a given discrete and unlimited
subset of R) that maps each element of X to itself, and is monotonic non-decreasing.
Formally, if x and y are in R,

x 2 X) rnd(x) = x
x < y) rnd(x) 6 rnd(y)

Note that if u 2 R is between two adjacent values in X, rnd(u) selects one of those adjacent
values.

round to nearest: The property of a rounding function rnd that when u 2 R is between two
adjacent values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant
from u, either may be chosen deterministically.

round toward minus in�nity: The property of a rounding function rnd that when u 2 R is
between two adjacent values in X, rnd(u) selects the one less than u.

round toward plus in�nity: The property of a rounding function rnd that when u 2 R is
between two adjacent values in X, rnd(u) selects the one greater than u.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted. (Quoted from the directives [1].)

should: A verbal form used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from the directives [1].)

signature (of a function or operation): A summary of information about an operation or func-
tion. A signature includes the function or operation name; a subset of allowed argument
values to the operation; and a superset of results from the function or operation (including
exceptional values if any), if the argument is in the subset of argument values given in the
signature.

8 Symbols and de�nitions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

The signature

addI : I � I ! I [foverowg
states that the operation named addI shall accept any pair of I values as input, and (when
given such input) shall return either a single I value as its output or the exceptional value
overow.

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will
actually be returned for some input. An operation given an argument outside the stipulated
argument domain may produce a result outside the stipulated result range.

subnormal: A denormal value, the value 0, or the value ���0.
ulp: The value of one \unit in the last place" of a oating point number. This value depends on

the exponent, the radix, and the precision used in representing the number. Thus, the ulp
of a normalised value x (in F), with exponent t, precision p, and radix r, is rt�p, and the
ulp of a subnormal value is fminDF . (See 5.2 of Part 1.)

5 Speci�cations for the numerical functions

This clause speci�es a number of helper functions and operations for integer and oating point
datatypes. Each operation is given a signature and is further speci�ed by a number of cases.
These cases may refer to other operations (speci�ed in this Part or in Part 1), to mathematical
functions, and to helper functions (speci�ed in this Part or in Part 1). They also use special
abstract values (�1�1�1;+1+1+1;���0;qNaN; sNaN). For each datatype, two of these abstract values
may represent several actual values each: qNaN and sNaN. Finally, the speci�cations may refer
to exceptional values.

The signatures in the speci�cations in this clause specify only all non-special values as input
values, and indicate as output values the superset of all non-special, special, and exceptional
values that may result from these (non-special) input values. Therefore, exceptional and special
values that can never result from non-special input values are not included in the signatures
given. Also, signatures that, for example, include IEC 60559 special values as arguments are not
given in the speci�cations below. This does not exclude such signatures from being valid for these
operations.

5.1 Basic integer operations

Clause 5.1 of Part 1 speci�es integer datatypes and a number of operations on values of an integer
datatype. In this clause some additional operations on values of an integer datatype are speci�ed.

I is the set of non-special values, I � Z, for an integer datatype conforming to Part 1. Integer
datatypes conforming to Part 1 often do not contain any NaN or in�nity values, even though
they may do so. Therefore this clause has no speci�cations for such values as arguments or results.

5.1.1 The integer result and wrap helper functions

The resultI helper function:

resultI : Z ! I [foverowg
resultI(x) = x if x 2 I

= overow if x 2 Z and x 62 I

5. Speci�cations for the numerical functions 9

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

The wrapI helper function:

wrapI : Z ! I

wrapI(x) = x if x 2 I
= x� (n � (maxintI �minintI + 1))

if x 2 Z and x 62 I

where n 2 Z is chosen such that the result is in I.

NOTES

1 n = b(x�minintI)=(maxintI �minintI + 1)c if x 2 Z and bounded I = true; or equivalently
n = d(x�maxintI)=(maxintI �minintI + 1)e if x 2 Z and bounded I = true.

2 For some wrapping basic arithmetic operations this n is computed by the ` ov' operations
in clause 5.1.9.

3 The wrapI helper function is also used in Part 1.

5.1.2 Integer maximum and minimum

maxI : I � I ! I

maxI(x; y) = maxfx; yg if x; y 2 I

minI : I � I ! I

minI(x; y) = minfx; yg if x; y 2 I

max seqI : [I]! I [fpoleg
max seqI([x1; :::; xn])

= pole(�1�1�1) if n = 0
= maxfx1; :::; xng if n > 1 and fx1; :::; xng � I

min seqI : [I]! I [fpoleg
min seqI([x1; :::; xn])

= pole(+1+1+1) if n = 0
= minfx1; :::; xng if n > 1 and fx1; :::; xng � I

5.1.3 Integer diminish

dimI : I � I ! I [foverowg
dimI(x; y) = resultI(maxf0; x� yg) if x; y 2 I

NOTE { dimI cannot be implemented as maxI(0; subI(x; y)) for bounded integer types,
since this latter expression has other overow properties.

5.1.4 Integer power and arithmetic shift

powerI : I � I ! I [foverow;pole; invalidg
powerI(x; y) = resultI(x

y) if x; y 2 I and (y > 0 or jxj = 1)
= 1 if x 2 I and x 6= 0 and y = 0
= invalid(1) if x = 0 and y = 0
= pole(+1+1+1) if x = 0 and y 2 I and y < 0
= invalid(0) if x; y 2 I and x 62 f�1; 0; 1g and y < 0

10 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

shift2I : I � I ! I [foverowg
shift2I(x; y) = resultI(bx � 2yc) if x; y 2 I

shift10I : I � I ! I [foverowg
shift10I(x; y) = resultI(bx � 10yc) if x; y 2 I

5.1.5 Integer square root

sqrtI : I ! I [finvalidg
sqrtI(x) = bpxc if x 2 I and x > 0

= invalid(qNaN) if x 2 I and x < 0

5.1.6 Divisibility tests

dividesI : I � I ! Boolean

dividesI (x; y) = true if x; y 2 I and xjy
= false if x; y 2 I and not xjy

NOTES

1 dividesI(0; 0) = false, since 0 does not divide anything, not even 0.

2 dividesI cannot be implemented as, e.g., eqI(0;modaI (y; x)), since the remainder functions
give noti�cations for a zero second argument.

evenI : I ! Boolean

evenI(x) = true if x 2 I and 2jx
= false if x 2 I and not 2jx

oddI : I ! Boolean

oddI(x) = true if x 2 I and not 2jx
= false if x 2 I and 2jx

5.1.7 Integer division and remainder

divfI : I � I ! I [foverow;pole; invalidg
divfI(x; y) = resultI(bx=yc) if x; y 2 I and y 6= 0

= pole(+1+1+1) if x 2 I and x > 0 and y = 0
= invalid(qNaN) if x = 0 and y = 0
= pole(�1�1�1) if x 2 I and x < 0 and y = 0

modaI : I � I ! I [finvalidg
modaI(x; y) = x� (bx=yc � y) if x; y 2 I and y 6= 0

= invalid(qNaN) if x 2 I and y = 0

5.1.5 Integer square root 11

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

groupI : I � I ! I [foverow;pole; invalidg
groupI(x; y) = resultI(dx=ye) if x; y 2 I and y 6= 0

= pole(+1+1+1) if x 2 I and x > 0 and y = 0
= invalid(qNaN) if x = 0 and y = 0
= pole(�1�1�1) if x 2 I and x < 0 and y = 0

padI : I � I ! I [finvalidg
padI(x; y) = (dx=ye � y)� x if x; y 2 I and y 6= 0

= invalid(qNaN) if x 2 I and y = 0

quotI : I � I ! I [foverow;pole; invalidg
quotI(x; y) = resultI(round(x=y)) if x; y 2 I and y 6= 0

= pole(+1+1+1) if x 2 I and x > 0 and y = 0
= invalid(qNaN) if x = 0 and y = 0
= pole(�1�1�1) if x 2 I and x < 0 and y = 0

remrI : I � I ! I [foverow; invalidg
remrI(x; y) = resultI(x� (round(x=y) � y))

if x; y 2 I and y 6= 0
= invalid(qNaN) if x 2 I and y = 0

5.1.8 Greatest common divisor and least common positive multiple

gcdI : I � I ! I [foverow;poleg
gcdI(x; y) = resultI(maxfv 2 Z j vjx and vjyg)

if x; y 2 I and (x 6= 0 or y 6= 0)
= pole(+1+1+1) if x = 0 and y = 0

lcmI : I � I ! I [foverowg
lcmI(x; y) = resultI(minfv 2 Z j xjv and yjv and v > 0g)

if x; y 2 I and x 6= 0 and y 6= 0
= 0 if x; y 2 I and (x = 0 or y = 0)

gcd seqI : [I]! I [foverow;poleg
gcd seqI([x1; :::; xn])

= resultI(maxfv 2 Z j vjxi for all i 2 f1; :::; ngg)
if fx1; :::; xng � I and fx1; :::; xng * f0g

= pole(+1+1+1) if fx1; :::; xng � f0g

lcm seqI : [I]! I [foverowg
lcm seqI([x1; :::; xn])

= resultI(minfv 2 Z j xijv for all i 2 f1; :::; ng and v > 0g)
if fx1; :::; xng � I and 0 62 fx1; :::; xng

= 0 if fx1; :::; xng � I and 0 2 fx1; :::; xng

NOTE { This speci�cation implies that lcm seqI([]) = 1.

12 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.1.9 Support operations for extended integer range

These operations can be used to implement extended range integer datatypes, including un-
bounded integer datatypes.

add wrapI : I � I ! I

add wrapI(x; y) = wrapI(x+ y) if x; y 2 I

add ovI : I � I ! f�1; 0; 1g
add ovI(x; y) = ((x+ y)� add wrapI(x; y))=(maxintI �minintI + 1)

if x; y 2 I and bounded I = true
= 0 if x; y 2 I and bounded I = false

sub wrapI : I � I ! I

sub wrapI(x; y) = wrapI(x� y) if x; y 2 I

sub ovI : I � I ! f�1; 0; 1g
sub ovI(x; y) = ((x� y)� sub wrapI(x; y))=(maxintI �minintI + 1)

if x; y 2 I and bounded I = true
= 0 if x; y 2 I and bounded I = false

mul wrapI : I � I ! I

mul wrapI(x; y) = wrapI(x � y) if x; y 2 I

mul ovI : I � I ! I

mul ovI(x; y) = ((x � y)�mul wrapI(x; y))=(maxintI �minintI + 1)
if x; y 2 I and bounded I = true

= 0 if x; y 2 I and bounded I = false

NOTE { The add ovI and sub ovI will only return �1 (for negative overow), 0 (no overow),
and 1 (for positive overow).

5.2 Basic oating point operations

Clause 5.2 of Part 1 speci�es oating point datatypes and a number of operations on values of
a oating point datatype. In this clause some additional operations on values of a oating point
datatype are speci�ed.

NOTE { Further operations on values of a oating point datatype, for elementary oating
point numerical functions, are speci�ed in clause 5.3.

F is the non-special value set, F � R, for a oating point datatype conforming to Part 1.
Floating point datatypes conforming to Part 1 often do contain ���0, in�nity, and NaN values.
Therefore, in this clause there are speci�cations for such values as arguments.

5.1.9 Support operations for extended integer range 13

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.2.1 The rounding and oating point result helper functions

Floating point rounding helper functions: The oating point helper function

downF : R ! F �

is the rounding function that rounds towards negative in�nity. The oating point helper function

upF : R! F �

is the rounding function that rounds towards positive in�nity. The oating point helper function

nearestF : R ! F �

is the rounding function that rounds to nearest. nearestF is partially implementation de�ned:
the handling of ties is implementation de�ned, but must be sign symmetric. If iec 559F = true,
the semantics of nearestF is completely de�ned by IEC 60559: in this case ties are rounded to
even last digit.

resultF is a helper function that is partially implementation de�ned.

resultF : R� (R ! F �)! F [funderow;overowg
resultF (x; nearestF) = overow(+1+1+1) if x 2 R and nearestF (x) > fmaxF
resultF (x; nearestF) = overow(�1�1�1) if x 2 R and nearestF (x) < �fmaxF
resultF (x; upF) = overow(+1+1+1) if x 2 R and upF (x) > fmaxF
resultF (x; upF) = overow(�fmaxF) if x 2 R and upF (x) < �fmaxF
resultF (x; downF) = overow(fmaxF) if x 2 R and downF (x) > fmaxF
resultF (x; downF) = overow(�1�1�1) if x 2 R and downF (x) < �fmaxF

otherwise:

resultF (x; rnd) = x if x = 0
= rnd(x) if x 2 R and fminNF 6 jxj and jrnd(x)j 6 fmaxF
= rnd(x) or underow(c)

if x 2 R and jxj < fminNF and jrnd(x)j = fminNF

and rnd has no denormalisation loss at x
= rnd(x) or underow(c)

if x 2 R and denormF = true and
jrnd(x)j < fminNF and x 6= 0
and rnd has no denormalisation loss at x

= underow(c) otherwise

where

c = rnd(x) when denormF = true and (rnd(x) 6= 0 or x > 0),
c =���0 when denormF = true and rnd(x) = 0 and x < 0,
c = 0 when denormF = false and x > 0,
c =���0 when denormF = false and x < 0

An implementation is allowed to choose between rnd(x) and underow(rnd(x)) in the region
between 0 and fminNF . However, a subnormal value without underow noti�cation can be chosen
only if denormF is true and no denormalisation loss occurs at x.

NOTES

1 This di�ers from the speci�cation of resultF as given in Part 1 in the following respects:
1) the continuation values on overow and underow are given directly here, and 2) all
instances of denormalisation loss must be accompanied with an underow noti�cation.

2 denormF = false implies iec 559F = false, and iec 559F = true implies denormF =
true.

14 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

3 If iec 559F = true, then subnormal results that have no denormalisation loss, e.g. are
exact, do not result in an underow noti�cation, if the noti�cation is by recording of
indicators.

De�ne the result NaNF , result NaN2F , and result NaN3F helper functions:

result NaNF : F ! finvalidg
result NaNF (x) = qNaN if x is a quiet NaN

= invalid(qNaN) otherwise

result NaN2F : F � F ! finvalidg
result NaN2F (x; y)

= qNaN if x is a quiet NaN and y is not a signalling NaN
= qNaN if y is a quiet NaN and x is not a signalling NaN
= invalid(qNaN) otherwise

result NaN3F : F � F � F ! finvalidg
result NaN3F (x; y; z)

= qNaN if x is a quiet NaN and
not y nor z is a signalling NaN

= qNaN if y is a quiet NaN and
not x nor z is a signalling NaN

= qNaN if z is a quiet NaN and
not x nor y is a signalling NaN

= invalid(qNaN) otherwise

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN) is the appropriate result.

5.2.2 Floating point maximum and minimum

The appropriate return value of the maximum and minimum operations given a quiet NaN
(qNaN) as one of the input values depends on the circumstances for each point of use. Sometimes
qNaN is the appropriate result, sometimes the non-NaN argument is the appropriate result.
Therefore, two variants each of the oating point maximum and minimum operations are speci�ed
here, and the programmer can decide which one is appropriate to use at each particular place of
usage, assuming both variants are included in the binding.

maxF : F � F ! F

maxF (x; y) = maxfx; yg if x; y 2 F
=+1+1+1 if x =+1+1+1 and y 2 F [f�1�1�1;���0g
= y if x =���0 and y 2 F and y > 0
=���0 if x =���0 and ((y 2 F and y < 0) or y =���0)
= y if x =�1�1�1 and y 2 F [f+1+1+1;���0g
=+1+1+1 if y =+1+1+1 and x 2 F [f+1+1+1;���0g
= x if y =���0 and x 2 F and x > 0
=���0 if y =���0 and x 2 F and x < 0

5.2.2 Floating point maximum and minimum 15

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

= x if y =�1�1�1 and x 2 F [f�1�1�1;���0g
= result NaN2F (x; y) otherwise

minF : F � F ! F

minF (x; y) = minfx; yg if x; y 2 F
= y if x =+1+1+1 and y 2 F [f�1�1�1;���0g
=���0 if x =���0 and y 2 F and y > 0
= y if x =���0 and ((y 2 F and y < 0) or y =���0)
=�1�1�1 if x =�1�1�1 and y 2 F [f+1+1+1;���0g
= x if y =+1+1+1 and x 2 F [f+1+1+1;���0g
=���0 if y =���0 and x 2 F and x > 0
= x if y =���0 and x 2 F and x < 0
=�1�1�1 if y =�1�1�1 and x 2 F [f�1�1�1;���0g
= result NaN2F (x; y) otherwise

mmaxF : F � F ! F

mmaxF (x; y) = maxF (x; y) if x; y 2 F [f+1+1+1;���0;�1�1�1g
= x if x 2 F [f+1+1+1;���0;�1�1�1g and y is a quiet NaN
= y if y 2 F [f+1+1+1;���0;�1�1�1g and x is a quiet NaN
= result NaN2F (x; y) otherwise

mminF : F � F ! F

mminF (x; y) = minF (x; y) if x; y 2 F [f+1+1+1;���0;�1�1�1g
= x if x 2 F [f+1+1+1;���0;�1�1�1g and y is a quiet NaN
= y if y 2 F [f+1+1+1;���0;�1�1�1g and x is a quiet NaN
= result NaN2F (x; y) otherwise

NOTE { If one of the arguments to mmaxF or mminF is a quiet NaN, that argument is
ignored.

max seqF : [F]! F [f�1�1�1;poleg
max seqF ([x1; :::; xn])

=�1�1�1 if n = 0 and �1�1�1 is available
= pole(�fmaxF) if n = 0 and �1�1�1 is not available
= maxF (max seqF ([x1; :::; xn�1]); xn)

if n > 2
= x1 if n = 1 and x1 is not a NaN
= result NaNF (x1) otherwise

min seqF : [F]! F [f+1+1+1;poleg
min seqF ([x1; :::; xn])

= +1+1+1 if n = 0 and +1+1+1 is available
= pole(fmaxF) if n = 0 and +1+1+1 is not available
= minF (min seqF ([x1; :::; xn�1]); xn)

if n > 2
= x1 if n = 1 and x1 is not a NaN
= result NaNF (x1) otherwise

16 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

mmax seqF : [F]! F [f�1�1�1;poleg
mmax seqF ([x1; :::; xn])

=�1�1�1 if n = 0 and �1�1�1 is available
= pole(�fmaxF) if n = 0 and �1�1�1 is not available
= mmaxF (mmax seqF ([x1; :::; xn�1]); xn)

if n > 2
= x1 if n = 1 and x1 is not a NaN
= result NaNF (x1) otherwise

mmin seqF : [F]! F [f+1+1+1;poleg
mmin seqF ([x1; :::; xn])

= +1+1+1 if n = 0 and +1+1+1 is available
= pole(fmaxF) if n = 0 and +1+1+1 is not available
= mminF (mmin seqF ([x1; :::; xn�1]); xn)

if n > 2
= x1 if n = 1 and x1 is not a NaN
= result NaNF (x1) otherwise

5.2.3 Floating point diminish

dimF : F � F ! F [foverow;underowg
dimF (x; y) = resultF (maxf0; x � y)g; rndF)

if x; y 2 F
= dimF (0; y) if x =���0 and y 2 F [f�1�1�1;���0;+1+1+1g
= dimF (x; 0) if y =���0 and x 2 F [f�1�1�1;+1+1+1g
=+1+1+1 if x =+1+1+1 and y 2 F [f�1�1�1g
= 0 if x =�1�1�1 and y 2 F [f+1+1+1g
= 0 if y =+1+1+1 and x 2 F
=+1+1+1 if y =�1�1�1 and x 2 F
= result NaN2F (x; y) otherwise

NOTE { dimF cannot be implemented by maxF (0; subF (x; y)), since this latter expression
has other overow properties.

5.2.4 Round, oor, and ceiling

roundingF : F ! F [f���0g
roundingF (x) = round(x) if x 2 F and (x > 0 or round(x) 6= 0)

=���0 if x 2 F and x < 0 and round(x) = 0
= x if x 2 f�1�1�1;���0;+1+1+1; g
= result NaNF (x) otherwise

oorF : F ! F

oorF (x) = bxc if x 2 F
= x if x 2 f�1�1�1;���0;+1+1+1; g
= result NaNF (x) otherwise

5.2.3 Floating point diminish 17

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

ceilingF : F ! F [f���0g
ceilingF (x) = dxe if x 2 F and (x > 0 or dxe 6= 0)

=���0 if x 2 F and x < 0 and dxe = 0
= x if x 2 f�1�1�1;���0;+1+1+1; g
= result NaNF (x) otherwise

NOTE 1 { Truncate to integer is speci�ed in Part 1, by the name intpartF .

rounding restF : F ! F

rounding restF (x)
= x� round(x) if x 2 F
= 0 if x =���0
= result NaNF (x) otherwise

oor restF : F ! F

oor restF (x) = resultF (x� bxc; rndF) if x 2 F
= 0 if x =���0
= result NaNF (x) otherwise

ceiling restF : F ! F

ceiling restF (x)
= resultF (x� dxe; rndF) if x 2 F
= 0 if x =���0
= result NaNF (x) otherwise

NOTE 2 { The rest after truncation is speci�ed in Part 1, by the name fractpartF .

5.2.5 Remainder after division with round to integer

remrF : F � F ! F [f���0;underow; invalidg
remrF (x; y) = resultF (x� (round(x=y) � y); nearestF)

if x; y 2 F and y 6= 0 and
(x > 0 or x� (round(x=y) � y) 6= 0)

=���0 if x; y 2 F and y 6= 0 and
x < 0 and x� (round(x=y) � y) = 0

=���0 if x =���0 and y 2 F [f�1�1�1;+1+1+1g and y 6= 0
= x if x 2 F and y 2 f�1�1�1;+1+1+1g
= result NaN2F (x; y) otherwise

5.2.6 Square root and reciprocal square root

sqrtF : F ! F [finvalidg
sqrtF (x) = nearestF (

p
x) if x 2 F and x > 0

= x if x 2 f���0;+1+1+1g
= result NaNF (x) otherwise

18 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

rec sqrtF : F ! F [finvalid;poleg
rec sqrtF (x) = rndF (1=

p
x) if x 2 F and x > 0

= pole(+1+1+1) if x 2 f���0; 0g
= 0 if x =+1+1+1
= result NaNF (x) otherwise

5.2.7 Support operations for extended oating point precision

These operations are useful when keeping guard digits or implementing extra precision oating
point datatypes. The resulting datatypes, e.g. so-called doubled precision, do not necessarily
conform to Part 1.

add loF : F � F ! F [funderowg
add loF (x; y) = resultF ((x+ y)� rndF (x+ y); rndF)

if x; y 2 F
=���0 if x =���0 and y 2 F [f�1�1�1;���0;+1+1+1g
=���0 if x 2 F [f�1�1�1;+1+1+1g and y =���0
= y if x =+1+1+1 and y 2 F [f+1+1+1g
= y if x =�1�1�1 and y 2 F [f�1�1�1g
= x if x 2 F and y 2 f�1�1�1;+1+1+1g
= result NaN2F (x; y) otherwise

sub loF : F � F ! F [funderowg
sub loF (x; y) = add loF (x; negF (y))

NOTE 1 { If rnd styleF = nearest, then, in the absence of noti�cations, add loF and sub loF
returns exact results.

mul loF : F � F ! F [foverow;underowg
mul loF (x; y) = resultF ((x � y)� rndF (x � y); rndF)

if x; y 2 F
= mul loF (0; y) if x =���0 and y 2 F [f�1�1�1;���0;+1+1+1g
= mul loF (x; 0) if x 2 F [f�1�1�1;+1+1+1g and y =���0
= mulF (x; y) if x 2 f�1�1�1;+1+1+1g and y 2 F [f�1�1�1;+1+1+1g
= mulF (x; y) if x 2 F and y 2 f�1�1�1;+1+1+1g
= result NaN2F (x; y) otherwise

NOTE 2 { In the absence of noti�cations, mul loF returns an exact result.

div restF : F � F ! F [funderow; invalidg
div restF (x; y) = resultF (x� (y � rndF (x=y)); rndF)

if x; y 2 F
= div restF (0; y) if x =���0 and y 2 F [f�1�1�1;���0;+1+1+1g
= x if x 2 F and y 2 f�1�1�1;+1+1+1g
= x if x 2 f�1�1�1;+1+1+1g and y 2 F
= result NaN2F (x; y) otherwise

5.2.7 Support operations for extended oating point precision 19

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

sqrt restF : F ! F [funderow; invalidg
sqrt restF (x) = resultF (x� (sqrtF (x) � sqrtF (x)); rndF)

if x 2 F and x > 0
=���0 if x =���0
=+1+1+1 if x =+1+1+1
= result NaNF (x) otherwise

NOTE 3 { sqrt restF (x) is exact when there is no underow.

For the following operation F 0 is a oating point type conforming to Part 1.

NOTE 4 { It is expected that pF 0 > pF , i.e. F
0 has higher precision than F , but that is not

required.

mulF!F 0 : F � F ! F 0 [f���0;overow;underowg
mulF!F 0(x; y) = resultF 0(x � y; rndF 0) if x; y 2 F and x 6= 0 and y 6= 0

= convertF!F 0(mulF (x; y))
if x 2 f�1�1�1;���0; 0;+1+1+1g and
y 2 F [f�1�1�1;���0;+1+1+1g

= convertF!F 0(mulF (x; y))
if y 2 f�1�1�1;���0; 0;+1+1+1g and x 2 F and x 6= 0

= result NaN2F 0(x; y) otherwise

20 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.3 Elementary transcendental oating point operations

5.3.1 Maximum error requirements

The speci�cations for each of the transcendental and oating point conversion operations use an
approximation helper function. The approximation helper functions are ideally identical to the
true mathematical functions. However, that would imply a maximum error for the corresponding
operation of 0.5 ulp (i.e., the minimum value for operations that are not always exact). This Part
does not require that the maximum error is only 0.5 ulp for the operations speci�ed in clauses 5.3,
5.4, and 5.5, but allows the maximum error to be a bit bigger. To express this, the approximation
helper functions need not be identical to the mathematical elementary transcendental functions,
but are allowed to be approximate.

The approximation helper functions for the individual operations in these subclauses have
maximum error parameters that describe the maximum relative error of the helper function
composed with nearestF , for non-subnormal results. The maximum error parameters also de-
scribe the maximum absolute error for subnormal results and underow continuation values if
denormF = true. The relevant maximum error parameters shall be available to programs.

When the maximum error for an approximation helper function hF , approximating f , is
max error opF , then for all arguments x; ::: 2 F � � ::: the following equation shall hold:

jf(x; :::)� nearestF (hF (x; :::))j 6 max error opF � reF (f(x;:::))�pFF

NOTES

1 Partially conforming implementations may have greater values for maximum error param-
eters than stipulated below. See annex A.

2 For most positive (and not too small) return values t, the true result is thus claimed to be
in the interval [t � (max error opF � ulpF (t)); t + (max error opF � ulpF (t))]. But if the
return value is exactly rnF for some not too small n 2 Z , then the true result is claimed
to be in the interval [t � (max error opF � ulpF (t)=rF); t + (max error opF � ulpF (t))].
Similarly for negative return values.

The results of the approximating helper functions in this clause must be exact for certain
arguments as detailed below, and may be exact for all arguments. If the approximating helper
function is exact for all arguments, then the corresponding maximum error parameter should be
0.5, the minimum value.

5.3.2 Sign requirements

The approximation helper functions are shall be zero exactly at the points where the approximated
mathematical function is exactly zero. At points where the approximation helper functions are
not zero, they are shall have the same sign as the approximated mathematical function at that
point.

For the radian trigonometric helper functions, these zero and sign requirements are imposed
only for arguments, x, such that jxj 6 big angle rF (see clause 5.3.9).

NOTE { For the operations, the continuation value after an underow may be zero (or
negative zero) as given by trans resultF , even though the approximation helper function is
not zero at that point. Such zero results are required to be accompanied by an underow
noti�cation. When appropriate, zero may also be returned for IEC 60559 in�nities arguments.
See the individual speci�cations.

5.3 Elementary transcendental oating point operations 21

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.3 Monotonicity requirements

Each approximation helper function in this clause shall be a monotonic approximation to the
mathematical function it is approximating, except:

a) For the radian trigonometric approximation helper functions, the monotonic approximation
requirement is imposed only for arguments, x, such that jxj 6 big angle rF (see clause
5.3.9).

b) The argument angular unit trigonometric and argument angular unit inverse trigonometric
approximating helper functions are excepted from the monotonic approximation require-
ment for the angular unit argument.

5.3.4 The trans result helper function

The trans resultF helper function is similar to the resultF helper function (see 5.2.1), but is
simpli�ed compared to resultF concerning underow: trans resultF always underows for non-
zero arguments that have an absolute value less than fminNF�(fminDF =rF), whereas resultF does
not necessarily underow in that case. This di�erence from resultF is made since the argument to
trans resultF might not be exact. To return underow or not, for a tiny result, based upon an
inexact result would be misleading. For the operations speci�ed using trans resultF where the
speci�cation implies that there will be no denormalisation loss for certain tiny results, underow
is instead explicitly avoided.

trans resultF : R� (R! F �)! F [funderow;overowg
trans resultF (x; rnd)

= underow(c) if x 2 R and denormF = true and
jrnd(x)j < fminNF and x 6= 0

= resultF (x; rnd) otherwise

where

c = rnd(x) when rnd(x) 6= 0 or x > 0,
c =���0 when rnd(x) = 0 and x < 0

5.3.5 Hypotenuse

There shall be a maximum error parameter for the hypotF operation:

max error hypotF 2 F

The max error hypotF parameter shall have a value in the interval [0:5; 1].

The hypot�F approximation helper function:

hypot�F : F � F !R
hypot�F (x; y) returns a close approximation to

p
x2 + y2 inR, with maximum errormax error hypotF .

Further requirements on the hypot�F approximation helper function are:

hypot�F (x; y) = hypot�F (y; x)
hypot�F (�x; y) = hypot�F (x; y)
hypot�F (x; y) > maxfjxj; jyjg
hypot�F (x; y) 6 jxj+ jyj
hypot�F (x; y) > 1 if

p
x2 + y2 > 1

hypot�F (x; y) 6 1 if
p
x2 + y2 6 1

22 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

The hypotF operation:

hypotF : F � F ! F [funderow;overowg
hypotF (x; y) = trans resultF (hypot

�
F (x; y); nearestF)

if x; y 2 F
= hypotF (0; y) if x =���0 and y 2 F [f�1�1�1;���0;+1+1+1g
= hypotF (x; 0) if y =���0 and x 2 F [f�1�1�1;+1+1+1g
=+1+1+1 if x 2 f�1�1�1;+1+1+1g and y 2 F [f�1�1�1;+1+1+1g
=+1+1+1 if y 2 f�1�1�1;+1+1+1g and x 2 F
= result NaN2F (x; y) otherwise

5.3.6 Operations for exponentiations and logarithms

There shall be two maximum error parameters for approximate exponentiations and logarithms:

max error expF 2 F
max error powerF 2 F

The max error expF parameter shall have a value in the interval [0:5; 1:5 � rnd errorF]. The
max error powerF parameter shall have a value in the interval [max error expF ; 2 �rnd errorF].

NOTE { The \exp" operations are thus required to be at least as accurate as the \power"
operations.

5.3.6.1 Integer power of argument base

The power�FI approximation helper function:

power�FI : F � I !R
power�FI(x; y) returns a close approximation to xy in R, with maximum errormax error powerF .

Further requirements on the power�FI approximation helper function are:

power�FI(1; y) = 1 if y 2 I
power�FI(x; 0) = 1 if x 2 F and x 6= 0
power�FI(x; 1) = x if x 2 F
power�FI(x; y) < fminDF =2 if x 2 F and x > 0 and y 2 I and xy < fminDF =3
power�FI(x; y) = power�FI(�x; y) if x 2 F and x < 0 and y 2 I and 2jy
power�FI(x; y) = �power�FI(�x; y) if x 2 F and x < 0 and y 2 I and not 2jy

The powerFI operation:

powerFI : F � I ! F [funderow;overow;poleg
powerFI(x; y) = trans resultF (power

�
FI(x; y); nearestF)

if x 2 F and x 6= 0 and y 2 I

=+1+1+1 if x =�1�1�1 and y 2 I and y > 0 and 2jy
=�1�1�1 if x =�1�1�1 and y 2 I and y > 0 and not 2jy
= 0 if x =���0 and y 2 I and y > 0 and 2jy
=���0 if x =���0 and y 2 I and y > 0 and not 2jy
= 0 if x = 0 and y 2 I and y > 0
= +1+1+1 if x =+1+1+1 and y 2 I and y > 0

= 1 if x 2 f�1�1�1���0; 0;+1+1+1g and y = 0

= 0 if x =�1�1�1 and y 2 I and y < 0 and 2jy
=���0 if x =�1�1�1 and y 2 I and y < 0 and not 2jy

5.3.6 Operations for exponentiations and logarithms 23

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

= pole(+1+1+1) if x =���0 and y 2 I and y < 0 and 2jy
= pole(�1�1�1) if x =���0 and y 2 I and y < 0 and not 2jy
= pole(+1+1+1) if x = 0 and y 2 I and y < 0
= 0 if x =+1+1+1 and y 2 I and y < 0

= result NaNF (x) otherwise

NOTES

1 powerFI (x; y) will overow approximately when xy > fmaxF , i.e., if x > 1, approximately
when y > logx(fmaxF), and if 0 < x < 1, approximately when y < logx(fmaxF) (which is
then negative). It will not overow when x = 0 or when x = 1.

2 powerI (in clause 5.1.4) does not allow negative exponents since the exact result then is
not in Z . powerF (in clause 5.3.6.6) does not allow any negative bases since the (exact)
result is not in R unless the exponent is integer. powerFI takes care of this latter case,
where all exponents are ensured to be integers that have not arisen from implicit oating
point rounding.

5.3.6.2 Natural exponentiation

The exp�F approximation helper function:

exp�F : F !R
exp�F (x) returns a close approximation to ex in R, with maximum error max error expF .

Further requirements on the exp�F approximation helper function are:

exp�F (1) = e
exp�F (x) = 1 if x 2 F and exp�F (x) 6= ex and

ln(1� (epsilonF=(2 � rF))) < x and
x < ln(1 + (epsilonF =2))

exp�F (x) < fminDF =2 if x 2 F and x < ln(fminDF)� 3

The expF operation:

expF : F ! F [funderow;overowg
expF (x) = trans resultF (exp

�
F (x); nearestF)

if x 2 F
= 1 if x =���0
=+1+1+1 if x =+1+1+1
= 0 if x =�1�1�1
= result NaNF (x) otherwise

NOTES

1 expF (1) = nearestF (e).

2 expF (x) will overow approximately when x > ln(fmaxF).

5.3.6.3 Natural exponentiation, minus one

The expm1 �F approximation helper function:

expm1 �F : F !R
expm1 �F (x) returns a close approximation to ex � 1 in R, with maximum error max error expF .

Further requirements on the expm1 �F approximation helper function are:

24 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

expm1 �F (1) = e� 1
expm1 �F (x) = x if x 2 F and expm1 �F (x) 6= ex � 1 and

�epsilonF=rF 6 x < 0:5 � epsilonF=rF
expm1 �F (x) = �1 if x 2 F and expm1 �F (x) 6= ex � 1 and

x < ln(epsilonF =(3 � rF))
Relationship to the exp�F approximation helper function:

expm1 �F (x) 6 exp�F (x) if x 2 F

The expm1F operation:

expm1F : F ! F [foverowg
expm1F (x) = trans resultF (expm1

�
F (x); nearestF)

if x 2 F and jxj > fminNF

= x if x 2 F and jxj < fminNF

=���0 if x =���0
=+1+1+1 if x =+1+1+1
= �1 if x =�1�1�1
= result NaNF (x) otherwise

NOTES

1 underow is explicitly avoided. Part 1 requires that fminNF 6 epsilonF . This Part
requires that fminNF < 0:5 � epsilonF=rF , so that underow can be avoided here.

2 expm1F (1) = nearestF (e� 1).

3 expm1F (x) will overow approximately when x > ln(fmaxF).

5.3.6.4 Exponentiation of 2

The exp2 �F approximation helper function:

exp2 �F : F !R
exp2 �F (x) returns a close approximation to 2x in R, with maximum error max error expF .

Further requirements on the exp2 �F approximation helper function are:

exp2 �F (x) = 1 if x 2 F and exp2 �F (x) 6= 2x and
log2(1� (epsilonF=(2 � rF))) < x and
x < log2(1 + (epsilonF =2))

exp2 �F (x) = 2x if x 2 F \ Z and 2x 2 F
exp2 �F (x) < fminDF=2 if x 2 F and x < log2(fminDF)� 3

The exp2F operation:

exp2F : F ! F [funderow;overowg
exp2F (x) = trans resultF (exp2

�
F (x); nearestF)

if x 2 F
= 1 if x =���0
=+1+1+1 if x =+1+1+1
= 0 if x =�1�1�1
= result NaNF (x) otherwise

NOTE { exp2F (x) will overow approximately when x > log2(fmaxF).

5.3.6 Operations for exponentiations and logarithms 25

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.6.5 Exponentiation of 10

The exp10 �F approximation helper function:

exp10 �F : F !R
exp10 �F (x) returns a close approximation to 10x in R, with maximum error max error expF .

Further requirements on the exp10 �F approximation helper function are:

exp10 �F (x) = 1 if x 2 F and exp10 �F (x) 6= 10x and
log10(1� (epsilonF =(2 � rF))) < x and
x < log10(1 + (epsilonF=2))

exp10 �F (x) = 10x if x 2 F \ Z and 10x 2 F
exp10 �F (x) < fminDF =2 if x 2 F and x < log10(fminDF)� 3

The exp10F operation:

exp10F : F ! F [funderow;overowg
exp10F (x) = trans resultF (exp10

�
F (x); nearestF)

if x 2 F
= 1 if x =���0
=+1+1+1 if x =+1+1+1
= 0 if x =�1�1�1
= result NaNF (x) otherwise

NOTE { exp10F (x)will overow approximately when x > log10(fmaxF).

5.3.6.6 Exponentiation of argument base

The power�F approximation helper function:

power�F : F � F ! R
power�F (x; y) returns a close approximation to xy in R, with maximum error max error powerF .
The power�F helper function need be de�ned only for �rst arguments that are greater than 0.

Further requirements on the power�F approximation helper function are:

power�F (1; y) = 1 if y 2 F
power�F (x; 0) = 1 if x 2 F and x > 0
power�F (x; 1) = x if x 2 F and x > 0
powerFF

�(x; y) < fminDF =2 if x 2 F and x > 0 and y 2 F and xy < fminDF=3

Relationship to the power�FI approximation helper function:

power�F (x; y) = power�FI(x; y) if x 2 F and x > 0 and y 2 I \ F

The powerF operation:

powerF : F � F ! F [finvalid;underow;overow;poleg
powerF (x; y) = trans resultF (power

�
F (x; y); nearestF)

if x 2 F and x > 0 and y 2 F
= powerF (0; y) if x =���0 and y 2 F [f�1�1�1;���0;+1+1+1g
= powerF (x; 0) if y =���0 and x 2 F [f�1�1�1;+1+1+1g

=+1+1+1 if x =+1+1+1 and ((y 2 F and y > 0) or y =+1+1+1)
= +1+1+1 if x 2 F and x > 1 and y =+1+1+1
= 0 if x 2 F and 0 6 x < 1 and y =+1+1+1
= 0 if x = 0 and y 2 F and y > 0

26 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

= pole(+1+1+1) if x = 0 and y 2 F and y < 0
= +1+1+1 if x 2 F and 0 6 x < 1 and y =�1�1�1
= 0 if x 2 F and x > 1 and y =�1�1�1
= 0 if x =+1+1+1 and ((y 2 F and y < 0) or y =�1�1�1)

= result NaN2F (x; y) otherwise

NOTE { powerF (x; y) will overow approximately when xy > fmaxF , i.e., if x > 1, ap-
proximately when y > logx(fmaxF), and if 0 < x < 1, approximately when y < logx(fmaxF)
(which is a negative number). It will not overow when x = 0 or when x = 1.

5.3.6.7 Exponentiation of one plus the argument base, minus one

The power1pm1 �
F approximation helper function:

power1pm1 �
F : F � F ! R

power1pm1 �
F (x; y) returns a close approximation to (1 + x)y � 1 in R, with maximum error

max error powerF . The power1pm1 �
F helper function need be de�ned only for �rst arguments

that are greater than �1.
Further requirements on the power1pm1 �

F approximation helper function are:

power1pm1 �
F (�1; y) = �1 if y 2 F and y > 0

power1pm1 �
F (x; y) = �1 if x 2 F and x > �1 and y 2 F and

power1pm1 �
F (x; y) 6= (1 + x)y � 1 and

(1 + x)y < epsilonF=(3 � rF)
power1pm1 �

F (x; 1) = 1 + x if x; 1 + x 2 F and x > �1
Relationship to the power�F approximation helper function:

power1pm1 �
F (x; y) 6 power�F (1 + x; y) if x; 1 + x 2 F and x > �1 and y 2 F

NOTE 1 { power1pm1 �F (x; y) � y � ln(1 + x) if x 2 F and x > �1 and y 2 F and
jy � ln(1 + x)j < epsilonF=rF .

The power1pm1F operation:

power1pm1F : F � F ! F [f���0; invalid;underow;overow;poleg
power1pm1F (x; y)

= trans resultF (power1pm1
�
F (x; y); nearestF)

if x 2 F and x > �1 and x 6= 0 and y 2 F and y 6= 0
= mulF (x; y) if x 2 f���0; 0g and y 2 F and y 6= 0
= mulF (x; y) if y 2 f���0; 0g and x 2 F and x > �1
= +1+1+1 if x =+1+1+1 and ((y 2 F and y > 0) or y =+1+1+1)
= +1+1+1 if x 2 F and x > 0 and y =+1+1+1
= �1 if x 2 F and �1 6 x < 0 and y =+1+1+1
= �1 if x = �1 and y 2 F and y > 0
= pole(+1+1+1) if x = �1 and y 2 F and y < 0
= +1+1+1 if x 2 F and �1 6 x < 0 and y =�1�1�1
= �1 if x 2 F and x > 0 and y =�1�1�1
= �1 if x =+1+1+1 and ((y 2 F and y < 0) or y =�1�1�1)

= result NaN2F (x; y) otherwise

NOTE 2 { power1pm1F (x; y) will overow approximately when (1 + x)y > fmaxF , i.e., if
x > 0, approximately when y > log1+x(fmaxF), and if �1 < x < 0, approximately when
y < log1+x(fmaxF). It will not overow when x 2 f�1; 0g.

5.3.6 Operations for exponentiations and logarithms 27

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.6.8 Natural logarithm

The ln�F approximation helper function:

ln�F : R ! R
ln�F (x) returns a close approximation to ln(x) in R, with maximum error max error expF .

A further requirement on the ln�F approximation helper function is:

ln�F (e) = 1

The lnF operation:

lnF : F ! F [finvalid;poleg
lnF (x) = trans resultF (ln

�
F (x); nearestF)

if x 2 F and x > 0
= pole(�1�1�1) if x 2 f���0; 0g
=+1+1+1 if x =+1+1+1
= result NaNF (x) otherwise

5.3.6.9 Natural logarithm of one plus the argument

The ln1p�F approximation helper function:

ln1p�F : R! R
ln1p�F (x) returns a close approximation to ln(1+x) in R, with maximum error max error expF .

Further requirements on the ln1p�F approximation helper function are:

ln1p�F (e� 1) = 1
ln1p�F (x) = x if x 2 F and ln1p�F (x) 6= ln(1 + x) and

�0:5 � epsilonF=rF < x 6 epsilonF =rF

Relationship to the ln�F approximation helper function:

ln1p�F (x) > ln�F (x) if x 2 F and x > 0

The ln1pF operation:

ln1pF : F ! F [finvalid;poleg
ln1pF (x) = trans resultF (ln1p

�
F (x); nearestF)

if x 2 F and x > �1 and jxj > fminNF

= x if x 2 F and jxj < fminNF

=���0 if x =���0
= pole(�1�1�1) if x = �1
= +1+1+1 if x =+1+1+1
= result NaNF (x) otherwise

NOTE { underow is explicitly avoided. Part 1 requires that fminNF 6 epsilonF . This
Part requires that fminNF < 0:5 � epsilonF=rF , so that underow can be avoided here.

5.3.6.10 2-logarithm

The log2 �F approximation helper function:

log2 �F : F !R
log2 �F (x) returns a close approximation to log2(x) in R, with maximum error max error expF .

A further requirement on the log2 �F approximation helper function is:

28 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

log2 �F (x) = log2(x) if x 2 F and log2(x) 2 Z
The log2F operation:

log2F : F ! F [finvalid;poleg
log2F (x) = trans resultF (log2

�
F (x); nearestF)

if x 2 F and x > 0
= pole(�1�1�1) if x 2 f���0; 0g
=+1+1+1 if x =+1+1+1
= result NaNF (x) otherwise

5.3.6.11 10-logarithm

The log10 �F approximation helper function:

log10 �F : F !R
log10 �F (x) returns a close approximation to log10(x) in R, with maximum error max error expF .

A further requirement on the log10 �F approximation helper function is:

log10 �F (x) = log10(x) if x 2 F and log10(x) 2 Z
The log10F operation:

log10F : F ! F [finvalid;poleg
log10F (x) = trans resultF (log10

�
F (x); nearestF)

if x 2 F and x > 0
= pole(�1�1�1) if x 2 f���0; 0g
=+1+1+1 if x =+1+1+1
= result NaNF (x) otherwise

5.3.6.12 Argument base logarithm

The logbase�F approximation helper function:

logbase�F : F � F !R
logbase�F (x; y) returns a close approximation to logx(y) inR, with maximum errormax error powerF .

A further requirement on the logbase�F approximation helper function is:

logbase�F (x; x) = 1 if x 2 F and x > 0 and x 6= 1

The logbaseF operation:

logbaseF : F � F ! F [finvalid;poleg
logbaseF (x; y) = trans resultF (logbase

�
F (x; y); nearestF)
if x 2 F and x > 0 and x 6= 1 and y 2 F and y > 0

= logbaseF (0; y) if x =���0 and y 2 F [f�1�1�1;���0;+1+1+1g
= logbaseF (x; 0) if y =���0 and x 2 F [f�1�1�1;+1+1+1g

= pole(+1+1+1) if x = 1 and y 2 F and y > 1
= pole(�1�1�1) if x = 1 and y 2 F and 0 6 y < 1

= 0 if x =+1+1+1 and y 2 F and y > 1
= +1+1+1 if x 2 F and 1 6 x and y =+1+1+1
=�1�1�1 if x 2 F and 0 < x < 1 and y =+1+1+1
=���0 if x = 0 and y 2 F and y > 1
= 0 if x = 0 and y 2 F and 0 < y < 1

5.3.6 Operations for exponentiations and logarithms 29

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

= pole(+1+1+1) if x 2 F and 0 < x < 1 and y = 0
= pole(�1�1�1) if x 2 F and 1 < x and y = 0
=���0 if x =+1+1+1 and y 2 F and 0 < y < 1

= result NaN2F (x; y) otherwise

5.3.6.13 Argument base logarithm of one plus each argument

The logbase1p1p�F approximation helper function:

logbase1p1p�F : F � F !R
logbase1p1p�F (x; y) returns a close approximation to log(1+x)(1 + y) in R, with maximum error
max error powerF .

A further requirements on logbase1p1p�F approximation helper function is:

logbase1p1p�F (x; x) = 1 if x 2 F and x > �1 and x 6= 0

The logbase1p1pF operation:

logbase1p1pF : F � F ! F [f���0; invalid;underow;poleg
logbase1p1pF (x; y)

= trans resultF (logbase1p1p
�
F (x; y); nearestF)

if x 2 F and x > �1 and x 6= 0 and
y 2 F and y > �1 and y 6= 0

= divF (y; x) if x 2 f���0; 0g and
((y 2 F and y > �1 and y 6= 0) or y =+1+1+1)

= divF (y; x) if y 2 f���0; 0g and
((x 2 F and x > �1) or x =+1+1+1)

= 0 if x =+1+1+1 and y 2 F and y > 0
= +1+1+1 if x 2 F and 0 < x and y =+1+1+1
=�1�1�1 if x 2 F and �1 < x < 0 and y =+1+1+1
=���0 if x = �1 and y 2 F and y > 0
= 0 if x = �1 and y 2 F and �1 < y < 0
= pole(+1+1+1) if x 2 F and �1 < x < 0 and y = �1
= pole(�1�1�1) if x 2 F and 0 < x and y = �1
=���0 if x =+1+1+1 and y 2 F and �1 < y < 0

= result NaN2F (x; y) otherwise

5.3.7 Operations for hyperbolic elementary functions

There shall be two maximum error parameters for operations corresponding to the hyperbolic
and inverse hyperbolic functions:

max error sinhF 2 F
max error tanhF 2 F

The max error sinhF parameter shall have a value in the interval [0:5; 2 � rnd errorF]. The
max error tanhF parameter shall have a value in the interval [max error sinhF ; 2 �rnd errorF].

30 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.3.7.1 Hyperbolic sine

The sinh�F approximation helper function:

sinh�F : F !R
sinh�F (x) returns a close approximation to sinh(x) in R, with maximum error max error sinhF .

Further requirements on the sinh�F approximation helper function are:

sinh�F (x) = x if x 2 F and sinh�F (x) 6= sinh(x) and

jxj <
p
2 � epsilonF=rF

sinh�F (�x) = �sinh�F (x) if x 2 F

The sinhF operation:

sinhF : F ! F [foverowg
sinhF (x) = trans resultF (sinh

�
F (x); nearestF)

if x 2 F and jxj > fminNF

= x if x 2 F and jxj 6 fminNF

= x if x 2 f�1�1�1;���0;+1+1+1g
= result NaNF (x) otherwise

NOTES

1 underow is explicitly avoided.

2 sinhF (x) will overow approximately when jxj > ln(2 � fmaxF).

5.3.7.2 Hyperbolic cosine

The cosh�F approximation helper function:

cosh�F : F !R
cosh�F (x) returns a close approximation to cosh(x) in R, with maximum error max error sinhF .

Further requirements on the cosh�F approximation helper function are:

cosh�F (x) = 1 if x 2 F and cosh�F (x) 6= cosh(x) and
jxj < p

epsilonF
cosh�F (�x) = cosh�F (x) if x 2 F

Relationship to the sinh�F approximation helper function:

cosh�F (x) > sinh�F (x) if x 2 F

The coshF operation:

coshF : F ! F [foverowg
coshF (x) = trans resultF (cosh

�
F (x); nearestF)

if x 2 F
= 1 if x =���0
=+1+1+1 if x 2 f�1�1�1;+1+1+1g
= result NaNF (x) otherwise

NOTE { coshF (x) overows approximately when jxj > ln(2 � fmaxF).

5.3.7 Operations for hyperbolic elementary functions 31

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.7.3 Hyperbolic tangent

The tanh�F approximation helper function:

tanh�F : F !R
tanh�F (x) returns a close approximation to tanh(x) in R, with maximum error max error tanhF .

Further requirements on the tanh�F approximation helper function are:

tanh�F (x) = x if x 2 F and tanh�F (x) 6= tanh(x) and

jxj 6
p
1:5 � epsilonF=rF

tanh�F (x) = 1 if x 2 F and tanh�F (x) 6= tanh(x) and
x > arctanh(1� (epsilonF=(3 � rF)))

tanh�F (�x) = �tanh�F (x) if x 2 F

The tanhF operation:

tanhF : F ! F

tanhF (x) = trans resultF (tanh
�
F (x); nearestF)

if x 2 F and jxj > fminNF

= x if x 2 F and jxj 6 fminNF

=���0 if x =���0
= �1 if x =�1�1�1
= 1 if x =+1+1+1
= result NaNF (x) otherwise

NOTE { underow is explicitly avoided.

5.3.7.4 Hyperbolic cotangent

The coth�F approximation helper function:

coth�F : F !R
coth�F (x) returns a close approximation to coth(x) in R, with maximum error max error tanhF .

Further requirements on the coth�F approximation helper function are:

coth�F (x) = 1 if x 2 F and coth�F (x) 6= coth(x) and
x > arccoth(1 + (epsilonF=4))

coth�F (�x) = �coth�F (x) if x 2 F

The cothF operation:

cothF : F ! F [fpole;overowg
cothF (x) = trans resultF (coth

�
F (x); nearestF)

if x 2 F and x 6= 0
= pole(+1+1+1) if x = 0
= pole(�1�1�1) if x =���0
= �1 if x =�1�1�1
= 1 if x =+1+1+1
= result NaNF (x) otherwise

NOTE { cothF (x) overows approximately when j1=xj > fmaxF .

32 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.3.7.5 Hyperbolic secant

The sech�F approximation helper function:

sech�F : F !R
sech�F (x) returns a close approximation to sech(x) in R, with maximum error max error tanhF .

Further requirements on the sech�F approximation helper function are:

sech�F (x) = 1 if x 2 F and sech�F (x) 6= sech(x) and

jxj <
p
epsilonF=rF

sech�F (�x) = sech�F (x) if x 2 F
sech�F (x) < fminDF=2 if x 2 F and x > 2� ln(fminDF=4)

The sechF operation:

sechF : F ! F [funderowg
sechF (x) = trans resultF (sech

�
F (x); nearestF)

if x 2 F
= 1 if x =���0
= 0 if x 2 f�1�1�1;+1+1+1g
= result NaNF (x) otherwise

5.3.7.6 Hyperbolic cosecant

The csch�F approximation helper function:

csch�F : F !R
csch�F (x) returns a close approximation to csch(x) in R, with maximum error max error tanhF .

Further requirements on the csch�F approximation helper function are:

csch�F (�x) = �csch�F (x) if x 2 F
csch�F (x) < fminDF=2 if x 2 F and x > 2� ln(fminDF=4)

Relationship to the sech�F approximation helper function:

csch�F (x) > sech�F (x) if x 2 F and x > 0

The cschF operation:

cschF : F ! F [funderow;overow;poleg
cschF (x) = trans resultF (csch

�
F (x); nearestF)

if x 2 F and x 6= 0
= divF (1; x) if x 2 f�1�1�1;���0; 0;+1+1+1g
= result NaNF (x) otherwise

NOTE { cschF (x) overows approximately when j1=xj > fmaxF .

5.3.7.7 Inverse hyperbolic sine

The arcsinh�F approximation helper function:

arcsinh�F : F !R
arcsinh�F (x) returns a close approximation to arcsinh(x) inR, with maximum errormax error sinhF .

Further requirements on the arcsinh�F approximation helper function are:

5.3.7 Operations for hyperbolic elementary functions 33

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arcsinh�F (x) = x if x 2 F and arcsinh�F (x) 6= arcsinh(x) and

jxj 6p3 � epsilonF=rF
arcsinh�F (�x) = �arcsinh�F (x) if x 2 F

The arcsinhF operation:

arcsinhF : F ! F

arcsinhF (x) = trans resultF (arcsinh
�
F (x); nearestF)
if x 2 F and jxj > fminNF

= x if x 2 F and jxj 6 fminNF

= x if x 2 f�1�1�1;���0;+1+1+1g
= result NaNF (x) otherwise

NOTE { underow is explicitly avoided.

5.3.7.8 Inverse hyperbolic cosine

The arccosh�F approximation helper function:

arccosh�F : F !R
arccosh�F (x) returns a close approximation to arccosh(x) inR, with maximum errormax error sinhF .

Relationship to the arcsinh�F approximation helper function:

arccosh�F (x) 6 arcsinh�F (x)

The arccoshF operation:

arccoshF : F ! F [finvalidg
arccoshF (x) = trans resultF (arccosh

�
F (x); nearestF)
if x 2 F and x > 1

= +1+1+1 if x =+1+1+1
= result NaNF (x) otherwise

5.3.7.9 Inverse hyperbolic tangent

The arctanh�F approximation helper function:

arctanh�F : F !R
arctanh�F (x) returns a close approximation to arctanh(x) inR, with maximum errormax error tanhF .

Further requirements on the arctanh�F approximation helper function are:

arctanh�F (x) = x if x 2 F and arctanh�F (x) 6= arctanh(x) and

jxj <pepsilonF=rF
arctanh�F (�x) = �arctanh�F (x) if x 2 F

The arctanhF operation:

arctanhF : F ! F [finvalid;poleg
arctanhF (x) = trans resultF (arctanh

�
F (x); nearestF)
if x 2 F and fminNF < jxj < 1

= x if x 2 F and jxj 6 fminNF

=���0 if x =���0
= pole(+1+1+1) if x = 1
= pole(�1�1�1) if x = �1
= result NaNF (x) otherwise

34 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

NOTE { underow is explicitly avoided.

5.3.7.10 Inverse hyperbolic cotangent

The arccoth�F approximation helper function:

arccoth�F : F !R
arccoth�F (x) returns a close approximation to arccoth(x) inR, with maximum errormax error tanhF .

A further requirements on the arccoth�F approximation helper function is:

arccoth�F (�x) = �arccoth�F (x) if x 2 F

The arccothF operation:

arccothF : F ! F [finvalid;underow;poleg
arccothF (x) = trans resultF (arccoth

�
F (x); nearestF)
if x 2 F and jxj > 1

= pole(+1+1+1) if x = 1
= pole(�1�1�1) if x = �1
=���0 if x =�1�1�1
= 0 if x =+1+1+1
= result NaNF (x) otherwise

NOTE { There is no underow for this operation for most kinds of oating point types,
e.g. IEC 60559 ones.

5.3.7.11 Inverse hyperbolic secant

The arcsech�F approximation helper function:

arcsech�F : F !R
arcsech�F (x) returns a close approximation to arcsech(x) inR, with maximum errormax error tanhF .

The arcsechF operation:

arcsechF : F ! F [finvalid;poleg
arcsechF (x) = trans resultF (arcsech

�
F (x); nearestF)
if x 2 F and 0 < x 6 1

= pole(+1+1+1) if x 2 f���0; 0g
= result NaNF (x) otherwise

5.3.7.12 Inverse hyperbolic cosecant

The arccsch�F approximation helper function:

arccsch�F : F !R
arccsch�F (x) returns a close approximation to arccsch(x) inR, with maximum errormax error tanhF .

A further requirements on the arccsch�F approximation helper function is:

arccsch�F (�x) = �arccsch�F (x) if x 2 F

Relationship to the arcsinh�F approximation helper function:

arccsch�F (1) = arcsinh�F (1)

The arccschF operation:

arccschF : F ! F [funderow;poleg

5.3.7 Operations for hyperbolic elementary functions 35

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arccschF (x) = trans resultF (arccsch
�
F (x); nearestF)
if x 2 F and x 6= 0

= divF (1; x) if x 2 f�1�1�1;���0; 0;+1+1+1g
= result NaNF (x) otherwise

NOTE { There is no underow for this operation for most kinds of oating point types,
e.g. IEC 60559 ones.

5.3.8 Introduction to operations for trigonometric elementary functions

Two di�erent operations for each of sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot,
arcctg, arcsec, and arccsc are speci�ed. One version for radians and one version where the
angular unit is given as a parameter.

For use in the speci�cations below, de�ne the following mathematical functions:

rad : R ! R
axis rad : R ! f(1; 0); (0; 1); (�1; 0); (0;�1)g �R
arc : R�R ! R

The rad , angular value normalisation, function is de�ned by

rad (x) = x� round(x=(2 � �)) � 2 � �
The axis rad function is de�ned by

axis rad (x) = ((1; 0); arcsin(sin(x))) if cos(x) > 1=
p
2

= ((0; 1); arcsin(cos(x))) if sin(x) > 1=
p
2

= ((�1; 0); arcsin(sin(x))) if cos(x) 6 �1=p2
= ((0;�1); arcsin(cos(x))) if sin(x) < �1=p2

The arc, angle, function is de�ned by

arc(x; y) = � arccos(x=
p
x2 + y2) if y < 0

= arccos(x=
p
x2 + y2) if y > 0

5.3.9 Operations for radian trigonometric elementary functions

There shall be one radian big-angle parameter:

big angle rF 2 F

It should have the following default value:

big angle rF = r
dpF =2e
F

A binding or implementation can include a method to change the value the radian big-angle
parameter. This method should only allow the value of this parameter to be set to a value
greater than 2 � � and such that ulpF (big angle rF) < �=1000.

NOTES

1 Part 1 requires that pF > 2, but see also A.5.2.0.2 in Part 1.

2 This Part requires that pF > 2 �maxf1; dlogrF (2 � �)eg, in order to allow at least the �rst
two cycles to be in the interval [�big angle rF ; big angle rF].

3 In order to allow ulpF (big angle rF) < �=1000, pF > 2 + logrF (1000) should hold.

There shall be two maximum error parameters for radian trigonometric operations:

max error sinF 2 F
max error tanF 2 F

36 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

The max error sinF parameter shall have a value in the interval [0:5; 1:5 � rnd errorF]. The
max error tanF parameter shall have a value in the interval [max error sinF ; 2 � rnd errorF].

5.3.9.1 Radian angle normalisation

The rad�F approximation helper function:

rad�F : R! R
rad�F (x) returns a close approximation to rad(x) inR, if jxj 6 big angle rF , with maximum error
max error sinF .

The axis rad�F approximation helper function:

axis rad�F : R ! f(1; 0); (0; 1); (�1; 0); (0;�1)g �R
axis rad�F (x) returns a close approximation to axis rad(x), if x 6 big angle rF . The approx-
imation consists of that the second part of the result (the o�set from the indicated axis) is
approximate.

Further requirements on the rad�F and axis rad�F approximation helper functions are:

rad�F (x) = x if jxj < �
snd(axis rad�F (x)) = rad�F (x) if fst(axis rad�F (x)) = (1; 0)

The radF operation:

radF : F ! F [funderow;absolute precision underowg
radF (x) = trans resultF (rad

�
F (x); nearestF)

if x 2 F and jxj > fminNF and jxj 6 big angle rF
= x if (x 2 F and jxj 6 fminNF) or x =���0

= absolute precision underow(qNaN)
if x 2 F and jxj > big angle rF

= result NaNF (x) otherwise

The axis radF operation:

axis radF : F ! ((F � F)� F) [fabsolute precision underowg
axis radF (x) = (fst(axis rad�F (x)); trans resultF (snd(axis rad�F (x)); nearestF))

if x 2 F and jxj > fminNF and jxj 6 big angle rF
= ((1; 0); x) if (x 2 F and jxj 6 fminNF) or x =���0

= absolute precision underow((qNaN;qNaN);qNaN)
if x 2 F and jxj > big angle rF

= ((qNaN;qNaN);qNaN)
if x is a quiet NaN

= invalid((qNaN;qNaN);qNaN)
otherwise

NOTE { radF is simpler, easier to use, but less accurate than axis radF . The latter may
still not be suÆcient for implementing the radian trigonometric operations to less than the
maximum error stated by the parameters.

5.3.9 Operations for radian trigonometric elementary functions 37

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.9.2 Radian sine

The sin�F approximation helper function:

sin�F : R ! R
sin�F (x) returns a close approximation to sin(x) in R if jxj 6 big angle rF , with maximum error
max error sinF .

Further requirements on the sin�F approximation helper function are:

sin�F (n � 2 � � + �=6) = 1=2 if n 2 Z and jn � 2 � � + �=6j 6 big angle rF
sin�F (n � 2 � � + �=2) = 1 if n 2 Z and jn � 2 � � + �=2j 6 big angle rF
sin�F (n � 2 � � + 5 � �=6) = 1=2 if n 2 Z and jn � 2 � � + 5 � �=6j 6 big angle rF
sin�F (x) = x if sin�F (x) 6= sin(x) and jxj 6

p
3 � epsilonF=rF

sin�F (�x) = �sin�F (x)
The sinF operation:

sinF : F ! F [funderow;absolute precision underowg
sinF (x) = trans resultF (sin

�
F (x); nearestF)

if x 2 F and fminNF < jxj and jxj 6 big angle rF
= radF (x) otherwise

NOTE { underow is here explicitly avoided for denormal arguments, but the operation
may underow for other arguments.

5.3.9.3 Radian cosine

The cos�F approximation helper function:

cos�F : R! R
cos�F (x) returns a close approximation to cos(x) in R if jxj 6 big angle rF , with maximum error
max error sinF .

Further requirements on the cos�F approximation helper function are:

cos�F (n � 2 � �) = 1 if n 2 Z and jn � 2 � �j 6 big angle rF
cos�F (n � 2 � � + �=3) = 1=2 if n 2 Z and jn � 2 � � + �=3j 6 big angle rF
cos�F (n � 2 � � + 2 � �=3) = �1=2 if n 2 Z and jn � 2 � � + 2 � �=3j 6 big angle rF
cos�F (n � 2 � � + �) = �1 if n 2 Z and jn � 2 � � + �j 6 big angle rF
cos�F (x) = 1 if cos�F (x) 6= cos(x) and jxj <

p
epsilonF=rF

cos�F (�x) = cos�F (x)

The cosF operation:

cosF : F ! F [funderow;absolute precision underowg
cosF (x) = trans resultF (cos

�
F (x); nearestF)

if x 2 F and jxj 6 big angle rF
= 1 if x =���0
= radF (x) otherwise

38 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.3.9.4 Radian tangent

The tan�F approximation helper function:

tan�F : R ! R
tan�F (x) returns a close approximation to tan(x) in R if jxj 6 big angle rF , with maximum error
max error tanF .

Further requirements on the tan�F approximation helper function are:

tan�F (n � 2 � � + �=4) = 1 if n 2 Z and jn � 2 � � + �=4j 6 big angle rF
tan�F (n � 2 � � + 3 � �=4) = �1 if n 2 Z and jn � 2 � � + 3 � �=4j 6 big angle rF
tan�F (x) = x if tan�F (x) 6= tan(x) and jxj <

p
epsilonF=rF

tan�F (�x) = �tan�F (x)
The tanF operation:

tanF : F ! F [funderow;overow;absolute precision underowg
tanF (x) = trans resultF (tan

�
F (x); nearestF)

if x 2 F and fminNF < jxj and jxj 6 big angle rF
= radF (x) otherwise

NOTE { underow is explicitly avoided for denormal arguments, but the operation may
underow for other arguments.

5.3.9.5 Radian cotangent

The cot�F approximation helper function:

cot�F : R! R
cot�F (x) returns a close approximation to cot(x) in R if jxj 6 big angle rF , with maximum error
max error tanF .

Further requirements on the cot�F approximation helper function are:

cot�F (n � 2 � � + �=4) = 1 if n 2 Z and jn � 2 � � + �=4j 6 big angle rF
cot�F (n � 2 � � + 3 � �=4) = �1 if n 2 Z and jn � 2 � � + 3 � �=4j 6 big angle rF
cot�F (�x) = �cot�F (x)

The cotF operation:

cotF : F ! F [funderow;overow;pole;absolute precision underowg
cotF (x) = trans resultF (cot

�
F (x); nearestF)

if x 2 F and x 6= 0 and jxj 6 big angle rF
= pole(+1+1+1) if x = 0
= pole(�1�1�1) if x =���0
= radF (x) otherwise

5.3.9.6 Radian secant

The sec�F approximation helper function:

sec�F : R! R
sec�F (x) returns a close approximation to sec(x) in R if jxj 6 big angle rF , with maximum error
max error tanF .

Further requirements on the sec�F approximation helper function are:

5.3.9 Operations for radian trigonometric elementary functions 39

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

sec�F (n � 2 � �) = 1 if n 2 Z and jn � 2 � �j 6 big angle rF
sec�F (n � 2 � � + �=3) = 2 if n 2 Z and jn � 2 � � + �=3j 6 big angle rF
sec�F (n � 2 � � + 2 � �=3) = �2 if n 2 Z and jn � 2 � � + 2 � �=3j 6 big angle rF
sec�F (n � 2 � � + �) = �1 if n 2 Z and jn � 2 � � + �j 6 big angle rF
sec�F (x) = 1 if sec�F (x) 6= sec(x) and jxj < p

epsilonF
sec�F (�x) = sec�F (x)

The secF operation:

secF : F ! F [foverow;absolute precision underowg
secF (x) = trans resultF (sec

�
F (x); nearestF)

if x 2 F and jxj 6 big angle rF
= 1 if x =���0
= radF (x) otherwise

5.3.9.7 Radian cosecant

The csc�F approximation helper function:

csc�F : R ! R
csc�F (x) returns a close approximation to csc(x) in R if jxj 6 big angle rF , with maximum error
max error tanF .

Further requirements on the csc�F approximation helper function are:

csc�F (n � 2 � � + �=6) = 2 if n 2 Z and jn � 2 � � + �=6j 6 big angle rF
csc�F (n � 2 � � + �=2) = 1 if n 2 Z and jn � 2 � � + �=2j 6 big angle rF
csc�F (n � 2 � � + 5 � �=6) = 2 if n 2 Z and jn � 2 � � + 5 � �=6j 6 big angle rF
csc�F (�x) = �csc�F (x)

The cscF operation:

cscF : F ! F [foverow;pole;absolute precision underowg
cscF (x) = trans resultF (csc

�
F (x); nearestF)

if x 2 F and x 6= 0 and jxj 6 big angle rF
= pole(+1+1+1) if x = 0
= pole(�1�1�1) if x =���0
= radF (x) otherwise

5.3.9.8 Radian cosine with sine

cossinF : F ! (F � F) [funderow;absolute precision underowg
cossinF (x) = (cosF (x); sinF (x))

5.3.9.9 Radian arc sine

The arcsin�F approximation helper function:

arcsin�F : F !R
arcsin�F (x) returns a close approximation to arcsin(x) inR, with maximum errormax error sinF .

Further requirements on the arcsin�F approximation helper function are:

40 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arcsin�F (1=2) = �=6
arcsin�F (1) = �=2
arcsin�F (x) = x if arcsin�F (x) 6= arcsin(x) and

jxj <p2 � epsilonF=rF
arcsin�F (�x) = �arcsin�F (x)

Range limitation:

arcsin#F (x) = maxfupF (��=2);minfarcsin�F (x); downF (�=2)gg
The arcsinF operation:

arcsinF : F ! F [finvalidg
arcsinF (x) = trans resultF (arcsin

#
F (x); nearestF)
if x 2 F and fminNF < jxj 6 1

= x if (x 2 F and jxj 6 fminNF) or x =���0
= result NaNF (x) otherwise

NOTE { underow is explicitly avoided.

5.3.9.10 Radian arc cosine

The arccos�F approximation helper function:

arccos�F : F !R
arccos�F (x) returns a close approximation to arccos(x) inR, with maximum errormax error sinF .

Further requirements on the arccos�F approximation helper function are:

arccos�F (1=2) = �=3
arccos�F (0) = �=2
arccos�F (�1=2) = 2 � �=3
arccos�F (�1) = �

Range limitation:

arccos#F (x) = minfarccos�F (x); downF (�)g
The arccosF operation:

arccosF : F ! F [finvalidg
arccosF (x) = trans resultF (arccos

#
F (x); nearestF)
if x 2 F and �1 6 x 6 1

= arccosF (0) if x =���0
= result NaNF (x) otherwise

5.3.9.11 Radian arc tangent

The arctan�F approximation helper function:

arctan�F : F !R
arctan�F (x) returns a close approximation to arctan(x) inR, with maximum errormax error tanF .

Further requirements on the arctan�F approximation helper function are:

5.3.9 Operations for radian trigonometric elementary functions 41

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arctan�F (1) = �=4
arctan�F (x) = x if arctan�F (x) 6= arctan(x) and

jxj 6p1:5 � epsilonF=rF
arctan�F (x) = �=2 if arctan�F (x) 6= arctan(x) and x > 3 � rF =epsilonF
arctan�F (�x) = �arctan�F (x)

Range limitation:

arctan#F (x) = maxfupF (��=2);minfarctan�F (x); downF (�=2)gg
The arctanF operation:

arctanF : F ! F

arctanF (x) = trans resultF (arctan
#
F (x); nearestF)
if x 2 F and fminNF < jxj

= x if (x 2 F and jxj 6 fminNF) or x =���0
= upF (��=2) if x =�1�1�1
= downF (�=2) if x =+1+1+1
= result NaNF (x) otherwise

NOTES

1 arctanF (x) � arcF (1; x)

2 underow is explicitly avoided.

5.3.9.12 Radian arc cotangent

This clause speci�es two inverse cotangent operations. One approximating the continuous (but
not sign symmetric) arccot, the other approximating the sign symmetric (but discontinuous at
0) arcctg.

The arccot�F approximation helper function:

arccot�F : F ! R
arccot�F (x) returns a close approximation to arccot(x) inR, with maximum errormax error tanF .

The arcctg�F approximation helper function:

arcctg�F : F !R
arcctg�F (x) returns a close approximation to arcctg(x) inR, with maximum errormax error tanF .

Further requirements on the arccot�F and arcctg�F approximation helper functions are:

arccot�F (1) = �=4
arccot�F (0) = �=2
arccot�F (�1) = 3 � �=4
arccot�F (x) = � if arccot�F (x) 6= arccot(x) and x < �3 � rF=epsilonF

arcctg�F (x) = arccot�F (x) if x > 0
arcctg�F (�x) = �arcctg�F (x)

Range limitation:

arccot#F (x) = minfarccot�F (x); downF (�)g
arcctg#F (x) = maxfupF (��=2);minfarcctg�F (x); downF (�=2)gg

The arccotF operation:

arccotF : F ! F [funderowg

42 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arccotF (x) = trans resultF (arccot
#
F (x))

if x 2 F
= nearestF (�=2) if x =���0
= downF (�) if x =�1�1�1
= 0 if x =+1+1+1
= result NaNF (x) otherwise

NOTES

1 arccotF (x) � arcF (x; 1).

2 There is no \jump" at zero for arccotF .

The arcctgF operation:

arcctgF : F ! F [funderowg
arcctgF (x) = trans resultF (arcctg

#
F (x); nearestF)

if x 2 F
= upF (��=2) if x =���0
=���0 if x =�1�1�1
= 0 if x =+1+1+1
= result NaNF (x) otherwise

NOTE 3 { arcctgF (negF (x)) = negF (arcctgF (x)).

5.3.9.13 Radian arc secant

The arcsec�F approximation helper function:

arcsec�F : F ! R
arcsec�F (x) returns a close approximation to arcsec(x) inR, with maximum errormax error tanF .

Further requirements on the arcsec�F approximation helper function are:

arcsec�F (2) = �=3
arcsec�F (�2) = 2 � �=3
arcsec�F (�1) = �
arcsec�F (x) 6 �=2 if x > 0
arcsec�F (x) > �=2 if x < 0
arcsec�F (x) = �=2 if arcsec�F (x) 6= arcsec(x) and jxj > 3 � rF =epsilonF

Range limitation:

arcsec#F (x) = minfarcsec�F (x); downF (�=2)g
if x > 1

= maxfupF (�=2);minfarcsec�F (x); downF (�)gg
if x 6 �1

The arcsecF operation:

arcsecF : F ! F [finvalidg
arcsecF (x) = trans resultF (arcsec

#
F (x); nearestF)
if x 2 F and jxj > 1

= upF (�=2) if x =�1�1�1
= downF (�=2) if x =+1+1+1
= result NaNF (x) otherwise

5.3.9 Operations for radian trigonometric elementary functions 43

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.9.14 Radian arc cosecant

The arccsc�F approximation helper function:

arccsc�F : F !R
arccsc�F (x) returns a close approximation to arccsc(x) inR, with maximum errormax error tanF .

Further requirements on the arccsc�F approximation helper function are:

arccsc�F (2) = �=6
arccsc�F (1) = �=2
arccsc�F (�x) = �arccsc�F (x)

Range limitation:

arccsc#F (x) = maxfupF (��=2);minfarccsc�F (x); downF (�=2)gg
The arccscF operation:

arccscF : F ! F [funderow; invalidg
arccscF (x) = trans resultF (arccsc

#
F (x); nearestF)

if x 2 F and jxj > 1
=���0 if x =�1�1�1
= 0 if x =+1+1+1
= result NaNF (x) otherwise

5.3.9.15 Radian angle from Cartesian co-ordinates

The arc�F approximation helper function:

arc�F : F � F ! R
arc�F (x; y) returns a close approximation to arc(x; y) inR, with maximum errormax error tanF .

NOTE { The arc operations are often called arctan2 (with the co-ordinate arguments
swapped), or arccot2.

Further requirements on the arc�F approximation helper function are:

arc�F (x; 0) = 0 if x > 0
arc�F (x; x) = �=4 if x > 0
arc�F (0; y) = �=2 if y > 0
arc�F (x;�x) = 3 � �=4 if x < 0
arc�F (x; 0) = � if x < 0
arc�F (x;�y) = �arc�F (x; y) if y 6= 0 or x > 0

Range limitation:

arc#F (x; y) = maxfupF (��);minfarc�F (x; y); downF (�)gg
The arcF operation:

arcF : F � F ! F [funderowg
arcF (x; y) = trans resultF (arc

#
F (x; y); nearestF)

if x; y 2 F and (x 6= 0 or y 6= 0)
= 0 if x = 0 and y = 0
= downF (�) if x =���0 and y = 0
= arcF (0; y) if x =���0 and y 2 F [f�1�1�1;+1+1+1g and y 6= 0
= negF (arcF (x; 0)) if y =���0 and x 2 F [f�1�1�1;���0;+1+1+1g

= 0 if x =+1+1+1 and y 2 F and y > 0
=���0 if x =+1+1+1 and y 2 F and y < 0

44 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

= nearestF (�=4) if x =+1+1+1 and y =+1+1+1
= nearestF (�=2) if x 2 F and y =+1+1+1
= nearestF (3 � �=4) if x =�1�1�1 and y =+1+1+1
= downF (�) if x =�1�1�1 and y 2 F and y > 0
= upF (��) if x =�1�1�1 and y 2 F and y < 0
= nearestF (�3 � �=4) if x =�1�1�1 and y =�1�1�1
= nearestF (��=2) if x 2 F and y =�1�1�1
= nearestF (��=4) if x =+1+1+1 and y =�1�1�1

= result NaN2F (x; y) otherwise

5.3.10 Operations for trigonometrics with given angular unit

There shall be one big-angle parameter for argument angular-unit trigonometric operations:

big angle uF 2 F

It should have the following default value:

big angle uF = drdpF =2eF =6e
A binding or implementation can include a method to change the value for this parameter. This
method should only allow the value of this parameter to be set to a value greater than or equal
to 1 and such that ulpF (big angleF) 6 1=2000.

NOTE 1 { In order to allow ulpF (big angleF) 6 1=2000, pF > 2 + logrF (1000) should hold.

There shall be a derived parameter signifying the minimum allowed angular unit:

min angular unitF = rF � fminNF=epsilonF

NOTE 2 { That is,min angular unitF = r
(eminF�1+pF)
F

To make the speci�cations below a bit easier to express, let

GF = fx 2 F j min angular unitF 6 jxjg.
Let T = f1; 2; 360; 400; 6400g. T consists of angle values for exactly one revolution for some

common non-radian angular units: cycles, half-cycles, arc degrees, grades, and mils.

There shall be two parameterised maximum error parameters for argument angular-unit
trigonometric operations:

max error sinuF : F ! F [finvalidg
max error tanuF : F ! F [finvalidg

For u 2 GF , themax error sinuF (u) parameter shall have a value in the interval [max error sinF ; 2].
The max error sinuF (u) parameter shall have the value of max error sinF if juj 2 T . For u 2
GF , the max error tanuF (u) parameter shall have a value in the interval [max error tanF ; 4].
The max error tanuF (u) parameter shall have the value of max error tanF if juj 2 T . The
max error sinuF (u) and max error tanuF (u) parameters return invalid if u 62 GF .

5.3.10.1 Argument angular-unit angle normalisation

The argument angular-unit normalisation computes exactly rad(2 � � � x=u) � u=(2 � �), where x is
the angular value, and u is the angular unit.

The cycleF operation:

cycleF : F � F ! F [f���0;absolute precision underow; invalidg

5.3.10 Operations for trigonometrics with given angular unit 45

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

cycleF (u; x) = remrF (x; u) if u 2 GF and (x =���0 or
(x 2 F and jx=uj 6 big angle uF))

= absolute precision underow(qNaN)
if u 2 GF and x 2 F and jx=uj > big angle uF

= result NaN2F (u; x) otherwise

The axis cycleF operation:

axis cycleF : F � F ! ((F � F)� (F [f���0g)) [fabsolute precision underow; invalidg
axis cycleF (u; x)

= (axis(u; x); resultF (x� (round(x � 4=u) � u=4); rndF))
if u 2 GF and x 2 F and jx=uj 6 big angle uF and
(x=u > 0 or x� (round(x � 4=u) � u=4) 6= 0)

= (axis(u; x);���0) if u 2 GF and x 2 F and jx=uj 6 big angle uF and
x=u < 0 and x� (round(x � 4=u) � u=4) = 0 and

= ((1; 0);���0) if u 2 GF and x =���0

= absolute precision underow((qNaN;qNaN);qNaN)
if u 2 GF and x 2 F and jx=uj > big angle uF

= ((qNaN;qNaN);qNaN)
if x is a quiet NaN and u is not a signalling NaN

= ((qNaN;qNaN);qNaN)
if u is a quiet NaN and x is not a signalling NaN

= invalid((qNaN;qNaN);qNaN)
otherwise

where

axis(u; x) = (1; 0) if round(x � 4=u) = 4 � n
= (0; 1) if round(x � 4=u) = 4 � n+ 1
= (�1; 0) if round(x � 4=u) = 4 � n+ 2
= (0;�1) if round(x � 4=u) = 4 � n+ 3

for some n 2 Z.
NOTES

1 axis cycleF (u; x) is exact when divF (u; 4) = u=4.

2 cycleF is an exact operation.

3 cycleF (u; x) is ���0 or has a result in the interval [�ju=2j; ju=2j] if there is no noti�cation.

4 A zero resulting angle is negative if the original angle value is negative.

5 The cycleF operation is used also in the speci�cations of the unit argument trigonometric
operations. This does not imply that the implementation has to use the cycle operation,
when implementing the operations. Just that the results (including noti�cations) must be
as if it did.

5.3.10.2 Argument angular-unit sine

The sinu�F approximation helper function:

sinu�F : F �R ! R
sinu�F (u; x) returns a close approximation to sin(x � 2 � �=u) in R if u 6= 0, with maximum error
max error sinuF (u).

Further requirements on the sinu�F approximation helper function:

46 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

sinu�F (u; n � u+ x) = sinu�F (u; x) if n 2 Z and u 2 F and u 6= 0
sinu�F (u; u=12) = 1=2 if u 2 F and u 6= 0
sinu�F (u; u=4) = 1 if u 2 F and u 6= 0
sinu�F (u; 5 � u=12) = 1=2 if u 2 F and u 6= 0
sinu�F (u;�x) = �sinu�F (u; x) if u 2 F and u 6= 0
sinu�F (�u; x) = �sinu�F (u; x) if u 2 F and u 6= 0

NOTE { sinu�F (u; x) � x � 2 � �=u if jx � 2 � �=uj < fminNF .

The sinuF operation:

sinuF : F � F ! F [f���0;underow; invalid;absolute precision underowg
sinuF (u; x) = trans resultF (sinu

�
F (u; x); nearestF)

if cycleF (u; x) 2 F and cycleF (u; x) 62 f�u=2; 0; u=2g
= divF (0; u) if cycleF (u; x) 2 f0; u=2g
= divF (���0; u) if cycleF (u; x) 2 f�u=2;���0g
= cycleF (u; x) otherwise

5.3.10.3 Argument angular-unit cosine

The cosu�F approximation helper function:

cosu�F : F �R ! R
cosu�F (u; x) returns a close approximation to cos(x � 2 � �=u) in R if u 6= 0, with maximum error
max error sinuF (u).

Further requirements on the cosu�F approximation helper function:

cosu�F (u; n � u+ x) = cosu�F (u; x) if n 2 Z and u 2 F and u 6= 0
cosu�F (u; 0) = 1 if u 2 F and u 6= 0
cosu�F (u; u=6) = 1=2 if u 2 F and u 6= 0
cosu�F (u; u=3) = �1=2 if u 2 F and u 6= 0
cosu�F (u; u=2) = �1 if u 2 F and u 6= 0
cosu�F (u;�x) = cosu�F (u; x) if u 2 F and u 6= 0
cosu�F (�u; x) = cosu�F (u; x) if u 2 F and u 6= 0

NOTE { cosu�F (u; x) = 1 should hold if jx � 2 � �=uj <
p
epsilonF=rF

The cosuF operation:

cosuF : F � F ! F [funderow; invalid;absolute precision underowg
cosuF (u; x) = trans resultF (cosu

�
F (u; x); nearestF)

if cycleF (u; x) 2 F
= 1 if cycleF (u; x) =���0
= cycleF (u; x) otherwise

5.3.10.4 Argument angular-unit tangent

The tanu�F approximation helper function:

tanu�F : F �R ! R
tanu�F (u; x) returns a close approximation to tan(x � 2 � �=u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the tanu�F approximation helper function:

5.3.10 Operations for trigonometrics with given angular unit 47

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

tanu�F (u; n � u+ x) = tanu�F (u; x) if n 2 Z and u 2 F and u 6= 0
tanu�F (u; u=8) = 1 if u 2 F and u 6= 0
tanu�F (u; 3 � u=8) = �1 if u 2 F and u 6= 0
tanu�F (u;�x) = �tanu�F (u; x) if u 2 F and u 6= 0
tanu�F (�u; x) = �tanu�F (u; x) if u 2 F and u 6= 0

NOTE 1 { tanu�F (u; x) � x � 2 � �=u if jx � 2 � �=uj < fminNF .

The tanuF operation:

tanuF : F � F ! F [f���0;pole;overow;underow; invalid;
absolute precision underowg

tanuF (u; x) = trans resultF (tanu
�
F (u; x); nearestF)

if cycleF (u; x) 2 F and
cycleF (u; x) 62 f�u=2;�u=4; 0; u=4; u=2g

= divF (0; u) if cycleF (u; x) 2 f�u=2; 0g
= divF (���0; u) if cycleF (u; x) 2 f���0; u=2g
= pole(+1+1+1) if cycleF (u; x) = u=4
= pole(�1�1�1) if cycleF (u; x) = �u=4
= cycleF (u; x) otherwise

NOTE 2 { The pole noti�cation can arise for tanuF (u; x) only when u=4 is in F .

5.3.10.5 Argument angular-unit cotangent

The cotu�F approximation helper function:

cotu�F : F �R ! R
cotu�F (u; x) returns a close approximation to cot(x � 2 � �=u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the cotu�F approximation helper function:

cotu�F (u; n � u+ x) = cotu�F (u; x) if n 2 Z and u 2 F and u 6= 0
cotu�F (u; u=8) = 1 if u 2 F and u 6= 0
cotu�F (u; 3 � u=8) = �1 if u 2 F and u 6= 0
cotu�F (u;�x) = �cotu�F (u; x) if u 2 F and u 6= 0
cotu�F (�u; x) = �cotu�F (u; x) if u 2 F and u 6= 0

The cotuF operation:

cotuF : F � F ! F [f���0;pole;overow;underow; invalid;
absolute precision underowg

cotuF (u; x) = trans resultF (cotu
�
F (u; x); nearestF)

if cycleF (u; x) 2 F and
cycleF (u; x) 62 f�u=2;�u=4; 0; u=2g

=���0 if cycleF (u; x) = �u=4
= divF (u; tanuF (u; x)) if cycleF (u; x) 2 f�u=2;���0; 0; u=2g
= cycleF (u; x) otherwise

5.3.10.6 Argument angular-unit secant

The secu�F approximation helper function:

secu�F : F �R ! R

48 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

secu�F (u; x) returns a close approximation to sec(x � 2 � �=u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the secu�F approximation helper function:

secu�F (u; n � u+ x) = secu�F (u; x) if n 2 Z and u 2 F and u 6= 0
secu�F (u; 0) = 1 if u 2 F and u 6= 0
secu�F (u; u=6) = 2 if u 2 F and u 6= 0
secu�F (u; u=3) = �2 if u 2 F and u 6= 0
secu�F (u; u=2) = �1 if u 2 F and u 6= 0
secu�F (u;�x) = secu�F (u; x) if u 2 F and u 6= 0
secu�F (�u; x) = secu�F (u; x) if u 2 F and u 6= 0
secu�F (u; x) = 1 if jx � 2 � �=uj < 0:5 � pepsilonF

The secuF operation:

secuF : F � F ! F [fpole;overow; invalid;absolute precision underowg
secuF (u; x) = trans resultF (secu

�
F (u; x); nearestF)

if cycleF (u; x) 2 F and cycleF (u; x) 62 f�u=4; u=4g
= divF (1; cosuF (u; x)) if cycleF (u; x) 2 f�u=4;���0; u=4g
= cycleF (u; x) otherwise

5.3.10.7 Argument angular-unit cosecant

The cscu�F approximation helper function:

cscu�F : F �R ! R
cscu�F (u; x) returns a close approximation to csc(x � 2 � �=u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the cscu�F approximation helper function:

cscu�F (u; n � u+ x) = cscu�F (u; x) if n 2 Z and u 2 F and u 2 0
cscu�F (u; u=12) = 2 if u 2 F and u 6= 0
cscu�F (u; u=4) = 1 if u 2 F and u 6= 0
cscu�F (u; 5 � u=12) = 2 if u 2 F and u 6= 0
cscu�F (u;�x) = �cscu�F (u; x) if u 2 F and u 6= 0
cscu�F (�u; x) = �cscu�F (u; x) if u 2 F and u 6= 0

The cscuF operation:

cscuF : F � F ! F [fpole;overow; invalid;absolute precision underowg
cscuF (u; x) = trans resultF (cscu

�
F (u; x); nearestF)

if cycleF (u; x) 2 F and cycleF (u; x) 62 f�u=2; 0; u=2g
= divF (1; sinuF (u; x)) if cycleF (u; x) 2 f�u=2;���0; 0; u=2g
= cycleF (u; x) otherwise

5.3.10.8 Argument angular-unit cosine with sine

cossinuF : F � F ! (F � (F [f���0g)) [funderow; invalid;absolute precision underowg
cossinuF (u; x) = (cosuF (u; x); sinuF (u; x))

5.3.10 Operations for trigonometrics with given angular unit 49

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.10.9 Argument angular-unit arc sine

The arcsinu�F approximation helper function:

arcsinu�F : F � F !R
arcsinu�F (u; x) returns a close approximation to arcsin(x) � u=(2 � �) in R, with maximum error
max error sinuF (u).

Further requirements on the arcsinu�F approximation helper function:

arcsinu�F (u; 1=2) = u=12
arcsinu�F (u; 1) = u=4
arcsinu�F (u;�x) = �arcsinu�F (u; x)
arcsinu�F (�u; x) = �arcsinu�F (u; x)
NOTE { arcsinu�F (u; x) � u=(2 � �) if jxj < fminNF .

Range limitation:

arcsinu#F (u; x) = maxfupF (�ju=4j);minfarcsinu�F (u; x); downF (ju=4j)gg
The arcsinuF operation:

arcsinuF : F � F ! F [f���0;underow; invalidg
arcsinuF (u; x) = trans resultF (arcsinu

#
F (u; x); nearestF)
if u 2 GF and x 2 F and jxj 6 1 and x 6= 0

= mulF (u; x) if u 2 GF and x 2 f���0; 0g
= result NaN2F (u; x) otherwise

5.3.10.10 Argument angular-unit arc cosine

The arccosu�F approximation helper function:

arccosu�F : F � F ! R
arccosu�F (u; x) returns a close approximation to arccos(x) � u=(2 � �) in R, with maximum error
max error sinuF (u).

Further requirements on the arccosu�F approximation helper function:

arccosu�F (u; 1=2) = u=6
arccosu�F (u; 0) = u=4
arccosu�F (u;�1=2) = u=3
arccosu�F (u;�1) = u=2
arccosu�F (�u; x) = �arccosu�F (u; x)

Range limitation:

arccosu#F (u; x) = maxfupF (�ju=2j);minfarccosu�F (u; x); downF (ju=2j)gg
The arccosuF operation:

arccosuF : F � F ! F [funderow; invalidg
arccosuF (u; x) = trans resultF (arccosu

#
F (u; x); nearestF)
if u 2 GF and x 2 F and jxj 6 1

= nearestF (u=4) if u 2 GF and x =���0
= result NaN2F (u; x) otherwise

50 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.3.10.11 Argument angular-unit arc tangent

The arctanu�F approximation helper function:

arctanu�F : F � F !R
arctanu�F (u; x) returns a close approximation to arctan(x) � u=(2 � �) in R, with maximum error
max error tanuF (u).

Further requirements on the arctanu�F approximation helper function:

arctanu�F (u; 1) = u=8
arctanu�F (u; x) = u=4 if arctanu�F (u; x) 6= arctan(x) � u=(2 � �) and

x > 3 � rF =epsilonF
arctanu�F (u;�x) = �arctanu�F (u; x)
arctanu�F (�u; x) = �arctanu�F (u; x)
NOTE 1 { arctanu�F (u; x) � u=(2 � �) if jxj < fminNF

Range limitation:

arctanu#F (u; x) = maxfupF (�ju=4j);minfarctanu�F (u; x); downF (ju=4j)gg
The arctanuF operation:

arctanuF : F � F ! F [f���0; invalid;underowg
arctanuF (u; x) = trans resultF (arctanu

#
F (u; x); nearestF)
if u 2 GF and x 2 F and x 6= 0

= mulF (x; u) if u 2 GF and x 2 f���0; 0g
= upF (�u=4) if u 2 GF and x =�1�1�1 and u > 0
= downF (u=4) if u 2 GF and x =+1+1+1 and u > 0
= downF (�u=4) if u 2 GF and x =�1�1�1 and u < 0
= upF (u=4) if u 2 GF and x =+1+1+1 and u < 0
= result NaN2F (u; x) otherwise

NOTE 2 { arctanuF (u; x) � arcuF (u; 1; x).

5.3.10.12 Argument angular-unit arc cotangent

This clause speci�es two inverse cotangent operations. One approximating the continuous (but
not sign symmetric) arccot, the other approximating the sign symmetric (but discontinuous at
0) arcctg.

The arccotu�F approximation helper function:

arccotu�F : F � F !R
arccotu�F (u; x) returns a close approximation to arccot(x) � u=(2 � �) in R, with maximum error
max error tanuF (u).

The arcctgu�F approximation helper function:

arcctgu�F : F � F !R
arcctgu�F (u; x) returns a close approximation to arcctg(x) � u=(2 � �) in R, with maximum error
max error tanuF (u).

Further requirements on the arccotu�F and arcctgu�F approximation helper functions:

5.3.10 Operations for trigonometrics with given angular unit 51

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arccotu�F (u; 1) = u=8
arccotu�F (u; 0) = u=4
arccotu�F (u;�1) = 3 � u=8
arccotu�F (u; x) 6 u=2 if u > 0
arccotu�F (u; x) > u=2 if u < 0
arccotu�F (u; x) = u=2 if arccotu�F (u; x) 6= arccot(x) � u=(2 � �) and

x < �3 � rF =epsilonF
arccotu�F (�u; x) = �arccotu�F (u; x)
arcctgu�F (u; x) = arccotu�F (u; x) if x > 0
arcctgu�F (u;�x) = �arcctgu�F (u; x)

Range limitation:

arccotu#F (u; x) = maxfupF (�ju=2j);minfarccotu�F (u; x); downF (ju=2j)gg
arcctgu#F (u; x) = maxfupF (�ju=4j);minfarcctgu�F (u; x); downF (ju=4j)gg

The arccotuF operation:

arccotuF : F � F ! F [finvalid;underowg
arccotuF (u; x) = trans resultF (arccotu

#
F (u; x); nearestF)
if u 2 GF and x 2 F

= nearestF (u=4) if u 2 GF and x =���0
= downF (u=2) if u 2 GF and x =�1�1�1 and u > 0
= upF (u=2) if u 2 GF and x =�1�1�1 and u < 0
= divF (u; x) if u 2 GF and x =+1+1+1
= result NaN2F (u; x) otherwise

NOTE { arccotuF (u; x) � arcuF (u; x; 1).

The arcctguF operation:

arcctguF : F � F ! F [finvalid;underowg
arcctguF (u; x) = trans resultF (arcctgu

#
F (u; x); nearestF)

if u 2 GF and x 2 F
= negF (arcctguF (u; 0)) if u 2 GF and x =���0
= divF (u; x) if u 2 GF and x 2 f�1�1�1;+1+1+1g
= result NaN2F (u; x) otherwise

5.3.10.13 Argument angular-unit arc secant

The arcsecu�F approximation helper function:

arcsecu�F : F � F !R
arcsecu�F (u; x) returns a close approximation to arcsec(x) � u=(2 � �) in R, with maximum error
max error tanuF (u).

Further requirements on the arcsecu�F approximation helper function:

arcsecu�F (u; 2) = u=6
arcsecu�F (u;�2) = u=3
arcsecu�F (u;�1) = u=2
arcsecu�F (u; x) 6 u=4 if x > 0 and u > 0
arcsecu�F (u; x) > u=4 if x < 0 and u > 0
arcsecu�F (u; x) = u=4 if arcsecu�F (u; x) 6= arcsec(x) � u=(2 � �) and

jxj > 3 � rF =epsilonF
arcsecu�F (�u; x) = �arcsecu�F (u; x)

52 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Range limitation:

arcsecu#F (u; x) = maxfupF (�ju=4j);minfarcsecu�F (u; x); downF (ju=4j)gg
if x > 1

= maxfupF (u=4);minfarcsecu�F (u; x); downF (u=2)gg
if x 6 �1 and u > 0

= maxfupF (u=2);minfarcsecu�F (u; x); downF (u=4)gg
if x 6 �1 and u < 0

The arcsecuF operation:

arcsecuF : F � F ! F [funderow; invalidg
arcsecuF (u; x) = trans resultF (arcsecu

#
F (u; x); nearestF)

if u 2 GF and x 2 F and (x 6 �1 or x > 1)
= downF (u=4) if u 2 GF and x =�1�1�1 and u > 0
= upF (u=4) if u 2 GF and x =+1+1+1 and u > 0
= upF (u=4) if u 2 GF and x =�1�1�1 and u < 0
= downF (u=4) if u 2 GF and x =+1+1+1 and u < 0
= result NaN2F (u; x) otherwise

5.3.10.14 Argument angular-unit arc cosecant

The arccscu�F approximation helper function:

arccscu�F : F � F !R
arccscu�F (u; x) returns a close approximation to arccsc(x) � u=(2 � �) in R, with maximum error
max error tanuF (u).

Further requirements on the arccscu�F approximation helper function:

arccscu�F (u; 2) = u=12
arccscu�F (u; 1) = u=4
arccscu�F (u;�x) = �arccscu�F (u; x)
arccscu�F (�u; x) = �arccscu�F (u; x)

Range limitation:

arccscu#F (u; x) = maxfupF (�ju=4j);minfarccscu�F (u; x); downF (ju=4j)gg
The arccscuF operation:

arccscuF : F � F ! F [funderow; invalidg
arccscuF (u; x) = trans resultF (arccscu

#
F (u; x); nearestF)
if u 2 GF and x 2 F and (x > 1 or x 6 �1)

= mulF (�u; 0) if u 2 GF and x =�1�1�1
= mulF (u; 0) if u 2 GF and x =+1+1+1
= result NaN2F (u; x) otherwise

5.3.10.15 Argument angular-unit angle from Cartesian co-ordinates

The arcu�F approximation helper function:

arcu�F : F � F � F !R
arcu�F (u; x; y) returns a close approximation to arc(x; y) � u=(2 � �) in R, with maximum error
max error tanuF (u).

Further requirements on the arcu�F approximation helper function:

5.3.10 Operations for trigonometrics with given angular unit 53

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arcu�F (u; x; x) = u=8 if x > 0
arcu�F (u; 0; y) = u=4 if y > 0
arcu�F (u; x;�x) = 3 � u=8 if x < 0
arcu�F (u; x; 0) = u=2 if x < 0
arcu�F (u; x;�y) = �arcu�F (u; x; y) if y 6= 0 or x > 0
arcu�F (�u; x; y) = �arcu�F (u; x; y)

Range limitation:

arcu#F (u; x; y) = maxfupF (�ju=2j);minfarcu�F (u; x; y); downF (ju=2j)gg
The arcuF operation:

arcuF : F � F � F ! F [f���0;underow; invalidg
arcuF (u; x; y) = trans resultF (arcu

#
F (u; x; y); nearestF)

if u 2 GF and x; y 2 F and (x < 0 or y 6= 0)
= mulF (u; 0) if u 2 GF and x 2 F and x > 0 and y = 0
= 0 if u 2 GF and x = 0 and y = 0
= downF (u=2) if u 2 GF and x =���0 and y = 0 and u > 0
= upF (u=2) if u 2 GF and x =���0 and y = 0 and u < 0
= arcuF (u; 0; y) if u 2 GF and x =���0 and y 2 F [f�1�1�1;+1+1+1g and

y 6= 0
= negF (arcuF (u; x; 0)) if u 2 GF and y =���0 and x 2 F [f�1�1�1;���0;+1+1+1g

= mulF (0; u) if u 2 GF and x =+1+1+1 and y 2 F and y > 0
= mulF (0;�u) if u 2 GF and x =+1+1+1 and y 2 F and y < 0
= nearestF (u=8) if u 2 GF and x =+1+1+1 and y =+1+1+1
= nearestF (u=4) if u 2 GF and x 2 F and y =+1+1+1
= nearestF (3 � u=8) if u 2 GF and x =�1�1�1 and y =+1+1+1
= downF (u=2) if u 2 GF and x =�1�1�1 and y 2 F and

y > 0 and u > 0
= upF (�u=2) if u 2 GF and x =�1�1�1 and y 2 F and

y < 0 and u > 0
= upF (u=2) if u 2 GF and x =�1�1�1 and y 2 F and

y > 0 and u < 0
= downF (�u=2) if u 2 GF and x =�1�1�1 and y 2 F and

y 6 0 and u < 0
= nearestF (�3 � u=8) if u 2 GF and x =�1�1�1 and y =�1�1�1
= nearestF (�u=4) if u 2 GF and x 2 F and y =�1�1�1
= nearestF (�u=8) if u 2 GF and x =+1+1+1 and y =�1�1�1

= result NaN3F (u; x; y) otherwise

5.3.11 Operations for angular-unit conversions

5.3.11.1 Converting radian angle to argument angular-unit angle

De�ne the mathematical function:

rad to cycle : R�R ! R
rad to cycle(x; v)

= arccos(cos(x)) � v=(2 � �)
if sin(x) > 0 and v 6= 0

= � arccos(cos(x)) � v=(2 � �)

54 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

if sin(x) < 0 and v 6= 0

The rad to cycle�F approximation helper function:

rad to cycle�F : R� F !R
rad to cycle�F (x; v) returns a close approximation to rad to cycle(x; v) in R, with maximum error
max error sinF , if jxj 6 big angle rF .

Further requirements on the rad to cycle�F approximation helper function are:

rad to cycle�F (n � 2 � � + �=6; v) = v=12 if n 2 Z and jn � 2 � � + �=6j 6 big angle rF
rad to cycle�F (n � 2 � � + �=4; v) = v=8 if n 2 Z and jn � 2 � � + �=4j 6 big angle rF
rad to cycle�F (n � 2 � � + �=3; v) = v=6 if n 2 Z and jn � 2 � � + �=3j 6 big angle rF
rad to cycle�F (n � 2 � � + �=2; v) = v=4 if n 2 Z and jn � 2 � � + �=2j 6 big angle rF
rad to cycle�F (n � 2 � � + 2 � �=3; v) = v=3

if n 2 Z and jn � 2 � � + 2 � �=3j 6 big angle rF
rad to cycle�F (n � 2 � � + 3 � �=4; v) = 3 � v=8

if n 2 Z and jn � 2 � � + 3 � �=4j 6 big angle rF
rad to cycle�F (n � 2 � � + 5 � �=6; v) = 5 � v=12

if n 2 Z and jn � 2 � � + 5 � �=6j 6 big angle rF
rad to cycle�F (n � 2 � � + �; v) = v=2 if n 2 Z and jn � 2 � � + �j 6 big angle rF
rad to cycle�F (�x; v) = �rad to cycle�F (x; v)

if rad to cycle(x; v) 6= v=2
rad to cycle�F (x;�v) = �rad to cycle�F (x; v)

if rad to cycle(x; v) 6= v=2

The rad to cycleF operation:

rad to cycleF : F � F ! F [funderow;absolute precision underow; invalidg
rad to cycleF (x; v)

= trans resultF (rad to cycle�F (x; v); nearestF)
if v 2 GF and x 2 F and jxj 6 big angle rF and
x 6= 0

= mulF (v; x) if v 2 GF and x 2 f���0; 0g
= absolute precision underow(qNaN)

if v 2 GF and x 2 F and jxj > big angle rF
= result NaN2F (x; v) otherwise

5.3.11.2 Converting argument angular-unit angle to radian angle

De�ne the mathematical function:

cycle to rad : R�R ! R
cycle to rad(u; x)

= arccos(cos(x � 2 � �=u)) if sin(x � 2 � �=u) > 0
= � arccos(cos(x � 2 � �=u))

if sin(x � 2 � �=u) < 0

The cycle to rad�F approximation helper function:

cycle to rad�F : F �R ! R
cycle to rad�F (u; x) returns a close approximation to cycle to rad(u; x) in R, if u 6= 0, with
maximum error max error sinF .

Further requirements on the cycle to rad�F approximation helper function are:

5.3.11 Operations for angular-unit conversions 55

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

cycle to rad�F (u; n � u+ x) = cycle to rad�F (u; x)
if n 2 Z

cycle to rad�F (u; u=12) = �=6
cycle to rad�F (u; u=8) = �=4
cycle to rad�F (u; u=6) = �=3
cycle to rad�F (u; u=4) = �=2
cycle to rad�F (u; u=3) = 2 � �=3
cycle to rad�F (u; 3 � u=8) = 3 � �=4
cycle to rad�F (u; 5 � u=12) = 5 � �=6
cycle to rad�F (u; u=2) = �
cycle to rad�F (u;�x) = �cycle to rad�F (u; x)

if cycle to rad(u; x) 6= �

The cycle to radF operation:

cycle to radF : F � F ! F [f���0;underow;absolute precision underow; invalidg
cycle to radF (u; x)

= trans resultF (cycle to rad�F (u; x); nearestF)
if cycleF (u; x) 2 F and cycleF (u; x) 6= 0

= mulF (cycleF (u; x); u) if cycleF (u; x) 2 f���0; 0g
= cycleF (u; x) otherwise

5.3.11.3 Converting argument angular-unit angle to (another) argument angular-
unit angle

De�ne the mathematical function:

cycle to cycle : R�R�R ! R
cycle to cycle(u; x; v)

= arccos(cos(x � 2 � �=u)) � v=(2 � �)
if u 6= 0 and v 6= 0 and sin(x � 2 � �=u) > 0

= � arccos(cos(x � 2 � �=u)) � v=(2 � �)
if u 6= 0 and v 6= 0 and sin(x � 2 � �=u) < 0

The cycle to cycle�F approximation helper function:

cycle to cycle�F : F �R� F !R
cycle to cycle�F (u; x; v) returns a close approximation to cycle to cycle(u; x; v) in R if u 6= 0 and
jx=uj 6 big angle uF , with maximum error max error sinF .

Further requirements on the cycle to cycle�F approximation helper function are:

cycle to cycle�F (u; n � u+ x; v) = cycle to cycle�F (u; x; v)
if n 2 Z

cycle to cycle�F (u; u=12; v) = v=12
cycle to cycle�F (u; u=8; v) = v=8
cycle to cycle�F (u; u=6; v) = v=6
cycle to cycle�F (u; u=4; v) = v=4
cycle to cycle�F (u; u=3; v) = v=3
cycle to cycle�F (u; 3 � u=8; v) = 3 � v=8
cycle to cycle�F (u; 5 � u=12; v) = 5 � v=12
cycle to cycle�F (u; u=2; v) = v=2
cycle to cycle�F (u;�x; v) = �cycle to cycle�F (u; x; v)

if cycle to cycle(u; x; v) 6= v=2
cycle to cycle�F (�u; x; v) = �cycle to cycle�F (u; x; v)

56 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

if cycle to cycle(u; x; v) 6= v=2
cycle to cycle�F (u; x;�v) = �cycle to cycle�F (u; x; v)

if cycle to cycle(u; x; v) 6= v=2

The cycle to cycleF operation:

cycle to cycleF : F � F � F ! F [f���0;underow;absolute precision underow; invalidg
cycle to cycleF (u; x; v)

= trans resultF (cycle to cycle�F (u; x; v); nearestF)
if v 2 GF and cycleF (u; x) 2 F and cycleF (u; x) 6= 0

= mulF (v; cycleF (u; x)) if v 2 GF and cycleF (u; x) 2 f���0; 0g
= absolute precision underow(qNaN)

if v 2 GF and
cycleF (u; x) = absolute precision underow

= result NaN3F (u; x; v) otherwise

5.4 Conversion operations

Numeric conversion between di�erent representation forms for integer and fractional values can
take place under a number of di�erent circumstances. E.g.:

a) explicit or implicit conversion between di�erent numeric datatypes conforming to Part 1;

b) explicit or implicit conversion between di�erent numeric datatypes only one of which con-
forms to Part 1;

c) explicit or implicit conversion between a character string and a numeric datatype.

The latter includes outputting a numeric value as a character string, inputting a numeric value
from a character string source, and converting a numeral in the source program to a value in a
numeric datatype (see 5.5). This Part covers only the cases where at least one of the source and
target is a numeric datatype conforming to Part 1.

When a character string is involved as either source or target of a conversion, this Part does not
specify the lexical syntax for the numerals parsed or formed. A binding standard should specify
the lexical syntax or syntaxes for these numerals, and, when appropriate, how the lexical syntax
for the numerals can be altered. With the exception of the radix used in numerals expressing
fractional values, di�erences in lexical syntactic details that do not a�ect the value in R denoted
by the numerals should not a�ect the result of the conversion.

Character string representations for integer values can include representations for ���0, +1+1+1,
�1�1�1, and quiet NaNs. Character string representations for oating point and �xed point values
should have formats for ���0, +1+1+1, �1�1�1, and quiet NaNs. For both integer and oating point
values, character strings that are not numerals nor special values according to the lexical syntax
used, shall be regarded as signalling NaNs when used as source of a numerical conversion.

For the cases where one of the datatypes involved in the conversion does not conform to Part 1,
the values of some numeric datatype parameters need to be inferred. For integers, one need to
infer the value for bounded, and if that is true then also values for maxint and minint. For
oating point values, one need to infer the values for r, p, and emax or emin. In case a precise
determination is not possible, values that are `safe' for that instance should be used. `Safe' values
for otherwise undetermined inferred parameters are such that

a) monotonicity of the conversion function is not a�ected,

b) the error in the conversion does not exceed that speci�ed by the maximum error parameter
(see below),

5.4 Conversion operations 57

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

c) if the value resulting from the conversion is converted back to the source datatype by a
conversion conforming to this Part, the original value should be regenerated if possible, and

d) overow and underow are avoided if possible.

If, and only if, a speci�ed in�nite special value result cannot be represented in the target
datatype, the in�nity result shall be interpreted as pole. If, and only if, a speci�ed NaN special
value result cannot be represented in the target datatype, the NaN result shall be interpreted as
invalid.

5.4.1 Integer to integer conversions

Let I and I 0 be non-special value sets for integer datatypes. At least one of the datatypes
corresponding to I and I 0 conforms to Part 1.

convertI!I0 : I ! I 0 [foverowg
convertI!I0(x) = resultI0(x) if x 2 I

= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { If both are I and I 0 are conforming to Part 1, then this conversion is covered
by Part 1. This operation generalises the cvtI!I0 of Part 1, since only one of the integer
datatypes in the conversion need be conforming to Part 1.

5.4.2 Floating point to integer conversions

Let I be the non-special value set for an integer datatype conforming to Part 1. Let F be the
non-special value set for a oating point datatype conforming to Part 1.

NOTE { The operations in this clause are more speci�c than the oating point to integer
conversion in Part 1 which allows any rounding.

roundingF!I : F ! I [f���0;overowg
roundingF!I(x)

= resultI(round(x)) if x 2 F and (x > 0 or round(x) 6= 0)
=���0 if x 2 F and x < 0 and round(x) = 0
= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

oorF!I : F ! I [foverowg
oorF!I(x) = resultI(bxc) if x 2 F

= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

ceilingF!I : F ! I [f���0;overowg
ceilingF!I(x) = resultI(dxe) if x 2 F and (x > 0 or dxe 6= 0)

=���0 if x 2 F and x < 0 and dxe = 0
= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

58 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.4.3 Integer to oating point conversions

Let I be the non-special value set for an integer datatype. Let F be the non-special value set
for a oating point datatype. At least one of the source and target datatypes is conforming to
Part 1.

convertI!F : I ! F [foverowg
convertI!F (x) = resultF (x; nearestF) if x 2 I

= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE { When both I and F conform to Part 1, integer to nearest oating point conversions
are covered by Part 1. In this case the operations cvtI!F and convertI!F are identical.

5.4.4 Floating point to oating point conversions

De�ne the least radix function, lb, de�ned for arguments that are greater than 0:

lb : Z ! Z
lb(r) = minfn 2 Z j n > 1 and 9m 2 Z : r = nmg

Let F , F 0, and F 00 be non-special value sets for oating point datatypes. At least one of the
source and target datatypes in the conversion conforms to Part 1.

There shall be a max error convertF 0 parameter that gives the maximum error when convert-
ing from F to F 0 and lb(rF) 6= lb(rF 0). The max error convertF 0 parameter shall have a value in
the interval [0:5; 0:75]. If lb(rF) = lb(rF 0), the maximum error shall be 0.5 ulp when converting
from F to F 0, but this is not reected in any parameter.

The convert�F!F 0 approximation helper functions:

convert�F!F 0 : R ! R
convert�F!F 0(x) returns a close approximation to x inR, with maximum errormax error convertF 0 .

Further requirements on the convert�F!F 0 approximation helper functions:

convert�F!F 0(x) = x if x 2 Z
convert�F!F 0(x) > 0 if x > 0
convert�F!F 0(�x) = �convert�F!F 0(x)
convert�F!F 0(x) 6 convert�F!F 0(y) if x < y

Relationship to other oating point to oating point conversion approximation helper func-
tions:

convert�F!F 0(x) = convert�F 00!F 0(x) if lb(rF 00) = lb(rF) and x 2 F \ F 00

The convertF!F 0 operation:

convertF!F 0 : F ! F 0 [foverow;underowg
convertF!F 0(x)

= resultF 0(x; nearestF 0) if x 2 F and lb(rF) = lb(rF 0)
= trans resultF 0(convert�F!F 0(x); nearestF 0)

if x 2 F and lb(rF) 6= lb(rF 0)
= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.4.3 Integer to oating point conversions 59

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

NOTE { When both datatypes conform to Part 1, and the radices for both of these oating
point datatypes are the same, oating point to nearest oating point conversions are covered
by Part 1. In this case the operations cvtF!F 0 and convertF!F 0 are identical.

5.4.5 Floating point to �xed point conversions

Let F be the non-special value set for a oating point datatype conforming to Part 1. Let D be
the non-special value set for a �xed point datatype.

A �xed point datatype D is a subset of R, characterised by a radix, rD 2 Z (> 2), a density,
dD 2 Z (> 0), and if it is bounded, a maximum positive value, dmaxD 2 D� (> 1). Given these
values, the following sets are de�ned:

D� = fn=(rdDD) j n 2 Zg

D = D� if D is not bounded
D = D� \ [�dmaxD; dmaxD] if D is bounded

NOTE 1 { D corresponds to scaled(rD, dD) in ISO/IEC 11404 Language independent
datatypes (LID) [10]. LID has no parameter corresponding to dmaxD even when the datatype
is bounded.

The �xed point rounding helper function:

nearestD : R! D�

is the rounding function that rounds to nearest, ties round to even last digit.

The �xed point result helper function, resultD, is like resultF , but for a �xed point datatype.
It will return overow if the rounded result is not representable:

resultD : R� (R! D�)! D [foverowg
resultD(x; rnd) = rnd(x) if rnd(x) 2 D and (rnd(x) 6= 0 or x > 0)

=���0 if rnd(x) = 0 and x < 0
= overow if x 2 R and rnd(x) 62 D

There shall be a max error convertD parameter that gives the maximum error when convert-
ing from F to D and lb(rF) 6= lb(rD). The max error convertD parameter shall have a value in
the interval [0:5; 0:75]. If lb(rF) = lb(rD), the maximum error shall be 0.5 ulp when converting
from F to D, but this is not reected in any parameter.

The convert�F!D approximation helper function:

convert�F!D : R ! R
convert�F!D(x) returns a close approximation to x inR, with maximum errormax error convertD.

Further requirements on the convert�F!D approximation helper functions:

convert�F!D(x) = x if x 2 Z
convert�F!D(x) > 0 if x > 0
convert�F!D(�x) = �convert�F!D(x)
convert�F!D(x) 6 convert�F!D(y) if x < y

Relationship to other oating point to �xed point conversion approximation helper functions:

convert�F!D(x) = convert�F 00!D(x) if lb(rF 00) = lb(rF) and x 2 F \ F 00

The convertF!D operation:

convertF!D : F ! D [f���0;overowg

60 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

convertF!D(x) = resultD(x; nearestD) if x 2 F and lb(rF) = lb(rD)
= resultD(convert

�
F!D(x); nearestD)

if x 2 F and lb(rF) 6= lb(rD)
= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

2 The datatype D need not be visible in the programming language. D may be a subtype
of strings, according to some format. Even so, no datatype for strings need be present in
the programming language.

3 This covers, among other things, \output" of oating point datatype values, to �xed point
string formats. E.g. a binding may say that float to fixed string(x, m, n) is bound
to convertF!Sm;n(x) where Sm;n is strings of length m, representing �xed point values in
radix 10 with n decimals. The binding should also detail how NaNs, signed zeroes and
in�nities are represented in Sm;n, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may
overow.)

5.4.6 Fixed point to oating point conversions

Let F be the non-special value set for a oating point datatype conforming to Part 1. Let D and
D0 be the non-special value set for �xed point datatypes.

The convert�D!F approximation helper function:

convert�D!F : R ! R
convert�D!F (x) returns a close approximation to x inR, with maximum errormax error convertF .

Further requirements on the convert�D!F approximation helper functions:

convert�D!F (x) = x if x 2 Z
convert�D!F (x) > 0 if x > 0
convert�D!F (�x) = �convert�D!F (x)
convert�D!F (x) 6 convert�D!F (y) if x < y

Relationship to other oating point and �xed point to oating point conversion approximation
helper functions:

convert�D!F (x) = convert�D0!F (x) if lb(rD0) = lb(rD) and x 2 D \D0

convert�D!F (x) = convert�F 0!F (x) if lb(rF 0) = lb(rD) and x 2 D \ F 0

The convertD!F operation:

convertD!F : D ! F [foverow;underowg
convertD!F (x) = resultF (x; nearestF) if x 2 D and lb(rD) = lb(rF)

= trans resultF (convert
�
D!F (x); nearestF)
if x 2 D and lb(rD) 6= lb(rF)

= x if x 2 f�1�1�1;���0;+1+1+1g
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.4.6 Fixed point to oating point conversions 61

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.5 Numerals as operations in the programming language

NOTE { Numerals as input, or in strings, is covered by the conversion operations above.

Each numeral is a parameterless operation. Thus, this clause introduces a very large number
of operations, since the number of numerals is in principle in�nite.

5.5.1 Numerals for integer datatypes

Let I 0 be a non-special value set for integer numerals for the datatype corresponding to I.

An integer numeral, denoting an abstract value n in I 0 [f���0;+1+1+1;�1�1�1;qNaN; sNaNg, for
an integer datatype, I, shall result in

convertI0!I(n)

For each integer datatype conforming to Part 1 and made directly available, with non-special
value set I, there shall be integer numerals with radix 10.

For each radix for numerals made available for a bounded integer datatype I, there shall be
integer numerals for all non-negative values of I.

For each radix for numerals made available for an unbounded integer datatype I, there shall
be integer numerals for all non-negative values of I smaller than 1020.

For each integer datatype made directly available and that has special values:

a) There should be a numeral for positive in�nity.

b) There should be numerals for quiet and signalling NaNs.

5.5.2 Numerals for oating point datatypes

Let D0 be a non-special value set for �xed point numerals for the datatype corresponding to F .
Let F 0 be a non-special value set for oating point numerals for the datatype corresponding to
F .

A �xed point numeral, denoting an abstract value x in D0 [f���0;+1+1+1;�1�1�1;qNaN; sNaNg,
for a oating point datatype, F , shall result in

convertD0!F (x)

A oating point numeral, denoting an abstract value x in F 0[f���0;+1+1+1;�1�1�1;qNaN; sNaNg,
for a oating point datatype, F , shall result in

convertF 0!F (x)

For each oating point datatype conforming to Part 1 and made directly available, with non-
special value set F , there should be radix 10 oating point numerals, and there shall be radix 10
�xed point numerals.

For each radix for �xed point numerals made available for a oating point datatype F , there
shall be numerals for all bounded precision and bounded range expressible non-negative values of
R. At least a precision (dD0) of 20 should be available. At least a range (dmaxD0) of 1020 should
be available.

For each radix for oating point numerals made available for a oating point datatype F ,
there shall be numerals for all bounded precision and bounded range expressible non-negative
values of R. The precision and range bounds for the numerals shall be large enough to allow all
non-negative values of F to be reachable.

For each oating point datatype made directly available:

a) There shall be a numeral for positive in�nity.

62 Speci�cations for the numerical functions

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

b) There shall be numerals for quiet and signalling NaNs.

The conversion operations used for numerals as operations should be the same as those used
by default for converting strings to values in conforming integer or oating point datatypes.

6 Noti�cation

Noti�cation is the process by which a user or program is informed that an arithmetic operation
cannot return a suitable numeric result. Speci�cally, a noti�cation shall occur when any arith-
metic operation returns an exceptional value. Noti�cation shall be performed according to the
requirements of clause 6 of Part 1.

An implementation shall not give noti�cations for operations conforming to this Part, unless
the speci�cation requires that an exceptional value results for the given arguments.

The default method of noti�cation should be recording of indicators.

6.1 Continuation values

If noti�cations are handled by a recording of indicators, in the event of noti�cation the imple-
mentation shall provide a continuation value to be used in subsequent arithmetic operations.
Continuation values may be in I or F (as appropriate), or be special values (���0, �1�1�1, +1+1+1, or a
qNaN).

Floating point datatypes that satisfy the requirements of IEC 60559 have special values in
addition to the values in F . These are: ���0, +1+1+1, �1�1�1, signaling NaNs (sNaN), and quiet
NaNs (qNaN). Such values may be passed as arguments to operations, and used as results or
continuation values. Floating point types that do not fully conform to IEC 60559 can also have
values corresponding to ���0, +1+1+1, �1�1�1, or NaN.

Continuation values of ���0, +1+1+1, �1�1�1, and NaN are required only if the parameter iec 559F
has the value true. If the implementation can represent such special values in the result datatype,
they should be used according to the speci�cations in this Part.

7 Relationship with language standards

A computing system often provides some of the operations speci�ed in this Part within the context
of a programming language. The requirements of the present standard shall be in addition to
those imposed by the relevant programming language standards.

This Part does not de�ne the syntax of arithmetic expressions. However, programmers need
to know how to reliably access the operations speci�ed in this Part.

NOTE 1 { Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation that should be used to invoke an operation
speci�ed in this Part and made available. An implementation should document the notation that
should be used to invoke an operation speci�ed in this Part and that could be made available.

NOTE 2 { For example, the radian arc sine operation for an argument x (arcsinF (x)) might
be invoked as

6. Noti�cation 63

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arcsin(x) in Pascal [28] and Ada [11]
asin(x) in C [18] and Fortran [23]
(asin x) in Common Lisp [43] and ISLisp [25]
function asin(x) in COBOL [20]

with suitable expression of the argument (x).

An implementation shall document the semantics of arithmetic expressions in terms of com-
positions of the operations speci�ed in clause 5 of this Part and in clause 5 of Part 1.

Compilers often \optimize" code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include

a) Insertion of operations, such as datatype conversions or changes in precision.

b) Replacing operations (or entire subexpressions) with others, such as \cos(-x)"! \cos(x)"
(exactly the same result) or \pi - arccos(x)"! \arccos(-x)" (more accurate result) or
\exp(x)-1"! \expm1(x)" (more accurate result if x > �1, less accurate result if x < �1,
di�erent noti�cation behaviour).

c) Evaluating constant subexpressions.

d) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced, and the
noti�cations generated) need be documented. Only the range of permitted transformations need
be documented. It is not necessary to describe the speci�c choice of transformations that will be
applied to a particular expression.

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 3 { It is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.
Control over changes of precision is particularly useful.

8 Documentation requirements

In order to conform to this Part, an implementation shall include documentation providing the
following information to programmers.

NOTE 1 { Much of the documentation required in this clause is properly the responsibility
of programming language or binding standards. An individual implementation would only
need to provide details if it could not cite an appropriate clause of the language or binding
standard.

a) A list of the provided operations that conform to this Part.

b) For each maximum error parameter, the value of that parameter or de�nition of that param-
eter function. Only maximum error parameters that are relevant to the provided operations
need be given.

c) The value of the parameters big angle rF and big angle uF . Only big angle parameters
that are relevant to the provided operations need be given.

d) For the nearestF function, the rule used for rounding halfway cases, unless iec 559F is �xed
to true.

64 Documentation requirements

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

e) For each conforming operation, the continuation value provided for each noti�cation condi-
tion. Speci�c continuation values that are required by this Part need not be documented.
If the noti�cation mechanism does not make use of continuation values (see clause 6), con-
tinuation values need not be documented.

NOTE 2 { Implementations that do not provide in�nities orNaNs will have to document
any continuation values used in place of such values.

f) For each conforming operation, how the results depend on the rounding mode, if rounding
modes are provided. Operations may be insensitive to the rounding mode, or sensitive to
it, but even then need not heed the rounding mode.

g) For each conforming operation, the notation to be used for invoking that operation.

h) For each maximum error parameter, the notation to be used to access that parameter.

i) The notation to be used to access the parameters big angle rF and big angle uF .

Since the integer and oating point datatypes used in conforming operations shall satisfy
the requirements of Part 1, the following information shall also be provided by any conforming
implementation.

j) The translation of arithmetic expressions into combinations of the operations provided by
any part of ISO/IEC 10967, including any use made of higher precision. (See clause 7 of
Part 1.)

k) The methods used for noti�cation, and the information made available about the noti�ca-
tion. (See clause 6 of Part 1.)

l) The means for selecting among the noti�cation methods, and the noti�cation method used
in the absence of a user selection. (See 6.3 of Part 1.)

m) The means for selecting the modes of operation that ensure conformity.

n) When \recording of indicators" is the method of noti�cation, the datatype used to represent
Ind, the method for denoting the values of Ind (the association of these values with the sub-
sets of E must be clear), and the notation for invoking each of the \indicator" operations.
(See 6.1.2 of Part 1.) In interpreting 6.1.2 of Part 1, the set of indicators E shall be inter-
preted as including all exceptional values listed in the signatures of conforming operations.
In particular, E may need to contain pole and absolute precision underow.

o) For each of the provided operations where this Part speci�es a relation to another operation
speci�ed in this Part, the binding for that other operation.

p) For numerals conforming to this Part, which available string conversion operations, includ-
ing reading from input, give exactly the same conversion results, even if the string syntaxes
for `internal' and `external' numerals are di�erent.

8. Documentation requirements 65

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

66 Documentation requirements

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Annex A

(normative)

Partial conformity

If an implementation of an operation ful�lls all relevant requirements according to the norma-
tive text in this Part, except the ones relaxed in this Annex, the implementation of that operation
is said to partially conform to this Part.

Conformity to this Part shall not be claimed for operations that only ful�ll Partial conformity.

Partial conformity shall not be claimed for operations that relax other requirements than those
relaxed in this Annex.

A.1 Maximum error relaxation

This Part has the following maximum error requirements for conformity.

max error hypotF 2 [0:5; 1]

max error expF 2 [0:5; 1:5 � rnd errorF]
max error powerF 2 [max error expF ; 2 � rnd errorF]

max error sinhF 2 [0:5; 2 � rnd errorF]
max error tanhF 2 [max error sinhF ; 2 � rnd errorF]

max error sinF 2 [0:5; 1:5 � rnd errorF]
max error tanF 2 [max error sinF ; 2 � rnd errorF]

max error sinuF : F ! F [finvalidg
max error tanuF : F ! F [finvalidg
max error convertF 2 [0:5; 0:75]

For u 2 GF , the max error sinuF (u) parameter shall be in the interval [max error sinF ; 2], and
the max error tanuF (u) parameter shall be in the interval [max error tanF ; 4]. For u 2 T , the
max error sinuF (u) parameter shall be equal to max error sinF , and the max error tanuF (u)
parameter shall be equal to max error tanF .

In a Partially conforming implementation the maximum error parameters may be greater than
what is speci�ed by this Part. The maximum error parameter values given by an implementation
shall still adequately reect the accuracy of the relevant operations, if a claim of Partial conformity
is made.

A Partially conforming implementation shall document which maximum error parameters have
greater values than speci�ed by this Part, and their values.

A.2 Extra accuracy requirements relaxation

This Part has a number of extra accuracy requirements. These are detailed in the paragraphs
beginning \Further requirements on the op�F approximation helper function are:".

In a Partially conforming implementation these further requirements need not be ful�lled. The
values returned must still be within the maximum error bounds that are given by the maximum
error parameters, if a claim of Partial conformity is made.

A Partially conforming implementation shall document which extra accuracy requirements are
not ful�lled by the implementation.

A. Partial conformity 67

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

A.3 Relationships to other operations relaxation

This Part has a number of requirements giving relations to other operations. These are detailed
in the paragraphs beginning \Relationship to the op�F approximation helper function:".

In a Partially conforming implementation these relationships need not be ful�lled. The values
returned must still be within the maximum error bounds that are given by the maximum error
parameters, if a claim of Partial conformity is made.

A Partially conforming implementation shall document which operation relationships are not
ful�lled by the implementation.

68 Partial conformity

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Annex B

(informative)

Rationale

This annex explains and clari�es some of the ideas behind Information technology { Language
independent arithmetic { Part 2: Elementary numerical functions (LIA-2).

B.1 Scope

B.1.1 Inclusions

LIA-2 is intended to de�ne the meaning of some operations on Integer and oating point types
as speci�ed in LIA-1 (ISO/IEC 10967-1), in addition to the operations speci�ed in LIA-1. LIA-2
does not specify operations for any additional arithmetic datatypes, though �xed point datatypes
are used in some of the speci�cations for conversion operations.

The speci�cations for the operations covered by LIA-2 are given in suÆcient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,

b) enable a precise determination of conformity or non-conformity, and

c) prevent exceptions (like overow) from going undetected.

LIA-2 does in no way prevent language standards or implementations including further arith-
metic operations, other variations of included arithmetic operations, or the inclusion of further
arithmetic datatypes, like rational number or �xed point datatypes. Some of these may become
the topic of standardisation in other parts of LIA.

B.1.2 Exclusions

LIA-2 is not concerned with techniques for the implementation of numerical functions. Even
when an LIA-2 speci�cation is made in terms of other LIA-1 or LIA-2 operations, that does not
imply a requirement that an implementation implements the operation in terms of those other
operations. It is suÆcient that the result (returned value or returned continuation value, and
exception behaviour) is as if it was implemented in terms of those other operations.

LIA-2 does not provide speci�cations for operations which involve no arithmetic processing, like
assignment and parameter passing, though any implicit conversions done in association with such
operations are in scope. The implicit conversions should be made available to the programmer
as explicit conversions.

LIA-2 does not cover operations for the support of domains such as linear algebra, statistics,
and symbolic processing. Such domains deserve separate standardisation, if standardised.

LIA-2 only covers operations that involve integer or oating point datatypes, as speci�ed in
LIA-1, and in some cases also a Boolean datatype, but then only as result. The operations
covered by LIA-2 are often to some extent covered by programming language standards, like the
operations sin, cos, tan, arctan, and so on.

B. Rationale 69

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

B.2 Conformity

Conformity to this standard is dependent on the existence of language binding standards. Each
programming language committee (or other organisation responsible for a programming language
or other speci�cation to which LIA-1 and LIA-2 may apply) is encouraged to produce a binding
standard covering at least those operations already required by the programming language (or
similar) and also speci�ed in LIA-2.

The term \programming language" is here used in a generalised sense to include other comput-
ing entities such as calculators, spread sheets, page description languages, web-script languages,
and database query languages to the extent that they provide the operations covered by LIA-2.

Suggestions for bindings are provided in Annex C. Annex C has partial binding examples
for a number of existing programming languages and LIA-2. In addition to the bindings for the
operations in LIA-2, it is also necessary to provide bindings for the maximum error parameters
and big angle parameters speci�ed by LIA-2. Annex C contains suggestions for these bindings.
To conform to this standard, in the absence of a binding standard, an implementation should
create a binding, following the suggestions in Annex C.

B.3 Normative references

The referenced IEC 60559 standard is identical to the former IEC 559 and IEEE 754 standards.

B.4 Symbols and de�nitions

B.4.1 Symbols

B.4.1.1 Sets and intervals

The interval notation is in common use. It has been chosen over the other commonly used interval
notation because the chosen notation has no risk of confusion with the pair notation.

B.4.1.2 Operators and relations

Note that all operators, relations, and other mathematical notation used in LIA-2 is used in their
conventional exact mathematical sense. They are not used to stand for operations speci�ed by
IEC 60559, LIA-1, LIA-2, or, with the exception of programme excerpts which are clearly marked,
any programming language. E.g. x=u stands for the mathematically exact result of dividing x by
u, whether that value is representable in any oating point datatype or not, and x=u 6= divF (x; u)
is often the case. Likewise, = is the mathematical equality, not the eqF operation: 0 6=���0, while
eqF (0;���0) = true.

B.4.1.3 Mathematical functions

The elementary functions named sin, cos, etc. used in LIA-2 are the exact mathematical functions,
not any approximation. The approximations to these mathematical functions are introduced in
clauses 5.3 and 5.4 and are written in a way clearly distinct from the mathematical functions.
E.g., sin�F , cos

�
F , etc., which are unspeci�ed mathematical functions approximating the targeted

exact mathematical functions to a speci�ed degree; sinF , cosF , etc., which are the operations
speci�ed by LIA-2 based on the respecitive approximating function; sin, cos, etc., which are
programming language names bound to LIA-2 operations. sin is thus very di�erent from sin.

70 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

B.4.1.4 Datatypes and exceptional values

The sequence types [I] and [F] appear as input datatypes to a few operations: max seqI ,
min seqI , gcd seqI , lcm seqI , max seqF , min seqF , mmax seqF , and mmin seqF .

In e�ect, a sequence is a �nite linearly ordered collection of elements which can be indexed
from 1 to the length of the sequence. Equality of two or more elements with di�erent indices
is possible. Sequences are used in LIA-2 as an abstraction of arrays, lists, other kinds of one-
dimensional sequenced collections, and even variable length argument lists. As used in LIA-2 the
order of the elements and number of occurrences of each element, as long as it is more than one,
does not matter, so multi-sets (bags) and sets also qualify.

LIA-2 uses a modi�ed set of exceptional values compared to LIA-1. Instead of LIA-1's
unde�ned, LIA-2 uses invalid and pole. IEC 60559 distinguishes between invalid and di-
vide by zero (the latter is called pole by LIA-2). The distinction is valid and should be recog-
nised, since pole indicates that an in�nite but exact result is (or can be, if it were available)
returned, while invalid indicates that a result in the target datatype (extended with in�nities)
cannot, or should not, be returned with adequate accuracy.

LIA-1 distinguished between integer overow and oating overow. This distinction is
moot, since no distinction was made between integer unde�ned and oating unde�ned. In
addition, continuing this distinction would force LIA to start distinguishing not only integer
overow and oating overow, but also �xed overow, complex oating overow, com-
plex integer overow, etc. Further, there is no general consensus that maintaining this dis-
tinction is useful, and many programming languages do not require a distinction. A binding
standard can still maintain this distinction, if desired.

LIA allows for three methods for handing noti�cations: recording of indicators, change of
control ow (returnable or not), and termination of program. The preferred method is recording
of indicators. This allows the computation to continue using the continuation values. For under-
ow and pole noti�cations this course of action is strongly preferred, provided that a suitable
continuation value can be represented in the result datatype.

Not all occurrences of the same exceptional value need be handled the same. There may be
explicit mode changes in how noti�cations are handled, and there may be implicit changes. E.g.,
invalid without a speci�ed (by LIA-2 or binding) continuation value to cause change of control
ow (like an Ada [11] exception), while invalid with a speci�ed continuation value use recording
of indicators. This should be speci�ed by bindings or by implementations.

The operations may return any of the exceptional values overow, underow, invalid, pole,
or absolute precision underow. This does not imply that the implemented operations are
to actually return any of these values. When these values are returned according to the LIA
speci�cation, that means that the implementation is to perform a noti�cation handling for that
exceptional value. If the noti�cation handling is by recording of indicators, then what is actually
returned by the implemented operation is the continuation value.

B.4.2 De�nitions of terms

Note the LIA distinction between exceptional values, exceptions, and exception handling (han-
dling of noti�cation by non-returnable change of control ow; as in e.g. Ada). LIA exceptional
values are not the same as Ada exceptions, nor are they the same as IEC 60559 special values.

B.4.2 De�nitions of terms 71

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

B.5 Speci�cations for the numerical functions

The abstract values used in the speci�cations are independent of datatype, just like the mathe-
matical numbers are. That they are represented di�erently in, say, single precision and in double
precision is out of scope for LIA-2.

The speci�cations in LIA-2 for oating point operations give details about certain special values
(they are `special' in that they are not in R). These special values are commonly represented in
oating point datatypes, in particular all oating point datatypes conforming to IEC 60559.

B.5.1 Basic integer operations

Integer datatypes can have in�nity values as well as NaN values, and also may have a ���0. A
corresponding I must, however, be a subset of Z. ���0 is commonly available when the integer
datatype is represented using radix-minus-1-complement, e.g. 1's complement. When using, e.g.,
2's complement, the representation that would otherwise represent the most negative value can
be used as a NaN. Especially for unbounded integer types, the inclusion of in�nities is advisable,
not for overow, since these do not occur, but in order to have a smallest and a largest value in
the type.

B.5.1.1 The integer result and wrap helper functions

The resultI helper function noti�es overow when the result cannot be represented in I. When
an overow occurs, and recording of indicators is the method for handling (integer) overows, a
continuation value must be given. For bounded integer datatypes, maxintF and minintF can
be suitable continuation values. In some instances a wrapped result, see below, may be used
as continuation value on overow. Few integer datatypes o�er representations for positive and
negative in�nity. In case such representations are o�ered, they can be used as continuation
values on overow, similar to their use in oating point datatypes. LIA does not specify the
continuation value in this case, that is left to bindings or implementations, but LIA does require
that the continuation value(s) be documented.

The wrapI helper function wraps the result into a value that can be represented in I. The
result is wrapped in such a way that the value returned can be used to implement extended range
integer arithmetic.

B.5.1.2 Integer maximum and minimum

The operations for integer maximum and minimum are trivial, except taking the maximum or
minimum of an empty sequence (empty array, empty list, zero number of parameters, or similar).
The case for zero number of parameters is often syntactically excluded (as in Fortran, Common
Lisp, and ISLisp), while an empty array or empty list given as a single argument must usually
be possible handle at `runtime'. LIA speci�es a pole noti�cation for this case. Since no (implied
mathematical) division is involved here, pole is here to be interpreted as \exact in�nite result
from �nite operands", in this case an empty list of numbers.

If in�nity values are required to be available for a particular integer datatype, a binding may
require the continuation values speci�ed to be returned without any pole noti�cation. When the
speci�ed continuation value, +1+1+1 or �1�1�1, is not available, other suitable continuation values may
be used, and if so they must be documented. If the integer datatype is bounded, but without
in�nities, maxintF may be used in place of +1+1+1 and minintF may be used instead of �1�1�1.

72 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

In�nities as arguments are not speci�ed for these operations, since in�nities are rarely available
in integer datatypes. However, compare the speci�cation for max and min operations for oating
point datatypes (clause 5.2.2).

B.5.1.3 Integer diminish

Integer diminish is sometimes called `monus'. This operation computes the 'positive di�erence'
between two numbers.

B.5.1.4 Integer power and arithmetic shift

The integer arithmetic shift operations can be used to implement integer multiplication and
integer division more quickly in special cases.

The shift operations shift either `right' or `left' depending on the sign of the second argument.

Any continuation value used on overow here must be documented, either by the binding
standard or by the implementation.

B.5.1.5 Integer square root

B.5.1.6 Divisibility tests

Even and odd are simple special cases o�ered as separately named operations in several program-
ming languages.

B.5.1.7 Integer division and remainder

When the result of a division between integers47 is not an integer, but the �nal result is required
to be an integer, the quotient must be rounded. There are several ways of doing this; oor,
ceiling, and unbiased round to nearest being the most important.

padI returns the negative of the remainder after division and ceiling. The reason for this is
twofold: 1) for unsigned integer datatypes the remainder is 6 0, and would thus often not be
representable unless negated, and 2) it is intuitively easier to think of the \places left in the last
un�lled group of equi-sized and packed groups" as a positive entity, a padding.

remrI can overow only for unsigned integer datatypes (minintI = 0), and does so for too
many arguments, and negating it does not change this. remrI should therefore not be provided
for unsigned integer datatypes. remrI rounds in the same way as remrF , IEEE remainder.

When there is no exception, these operations ful�ll divfI(x+n�y; y) = divfI(x; y)+n, groupI(x+
n�y; y) = groupI(x; y)+n, quotI(x+2�n�y; y) = quotI(x; y)+2�n,modaI(x+n�y; y) = modaI(x; y),
padI(x+ n � y; y) = padI(x; y), remrI(x+ 2 � n � y; y) = remrI(x; y), where n 2 Z.

Note that the divtI and remt
I from LIA-1 do not ful�ll similar useful equalities, due to the

disruption around 0 for this pair of operations.

When there is no exception, divfI(x; y) = �groupI(�x; y), divfI(x; y) = �groupI(x;�y),
quotI(x; y) = �quotI(�x; y), quotI(x; y) = �quotI(x;�y), modaI(x; y) = �padI(x;�y), and
remrI(x; y) = remrI(x;�y).

B.5.1 Basic integer operations 73

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

B.5.1.8 Greatest common divisor and least common positive multiple

The greatest common divisor is useful in reducing a a rational number to its lowest terms. The
least common multiple is useful in converting two rational numbers to have the same denominator.

Returning 0 for gcdI(0; 0), as is sometimes suggested, would be incorrect, since the greatest
common divisor for 0 and 0 should be the supremum (upper limit) of Z+, since these all divide
0, which is in�nity.

gcdI will overow only if boundedI = true, minintI = �maxintI � 1, and both arguments
are minintI . The greatest common divisor is then �minintI , which then is not in I.

Least common positive multiple, lcmI(x; y), overows for many \large" arguments. E.g., if x
and y are relative primes, then the least common multiple is jx � yj, which may be greater than
maxintI .

B.5.1.9 Support operations for extended integer range

These operations would typically be used to extend the range of the highest level integer datatype
supported by the underlying hardware of an implementation.

The two parts of an integer product, mul ovI(x; y) and mul wrapI(x; y) together provide the
complete integer product. Similarly for addition and subtraction.

The use of wrapI guarantees that overow will not occur.

B.5.2 Basic oating point operations

F must be a subset of R. Floating point datatypes can have in�nity values as well as NaN values,
and also may have a ���0. These values are not in F . The special values are, however, commonly
available in oating point datatypes today, thanks to the wide adoption of IEC 60599.

Note that for some operations the exceptional value invalid is produced only for argument
values involving ���0, +1+1+1, �1�1�1, or sNaN. For these operations the signature given in LIA-2 does
not contain invalid.

A report ([57]) issued by the ANSI X3J11 committee discusses possible ways of exploiting the
IEC 60559 special values. The report identi�es some of its suggestions as controversial and cites
[53] as justi�cation.

In the following paragraphs summarise the speci�cations of IEC 60559 on the creation and
propagation of signed zeros, in�nities, and NaNs. There is also some discussion of the material
in [53, 54, 51].

IEC 60559 regards 0 and ���0 as almost indistinguishable. The sign is supposed to indicate
the direction of approach to zero. The sign is reliable for a zero generated by underow in a
multiplication or division operation, and should be reliable also for operations that approximate
elementary transcendental functions (see the LIA-2 speci�cations in clause 5.3). It is not reliable
for a zero generated by an implied subtraction of two oating point numbers with the same value,
for which case the zero is arbitrarily given a + sign. The phrase \implied subtraction" indicates
either the addition of two oppositely signed numbers or the subtraction of two like signed numbers.

On occurrence of oating overow or division of a non-zero number by zero, an implementation
conforming to IEC 60559 sets the appropriate status ag (if trapping is not enabled) and then
continues execution with a result of +1+1+1 or �1�1�1 if rounding is to nearest. In�nities as such do
not indicate that an overow or division by zero has occurred; in�nities can be exact values.
IEC 60559 states that the arithmetic of in�nities is that associated with mathematical in�nities.
Thus, an in�nity times, plus, minus, or divided by a non-zero �nite oating point number yields an

74 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

in�nity for the result; no status ag is set and execution continues. These rules are not necessarily
valid for in�nities generated by overow, thought they are valid if the in�nitary arguments are
exact.

NaNs are generated by invalid operations on in�nities, 0=0, and the square root of a negative
number (other than ���0). Thus NaNs can represent unknown real or complex values, as well as
totally unde�ned values. IEC 60559 requires that the result of any of its basic operations with
one or more NaN arguments shall be a NaN. This principle is not extended to the numerical
functions by [53, 57]. The controversial speci�cations in [57] are based on an assumption that all
of these special operands represent �nite non-zero real-valued numbers; see [53, 54].

The LIA-2 policy (for clauses 5.2 and 5.3) for dealing with signed zeros, in�nities, and NaNs
is as follows:

a) The output is a quiet NaN for any operation for which one (or more) arguments is a quiet
NaN, and none of the other arguments is a signalling NaN. There is then no noti�cation.

b) If a mathematical function h(x) is such that h(0) = 0, the corresponding operation opF (x)
returns x if x 2 f0;���0g and h has a positive derivative at 0, and opF (x) returns negF (x) if
x 2 f0;���0g and h has a negative derivative at 0.

c) For an argument vector, �!x , where that argument vector involves 0, ���0, +1+1+1, or �1�1�1, the
result of the operation opF (�!x) is

lim
�!z !�!x

h(�!z)

where an approach to zero is from the positive side if �!x = (:::; 0; :::), and the approach is
from the negative side if �!x = (:::;���0; :::). There is no noti�cation if the limit exists, is
�nite, and is path independent. The returned value is +1+1+1 or �1�1�1 if the limiting value is
unbounded, and the approach is towards a point in�nitely far from the origin. The returned
value is pole(+1+1+1) or pole(�1�1�1) if the limiting value is unbounded, and the approach is
towards a �nite point. The result is ���0 if the limit is zero and the approaching values
are path independently negative. The result is 0 if the limit is zero and the approaching
values are not path independently negative. If a path independent limit does not exist the
value returned is invalid, and a noti�cation occurs, with a continuation value of qNaN if
appropriate.

An exception is made for the arcF and arcuF operations, where it is found signi�cantly
more useful to return certain non-exceptional values for the origin and for the four double in-
�nity argument cases, than to return an exceptional value, even with non-NaN continuation
values.

B.5.2.1 The rounding and oating point result helper functions

The resultF helper function noti�es overow when the result is too large to be approximated by a
value in F . The resultF helper function noti�es underow when there is (risk for) denormalisation
loss for a tiny result. The resultF helper function also ensures that a properly signed zero
is the continuation value when a zero is appropriate. When an overow or underow occurs,
and recording of indicators is the method for handling (oating point) overow or undeow, a
continuation value must be provided. LIA-2 speci�es a continuation value, and if that can be
represented in the target datatype, that value should be used as continuation value.

B.5.2 Basic oating point operations 75

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

B.5.2.2 Floating point maximum and minimum

As for the integer case, the maximum and minimum of empty sequences need be handled, but
for oating point datatypes, in�nities are usually available.

For oating point one also usually have negative zero available, and returning the correct sign
on a zero result for the maximum and minimum operations requires more than simple comparisons
to implement. The sign of zeroes may need to be inspected using copysign or isnegativezero.

B.5.2.3 Floating point diminish

As for the integer case, this operation computes the positive di�erence.

B.5.2.4 Round, oor, and ceiling

Since fmaxF always has an integral value according to LIA-1, no overow can occur for these
operations.

Note that the sign of a zero result is maintained in accordance with IEC 60559:

oorF (x) = negF (ceilingF (negF (x)))
ceilingF (x) = negF (oorF (negF (x)))
roundingF (x) = negF (roundingF (negF (x)))

Negative zeroes, if available, are handled in such a way as to maintain these identities.

B.5.2.5 Remainder after division and round to integer

The remainder after division and unbiased round to integer (IEC 60559 remainder, or IEEE
remainder) is an exact operation, even if the oating point datatype only conforms to LIA-1, but
not to the more speci�c IEC 60559.

Remainder after oating point division and oor to integer cannot be exact. For a small
negative nominator and a positive denominator, the resulting value looses much absolute accuracy
in relation to the original value. Such an operation is therefore not included in LIA-2. Similarly
for oating point division and ceiling.

See also the radian normalisation and the argument angular-unit normalisation operations
(5.3.9.1, 5.3.10.1).

B.5.2.6 Square root and reciprocal square root

p
x cannot be exactly halfway between two values in F if x 2 F . For

p
x to be exactly halfway

between two values in F would require that it had exactly (p+ 1) digits (last digit non-zero) for
its exact representation. The square of such a number would require at least (2 �p+1) digits with
last p+ 1 digits not all zero, which could not equal the p-digit number x.

The extensions sqrtF (+1+1+1) = +1+1+1 and sqrtF (���0) = ���0 are mandated by IEC 60559. LIA-
2 also requires that these hold for implementations which support in�nities and signed zeros.
However, it should be noted that while the second is harmless, the �rst may lead to erroneous
results for a +1+1+1 generated by an addition or subtraction with result just barely outside of
[�fmaxF ; fmaxF] after rounding. Hence its square root would be well within the representable
range. The possibility that LIA-2 should require that sqrtF (+1+1+1) = invalid(+1+1+1) was consid-
ered, but rejected because of the principle of regarding arguments as exact, even if they are not
exact, when there is a non-degenerate neighbourhood around the argument point, for which the

76 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

mathematical function on R is de�ned. In addition sqrtF (+1+1+1) = +1+1+1 is already required by
IEC 60559.

Note that the requirement that sqrtF (x) = invalid(qNaN) for x strictly less than zero is
mandated by IEC 60559. It follows that NaNs generated in this way represent imaginary values,
which would become complex through addition and subtraction, and even imaginary in�nities on
multiplication by ordinary in�nities.

The rsqrtF operation will increase performance for scaling a vector into a unit vector. Such
an operation involves division of each component of the vector by the magnitude of the vector
or, equivalently and with higher performance, multiplication by the reciprocal of the magnitude.

B.5.2.7 Support operations for extended oating point precision

These operations would typically be used to extend the precision of the highest level oating
point datatype supported by the underlying hardware of an implementation. There is, however,
no intent to provide a set of operations suitable for the implementation of a complete package for
the support of calculations at an arbitrarily high level of precision.

The major motivation for including them in LIA-2 is to provide a capability for accurately
evaluating residuals in an iterative algorithm. The residuals give a measure of the error in the
current solution. More importantly they can be used to estimate a correction to the current
solution. The accuracy of the correction depends on the accuracy of the residuals. The residuals
are calculated as a di�erence in which the number of leading digits cancelled increases as the
accuracy of the solution increases. A doubled precision calculation of the residuals is usually
adequate to produce a reasonably eÆcient iteration.

For the basic oating point arithmetic doubled precision operations, the high parts may be
calculated by the corresponding oating point operations as speci�ed in LIA-1. Note, however,
that in order to implement exact oating point addition and subtraction, rndF must round to
nearest. If addF (x; y) rounds to nearest then the high and low parts represent x+ y exactly.

When the high parts of an addition or subtraction overows, the low parts, as speci�ed by
LIA-2, return their results as if there was no overow.

The product of two numbers, each with p digits of precision, is always exactly representable in
at most 2 �p digits. The high and low parts of the product will always represent the true product.

The remainder for division is more useful than a 2 �p-digit approximation. The remainder will
be exactly representable if the high part di�ers from the true quotient by less than one ulp. The
true quotient can be constructed p digits at a time by division of the successive remainders by
the divisor.

The remainder for square root is more useful than a low part for the same reason that the
remainder is more useful for division. The remainder for the square root operation will be
exactly representable only if the high part is correctly rounded to nearest, as is required by the
speci�cation for sqrtF .

See Semantics for Exact Floating Point Operations [63] for more information on exact oating
point operations.

See Proposal for Accurate Floating-Point Vector Arithmetic [64] for more information on exact,
or high accuracy, oating point summation and dot product. These operations may be the subject
of an amendment to LIA-2.

B.5.2 Basic oating point operations 77

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

B.5.3 Elementary transcendental oating point operations

B.5.3.1 Maximum error requirements

max error opF measures the discrepancy between the computed value opF (x) and the true math-
ematical value f(x) in ulps of the true value. The magnitude of the error bound is thus available
to a program from the computed value opF (x). Note that for results at an exponent boundary
for F , y, the error away from zero is in terms of ulpF (y), whereas the error toward zero is in
terms of ulpF (y)=rF , which is the ulp of values slightly smaller in magnitude than y.

Within limits, accuracy and performance may be varied to best meet customer needs. Note
also that LIA-2 does not prevent a vendor from o�ering two or more implementations of the
various operations.

The operation speci�cations de�ne the domain and range for the operations. The computa-
tional domain and range are more limited for the operations than for the corresponding mathe-
matical functions because the arithmetic datatypes are subsets of R. Thus the actual domain of
expF (x) is approximately given by x 6 ln(fmaxF). For larger values of x, expF (x) will overow,
though for x = +1+1+1 the exact result +1+1+1 will be returned. The actual range extends over F ,
although there are non-negative values, v 2 F , for which there is no x 2 F satisfying expF (x) = v.

The thresholds for the overow and underow noti�cations are determined by the parame-
ters de�ning the arithmetic datatypes. The threshold for an invalid noti�cation is determined by
the domain of arguments for which the mathematical function being approximated is de�ned. The
pole noti�cation is the operation's counterpart of a mathematical pole of the mathematical func-
tion being approximated by the operation. The threshold for absolute precision underow is
determined by the parameters big angle rF and big angle uF .

LIA-2 imposes a fairly tight bound on the maximum error allowed in the implementation of
each operation. The tightest possible bound is given by requiring rounding to nearest, for which
the accompanying performance penalty is often unacceptably high for the operations approxi-
mating elementary transcendental functions. LIA-2 does not require round to nearest for such
operations, but allows for a slightly wider error bound characterised via the max error opF pa-
rameters. The parameters max error opF must be documented by the implementation for each
such parameter required by LIA-2. A comparison of the values of these parameters with the
values of the speci�ed maximum value for each such parameter will give some indication of the
\quality" of the routines provided. Further, a comparison of the values of this parameter for two
versions of a frequently used operation will give some indication of the accuracy sacri�ce made
in order to gain performance.

Language bindings are free to modify the error limits provided in the speci�cations for the
operations to meet the expected requirements of their users.

Material on the implementation of high accuracy operations is provided in for example [51,
53, 60].

B.5.3.2 Sign requirements

The requirements imply that the sign of the result or continuation value is to be reliable, except
for the sign of an in�nite result or continuation value, where except for a signed zero argument,
it is often the case that one cannot determine the sign of the in�nity. Still for sign symmetric
mathematical functions, the approximating operation is also sign symmetric, including in�nitary
results.

78 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

B.5.3.3 Monotonicity requirements

A maximum error of 0.5 ulp implies that an approximation helper function must be a monotonic
approximation to the mathematical function. When the maximum error is greater than 0.5 ulp,
and the rounding is not directed, this is not automatically the case.

There is no general requirement that the approximation helper functions are strictly monotone
on the same intervals on which the corresponding exact function is strictly monotone, however,
since such a requirement cannot be made due to the fact that all oating point types are discrete,
not continuous.

B.5.3.4 The trans result helper function

B.5.3.5 Hypotenuse

The hypotF operation can produce an overow only if both arguments have magnitudes very close
to the overow threshold. Care must be taken in its implementation to either avoid or properly
handle overows and underows which might occur in squaring the arguments. The function
approximated by this operation is mathematically equivalent to complex absolute value, which
is needed in the calculation of the modulus and argument of a complex number. It is important
for this application that an implementation satisfy the constraint on the magnitude of the result
returned.

LIA-2 does not follow the recommendations in [53] and in [54] that

hypotF (+1+1+1;qNaN) = +1+1+1
hypotF (�1�1�1;qNaN) = +1+1+1
hypotF (qNaN;+1+1+1) = +1+1+1
hypotF (qNaN;�1�1�1) = +1+1+1

which are based on the claim that a qNaN represents an (unknown) real valued number. This
claim is not always valid, though it may sometimes be.

B.5.3.6 Operations for exponentiations and logarithms

For all of the exponentiation operations, overow occurs for suÆciently large values of the argu-
ment(s).

There is a problem for powerF (x; y) if both x and y are zero:

{ Ada raises an `exception' for the operation that is close in semantics to powerF when both
arguments are zero, in accordance with the fact that 00 is mathematically unde�ned.

{ The X/OPEN Portability Guide, as well as C9x, speci�es for pow(0,0) a return value of 1,
and no noti�cation. This speci�cation agrees with the recommendations in [51, 53, 54, 57].

The speci�cation in LIA-2 follows Ada, and returns invalid for powerF (0; 0), because of the
risks inherent in returning a result which might be inappropriate for the application at hand. Note
however, that powerFI(0; 0) is 1, without any noti�cation. The reason is that the limiting value
for the corresponding mathematical function, when following either of the only two continuous
paths, is 1. This also agrees with the Ada speci�cation for a oating point value raised to a power
in an integer datatype, as well as that for other programming languages which distinguish these
operations.

Along any path de�ned by y = k= ln(x) the mathematical function xy has the value ek. It
follows that some of the limiting values for xy depend on the choice of k, and hence are unde�ned,
as indicated in the speci�cation.

B.5.3 Elementary transcendental oating point operations 79

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

The result of the powerF operation is invalid for negative values of the base x. The reason
is that the oating point exponent y might imply an implicit extraction of an even root of x,
which would have a complex value for negative x. This constraint is explicit in Ada, and is widely
imposed in existing numerical packages provided by vendors, as well as several other programming
languages.

The arguments of powerF are oating point numbers. No special treatment is provided for
integer oating point values, which may be approximate. The cases for integer values of the
arguments are covered by the operations powerFI and powerI . In the example binding for C a
speci�cation for powF is suppied. powF combines powerF and powerFZ in a way suitable for C's
pow operation.

For implementations of the powerF operation there is an accuracy problem with an algorithm
based on the following, mathematically valid, identity:

xy = r
y�logrF

(x)

F

The integer part of the product y � logrF (x) de�nes the exponent of the result and the fractional
part de�nes the reduced argument. If the exponent is large, and one calculates pF digits of
this intermediate result, there will be fewer than pF digits for the fraction. Thus, in order to
obtain a reduced argument accurately rounded to pF digits, it may be necessary to calculate an
approximation to y � logrF (x) to a few more than logrF (emaxF) + pF base rF digits.

In Ada95 the operation most close to powerFI is speci�ed to be computed by successive mul-
tiplications, for which the error in the evaluation increases linearly with the size of the exponent.
In a strict Ada implementation there is no way that a prescribed error limit of a few ulps can be
met for large exponents.

The special exponentiation operations, corresponding to 2x and 10x, have speci�cations which
are minor variations on those for expF (x). Accuracy and performance can be increased if they are
specially coded, rather than evaluated as, e.g., expF (mulF (x; lnF (2))) or powerF (2; x). Similar
comments hold for the base 2 and base 10 logarithmic operations.

The expm1F operation has two advantages: Firstly, expm1F (x) is much more accurate than
subF (expF (x); 1) when the exponent argument is close to zero. Secondly, the expm1 F operation
does not underow for \very" negative exponent arguments, something which may be advan-
tageous if underow handling is slow, and high accuracy for \very" negative arguments is not
needed. Note in addition that underow is avoided for this operation. This can be done only
since LIA-2 adds requirements beyond those of LIA-1 regarding minimum precision (see clause
4). If those extra requirements were not done, underow would not be justi�ably removable for
this operation. Similar argumentation applies to ln1pF .

Similarly, there are two advantages with the power1pm1F operation: Firstly, power1pm1F (b; x)
is much more accurate than subF (powerF (addF (1; b); x); 1) when the exponent argument is close
to zero. Secondly, the power1pm1F operation does not underow for \very" negative exponent
arguments (when the base is greater than 1), something which may be advantageous if underow
handling is slow, and high accuracy for \very" negative arguments is not needed.

The handling of in�nites and negative zero as arguments to the exponentiation and logarithm
operations, like for all other LIA operations, follow the principles for dealing with these values as
explained in section B.5.2.

B.5.3.7 Operations for hyperbolic elementary functions

The hyperbolic sine operation, sinhF (x), will overow if jxj is in the immediate neighbourhood
of ln(2 � fmax), or greater.

80 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

The hyperbolic cosine operation, coshF (x), will overow if jxj is in the immediate neighbour-
hood of ln(2 � fmax), or greater.

The hyperbolic cotangent operation, cothF (x), has a pole at x = 0.

The inverse of cosh is double valued, the two possible results having the same magnitude with
opposite signs. The value returned by arccoshF is always greater than or equal to 1.

The inverse hyperbolic tangent operation arctanhF (x) has poles at x = +1 and at x = �1.
The inverse hyperbolic cotangent operation arccothF (x) has poles at x = +1 and at x = �1.

B.5.3.8 Introduction to operations for trigonometric elementary functions

The real trigonometric functions sin, cos, tan, cot, sec, and csc are all periodic. The period for
sin, cos, sec, and csc is 2 � � radians (360 degrees). The period for tan and cot is � radians
(180 degrees). The mathematical trigonometric functions are perfectly periodic. Their numerical
counterparts are not that perfect, for two reasons.

Firstly, the radian normalisation cannot be exact, even though it can be made very good given
very many digits for the approximation(s) of � used in the angle normalisation, returning an o�set
from the nearest axis, and including guard digits. The unit argument normalisation, however,
can be made exact regardless of the (non-zero and, in case denormF = false, not too small) unit
and the original angle, returning only a plain angle in F . LIA-2 requires unit argument angle
normalisation to be exact.

Secondly, the length of one revolution is of course constant, but the density of oating point
values gets sparser (in absolute spacing rather than relative) the larger the magnitude of the values
are. This means that the number of oating point values gets sparser per revolution the larger the
magnitude of the angle value is. For this reason the noti�cation absolute precision underow
is introduced, together with two parameters (one for radians and one for other angular units).
This noti�cation is given when the magnitude of the angle value is \too big". Exactly when the
representable angle values get too sparse depends upon the application at hand, but LIA-2 gives
a default value for the parameters that de�ne the cut-o�. LIA-2 also includes speci�cations for
high accuracy angle normalisation operations. The angle normalisation operations give a result
within minus half a cycle to plus half a cycle, unless the argument angular value is too big (or
there is some other error).

Note that the absolute precision underow noti�cation is unrelated to any argument re-
duction problems. Argument reduction is (implicitly for radians, explicitly for other angular
units) required by LIA-2 to be very accurate. But no matter how accurate the argument reduc-
tion is, oating point values are still sparser in absolute terms the larger the values are. Note
also that any use of trigonometric operations for non-trigonometric purposes is out of scope for
LIA-2.

LIA-2 includes angle normalisation operations, both for radians and for other angular units.
The angle normalisation operations return a value within minus half a cycle and plus half a cycle.
These operations should be used to keep the representation of angles at a high accuracy. The
trigonometric operations return a result within about an ulp, and that high accuracy is wasted if
the angular argument is not kept at a high accuracy too. LIA-2 also includes angle normalisation
operations that can be used to maintain an even higher degree of accuracy, giving the o�set from
the nearest axis (though without any extra guard digits). To use these one needs to keep track
of the nearest axis, which unfortunately complicates programs that use this latter method.

Note that rad (x) = arccos(cos(x)) if sin(x) > 0 and rad (x) = � arccos(cos(x)) if sin(x) < 0.
The �rst part of axis rad (x) indicates which axis is nearest to the angle x. The second part of
axis rad (x) is an angle o�set from the axis that is nearest to the angle x. The second part of

B.5.3 Elementary transcendental oating point operations 81

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

axis rad (x) is equal to rad (x) if cos(x) > 1=
p
2 (i.e. if the �rst part of axis rad (x) is (1; 0)).

More generally, the second part of axis rad (x) is equal to rad (4 � x)=4.
rad (x) returns the same angle as the angle value x, but the returned angle value is between ��

and �. The rad function is de�ned to be used as the basis for the angle normalisation operations.
The axis rad function is de�ned to be used as the basis for a numerically more accurate radian
angle normalisation operation. The arc function is de�ned to be used as the basis for the arcus
(angle) operations, which are used for conversion from Cartesian to polar co-ordinates.

B.5.3.9 Operations for radian trigonometric elementary functions

The radian trigonometric approximation helper functions (including those for normalisation and
conversion from radians) are required to have the same zero points as the approximated mathe-
matical function only if the absolute value of the argument is less than or equal to big angle rF .
Likewise, the radian trigonometric approximation helper functions are required to have the same
sign as the approximated mathematical function only if the absolute value of the argument is less
than or equal to big angle rF .

The big angle rF parameter may be adjusted by bindings, or even by some compiler ag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than 2 � �, so that at least arguments within the �rst two
(plus and minus) cycles are allowed, and such that ulpF (big angle rF) < �=1000, so that at least
2000 evenly distributed points within the `last' cycle (farthest away from 0) are distinguishable.
The latter gives a rather low accuracy at the far ends of the range, especially if pF is comparatively
large, so values this large for big angle rF are not recommendable unless the application is such
that high accuracy trigonometric operations are not needed.

For reduction of an argument given in radians, implementations use one or several approximate
value(s) of � (or of a multiple of �), valid to, say, n digits. The division implied in the argument
reduction cannot be valid to more than n digits, which implies a maximum absolute angle value
for which the reduction yields an accurate reduced angle value.

Regarding argument reduction for radians, there is a particular problem when the result of the
trigonometric operation is very small (or very big), but the angular argument is not very small. In
such cases the argument reduction must be very accurate, using an extra-precise approximation
to �, relative to what is normally used for arguments of similar magnitude, so that signi�cant
digits in the result are not lost. Such loss would imply non-conformance to LIA-2 by the error in
the �nal result being greater than that speci�ed by LIA-2. In general, extra care has to be taken
when the second part of axis rad(x) is close to 0.

Note that if big angle rF is allowed to be increased, then, for conformity with LIA-2, the
radian angle reduction may need to be more precise.

{ tan and sec have poles at odd multiples of �=2 radians (90 degrees).

{ cot and csc have poles at multiples of � radians (180 degrees).

All four of the corresponding operations with poles may produce overow for arguments suf-
�ciently close to the poles of the functions. The tanF operation produces no pole noti�cation.
The reason is that the poles of tan(x) are at odd multiples of �=2, which are not representable in
F . The mathematical cotangent function has a pole at the origin. For a system which supports
signed zeros and in�nities, the continuation values are +1+1+1 and �1�1�1 for arguments of 0 and ���0
respectively. Although the mathematical function sec has poles at odd multiples of �=2, the secF
operation will not generate any pole noti�cation because such arguments are not representable
in F .

82 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

The pole noti�cation cannot occur for any non-zero argument in radians because � is not
representable in F , nor is �=2. For the angular unit argument trigonometric operations a the
sign of the in�nitary continuation value has been chosen arbitrarily for a pole which occurs for
a non-zero argument. However, sign symmetry, when appropriate, is maintained.

The operations may produce underow for arguments suÆciently close to their zeros. For
a denormalised argument x, the sinF , tanF , arcsinF , and arctanF return x for the result, with
very high accuracy. Similarly, for a denormalised argument, cosF and secF can return a result of
1:0 with very high accuracy.

The trigonometric inverses are multiple valued. They are rendered single valued by de�ning a
principal value range. This range is closely related to a branch cut in the complex plane for the
corresponding complex function. Among the oating point numerical functions this branch cut
is \visible" only for the arcF operation. The arc function has a branch cut along the negative
real axis. For x < 0 the function has a discontinuity from �� to +� as y passes through zero
from negative to positive values. Thus for x < 0, systems supporting signed zeros can handle the
discontinuity as follows:

arcF (x;���0) = upF (��)
arcF (x; 0) = downF (�)

There is a problem for zero argument values for this operation. The values given for the
operation arcF (x; y) for the four combinations of signed zeros for x and y are those given in [53].
The following table of values is given in [53] for the value of arcF (x; y) with both of the arguments
zero:

Zero arguments

x y arcF (x; y)

0 0 0
���0 0 �
���0 ���0 ��
0 ���0 ���0

Note that the mathematical arc function is indeterminate (unde�ned) for (0,0), but these result are
numerically more useful than giving an invalid noti�cation for such arguments. LIA-2 therefore
speci�es results as above.

There is also a problem for argument values of +1+1+1 or �1�1�1 for this operation. The following
table of values is given in [53] for the value of arcF (x; y) with at least one of the arguments
in�nite:

In�nite arguments

x y arcF (x; y)

+1+1+1 > 0 0
+1+1+1 +1+1+1 �=4
�nite +1+1+1 �=2
�1�1�1 +1+1+1 3 � �=4
�1�1�1 > 0 �
�1�1�1 ���0 ��
�1�1�1 < 0 ��
�1�1�1 �1�1�1 �3 � �=4
�nite �1�1�1 ��=2
+1+1+1 �1�1�1 ��=4
+1+1+1 < 0 ���0
+1+1+1 ���0 ���0

B.5.3 Elementary transcendental oating point operations 83

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

If one of x and y is in�nite and the other is �nite, the result tabulated is consistent with that
obtained by a conventional limiting process. However, the results of �=4, ��=4, 3 � �=4, and
�3 � �=4 corresponding to in�nite values for both x and y, are of questionable validity, since
only the quadrant is known, not the angle within the quadrant. However, these results are
numerically more useful than giving an invalid noti�cation for such arguments. LIA-2 therefore
speci�es results as above.

B.5.3.10 Operations for trigonometrics given angular unit

At present only Ada speci�es trigonometric operations with angular unit argument. LIA-2 has
adopted angular unit argument operations in order to encourage uniformity among languages
which might include such operations in the future. The angular units in T appear to be particu-
larly important and have therefore been given a tighter error bound requirement. An implemen-
tation can of course have the same (tighter) error bound for all angular units.

The big angle uF parameter may be adjusted by bindings, or even by some compiler ag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than or equal to 1, so that at least arguments within
the �rst two (plus and minus) cycles are allowed, and such that ulpF (big angle uF) 6 1=2000,
so that at least 2000 evenly distributed points within the `last' cycle (farthest away from 0) are
distinguishable. The latter gives a rather low accuracy at the far ends of the range, especially
if pF is comparatively large, so values this large for big angle uF are not recommendable unless
the application is such that high accuracy trigonometric operations are not needed.

The min angular unitF parameter is speci�ed for two reasons. Firstly, if the type F has
no denormal values (denormF = false), some angle values in F are not representable after
normalisation if the angular unit has too small magnitude (this gives the �rm limit above).
Secondly, even if F has denormal values (denormF = true), angular units with very small
magnitude do not allow the representable angles to be particularly dense, not even if the angular
value is within the �rst cycle. This does in itself not give rise to a particular limit value, but the
limit value de�ned here is reasonable.

All of the argument angular unit trigonometric, and argument angular unit inverse trigonomet-
ric, approximation helper functions, including those for normalisation, angular unit conversion,
and arc, are exempted from the monotonicity requirement for the angular unit argument.

If the angular unit argument, u, is such that u=4 2 F , the tanuF operation has poles at
odd multiples of u=4. This is the case for degrees (u = 360). As for tanuF , if the angular unit
argument, u, is such that u=4 2 F the secuF operation has poles at odd multiples of u=4.

The same comments hold for the arcuF operation as for arcF operation, except that the
discontinuity in the mathematical function is from �u=2 to +u=2.

B.5.3.11 Operations for angular-unit conversions

Conversion of an angular value x from angular unit a to angular unit b appears simple: compute x�
b=a. Basing a numerical conversion of angular values directly on the above mathematical equality
(e.g. divF (mulF (x; b); a)) looses much absolute angular accuracy, however, especially for large
angular values. Instead computing arcuF (b; cosuF (a; x); sinuF (a; x)) gives a more accurate result.
This might still not be within the accuracy required by LIA-2 for the angular unit conversion
operations speci�ed by LIA-2.

Note that all of the angular conversion operations return an angularly normalised result. This
is in order to maintain high accuracy of the angle value being represented.

84 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Angular conversion operations are commonly found on `scienti�c' calculators and also in Java,
though then only between degrees and radians.

B.5.4 Conversion operations

Clause 5.2 of LIA-1 covers conversions from an integer type to another integer type and to a
oating point type, as well as between (LIA-1 conforming) oating point types of the same radix.

LIA-2 extends these conversions to cover conversions to and from non-LIA conforming datatypes,
such as conversion to and from strings, and also extends the oating point conversion speci�ca-
tions to also handle conversions where the radices are di�erent.

In ordinary string formats for numerals, the string \Hello world!" is an example of a signalling
NaN.

LIA-2 does not specify any string formats, not even for the special values ���0, +1+1+1, �1�1�1,
and quiet NaN, but possibilities for the special values include the strings used in the text of
LIA-2, as well as strings like \+in�nity" or \positiva o�andligheten", etc, and the strings used
may depend on preference settings, as they may also for non-special values. E.g. one may use
di�erent notation for the decimal separator character (e.g., period, comma, Arabic comma, ...),
use superscript digits for exponents, or use Arabic or traditional Thai digits. String formats for
numerical values, and if and how they may depend on preference settings, is also an issue for
bindings or programming language speci�cations, not for this part of LIA.

If the value converted is greater that those representable in the target, or less than those
representable in the target, even after rounding, then an overow will result. E.g., if the target is
a character string of at most 3 digits, and the target radix is 10, then an integer source value of
1000 will result in an overow. As for other operations, if the noti�cation handling is by recording
of indicators, a suitable continuation value must be used.

Most language standards contain (partial) format speci�cations for conversion to and from
strings, usually for a decimal representation.

B.5.5 Numerals as operations in the programming language

B.5.5.1 Numerals for integer datatypes

Negative values (except minintI if minintI = �maxintI � 1) can be obtained by using the
negation operation (negI).

Integer numerals in radix 10 are normally available in programming languages. Other radices
may also be available for integer numerals, and the radix used may be part of determining the
target integer datatype. E.g., radix 10 may be for signed integer datatypes, and radix 8 or 16
may be for unsigned integer datatypes.

Syntaxes for numerals for di�erent integer datatypes need not be di�erent, nor need they be
the same. This Part does not further specify the format for integer numerals. That is an issue
for bindings.

Overow for integer numerals can be detected at \compile time", and warned about.

B.5.5.2 Numerals for oating point datatypes

If the numerals used as operations in a program, and numerals read from other sources use the
same radix, then \internal" numerals and \external" numerals (strings) denoting the same value
in R and converted to the same target datatype should be converted to the same value.

B.5.4 Conversion operations 85

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

Negative values (including negative 0, ���0) can be obtained by using the negation operation
(negF).

Radices other than 10 may also be available for oating point numerals.

Integer numerals may also be oating point numerals, i.e. their syntaxes need not be di�erent.
Nor need syntaxes for numerals for di�erent oating point datatypes be di�erent, nor need they
be the same. This Part does not specify the syntax for numerals. That is an issue for bindings
or programming language speci�cations.

Overow/underow for oating point numerals can be detected at \compile time", and warned
about.

B.6 Noti�cation

An intermediate overow on computing approximations to x2 or y2 during the calculation of
hypotF (x; y) �

p
x2 + y2) must not result in an overow noti�cation, unless the end result

overows. This is clear from the speci�cation of the hypotF operation in this Part.

If a single argument operation opF , for the corresponding mathematical function f , is such that
f(x) very closely approximates x, when jxj 6 fminNF , then opF (x) returns x for jxj 6 fminNF ,
and does not give a noti�cation if there cannot be any denormalisation loss relative to f(x). For
details, see the individual operation speci�cations for expm1 F , ln1pF , sinhF , arcsinhF , tanhF ,
arctanhF , sinF , arcsinF , tanF , and arctanF .

Operations speci�ed in LIA-2 return invalid(qNaN) when passed a signaling NaN (sNaN)
as an argument. Most operations speci�ed in LIA-2 return qNaN, without any noti�cation when
passed a quiet NaN (qNaN) as an argument.

The di�erent kinds of noti�cations occur under the following circumstances:

a) invalid: when an argument is not valid for the operation, and no value in F � or any special
value result makes mathematical sense.

b) pole: when the input operand corresponds to a pole of the mathematical function approx-
imated by the operation.

c) overow: when the (rounded) result is outside of the range of the result datatype.

d) underow: when a suÆciently closely approximating result of the operation has a magni-
tude that is so small that it might not be suÆciently accurately represented in the result
datatype.

e) absolute precision underow: when the magnitude of the angle argument to a oating
point trigonometric operation exceeds the maximum value of the argument for which the
density of oating point values is deemed suÆcient for the operation to make sense. See
clause 5.3.8 and the associated discussion in this rationale (section B.5.3.8).

In order to avoid absolute precision underow noti�cations, and to maintain a high
accuracy, implementors are encouraged to provide, and programmers encouraged to use,
the angle normalisation operations speci�ed in 5.3.9.1 and 5.3.10.1.

The di�erence between the pole and overow noti�cations is that the �rst corresponds to a
true mathematical singularity, and the second corresponds to a well-de�ned mathematical result
that happens to lie outside the range of F .

86 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

B.6.1 Continuation values

For handling of noti�cations, the method that does recording of indicators (LIA-1, clause 6.1.2)
is preferred.

An implementation which supports recording of indicators must supply continuation values to
be used when execution is continued following the occurrence of a noti�cation. For systems which
support signed zeros, in�nities and NaNs, LIA-2 speci�es how these values, as well as ordinary
values, are used as continuation values. Other implementations which use recording of indicators
must supply other suitable continuation values and document the values selected.

B.7 Relationship with language standards

An arithmetic expression might not be executed as written.

For example, if x is declared to be single precision (SP) oating point, and calculation is done
in single precision, then the expression

arcsin(x)

might translate to

arcsinSP (x)

If the language in question did all computations in double precision (DP) oating point, the above
expression might translate to

arcsinDP (cvtSP!DP (x))

Alternatively, if x was declared to be an integer, and the expected result datatype is single
precision oat, the above expression might translate to

cvtDP!SP (arcsinDP (cvtI!DP (x)))

The datatypes involved in implicit conversions need not be accessible to the programmer. For
example, trigonometric operations may be evaluated in extended double precision, even though
that datatype is not made available to programmers using a particular programming language.
These extra datatypes should be made available, however, and the implicit conversions should be
expressible as explicit conversions. At least in order to be able to show exactly which expression
is going to be evaluated without having to look at the machine code.

B.8 Documentation requirements

B.6.1 Continuation values 87

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

88 Rationale

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Annex C

(informative)

Example bindings for speci�c languages

This annex describes how a computing system can simultaneously conform to a language
standard (or publicly available speci�cation) and to LIA-2. It contains suggestions for binding
the \abstract" operations speci�ed in LIA-2 to concrete language syntax. The format used for
these example bindings in this annex is a short form version, suitable for the purposes of this
annex. An actual binding is under no obligation to follow this format. An actual binding should,
however, as in the bindings examples, give the LIA-2 operation name, or parameter name, bound
to an identi�er by the binding.

Portability of programs can be improved if two conforming LIA-2 systems using the same
language agree in the manner with which they adhere to LIA-2. For instance, LIA-2 requires that
the parameter big angle rF be provided (if any conforming radian trigonometric operations are
provided), but if one system provides it by means of the identi�er BigAngle and another by the
identi�er MaxAngle, portability is impaired. Clearly, it would be best if such names were de�ned
in the relevant language standards or binding standards, but in the meantime, suggestions are
given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote \de facto" portability by following these suggestions on their
own.

The languages covered in this annex are

Ada
Basic
C
C++
Fortran
Haskell
Java
Common Lisp
ISLisp
Modula-2
Pascal and Extended Pascal
PL/I
SML

This list is not exhaustive. Other languages and other computing devices (like `scienti�c'
calculators, `web script' languages, and database `query languages') are suitable for conformity
to LIA-2.

In this annex, the parameters, operations, and exception behaviour of each language are
examined to see how closely they �t the requirements of LIA-2. Where parameters, constants, or
operations are not provided by the language, names and syntax are suggested. (Already provided
syntax is marked with a ?.)

This annex describes only the language-level support for LIA-2. An implementation that
wishes to conform must ensure that the underlying hardware and software is also con�gured to
conform to LIA-2 requirements.

C. Example bindings for speci�c languages 89

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

A complete binding for LIA-2 will include, or refer to, a binding for LIA-1. In turn, a complete
binding for the LIA-1 may include, or refer to, a binding for IEC 60559. Such a joint LIA-2/LIA-
1/IEC 60559 binding should be developed as a single binding standard. To avoid conict with
ongoing development, only the LIA-2 speci�c portions of such a binding are exampli�ed in this
annex.

C.1 General comments

Most language standards permit an implementation to provide, by some means, the parameters
and operations required by LIA-2 that are not already part of the language. The method for ac-
cessing these additional parameters and operations depends on the implementation and language,
and is not speci�ed in LIA-2 nor exampli�ed in this annex. It could include external subroutine
libraries; new intrinsic functions supported by the compiler; constants and functions provided as
global \macros"; and so on. The actual method of access through libraries, macros, etc. should
of course be given in a real binding.

Most language standards do not constrain the accuracy of elementary numerical functions, or
specify the subsequent behaviour after an arithmetic noti�cation occurs.

In the event that there is a conict between the requirements of the language standard and
the requirements of LIA-2, the language binding standard should clearly identify the conict and
state its resolution of the conict.

C.2 Ada

The programming language Ada is de�ned by ISO/IEC 8652:1995, Information Technology {
Programming Languages { Ada [11], where the speci�cations for the operations for elementary
functions are based on ISO/IEC 11430:1994 Information technology { Programming languages {
Generic package of elementary functions for Ada [12].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to LIA-2 for that operation or parameter. For each
of the marked items a suggested identi�er is provided.

The Ada datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one oating point
datatype. The notations INT and FLT are used to stand for the names of one of these datatypes
in what follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x; y) INT'Max(x, y) ?
minI(x; y) INT'Min(x, y) ?
max seqI(xs) Max(xs) y
min seqI(xs) Min(xs) y

dimI(x; y) Dim(x, y) y
powerI(x; y) x ** y ?
shift2I(x; y) Shift2(x, y) y
shift10I(x; y) Shift10(x, y) y
sqrtI(x) Sqrt(x) y

90 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

dividesI (x; y) Divides(x, y) y
evenI(x) x mod 2 = 0 ?
oddI(x) x mod 2 /= 0 ?
divfI(x; y) Div(x, y) y
modaI(x; y) x mod y ?
groupI(x; y) Group(x, y) y
padI(x; y) Pad(x, y) y
quotI(x; y) Quot(x, y) y
remrI(x; y) Rem(x, y) y
gcdI (x; y) Gcd(x, y) y
lcmI(x; y) Lcm(x, y) y
gcd seqI(xs) Gcd(xs) y
lcm seqI(xs) Lcm(xs) y

add wrapI(x; y) Add Wrap(x, y) y
add ovI(x; y) Add Over(x, y) y
sub wrapI(x; y) Sub Wrap(x, y) y
sub ovI(x; y) Sub Over(x, y) y
mul wrapI(x; y) Mul Wrap(x, y) y
mul ovI(x; y) Mul Over(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The LIA-2 basic oating point operations are listed below, along with the syntax used to
invoke them:

maxF (x; y) FLT'Max(x, y) ?
minF (x; y) FLT'Min(x, y) ?
mmaxF (x; y) MMax(x, y) y
mminF (x; y) MMin(x, y) y
max seqF (xs) Max(xs) y
min seqF (xs) Min(xs) y
mmax seqF (xs) MMax(xs) y
mmin seqF (xs) MMin(xs) y

dimF (x; y) Dim(x, y) y
roundingF (x) FLT'Unbiased Rounding(x) ?
oorF (x) FLT'Floor(x) ?
ceilingF (x) FLT'Ceiling(x) ?
rounding restF (x) x - FLT'Unbiased Rounding(x) ?
oor restF (x) x - FLT'Floor(x) ?
ceiling restF (x) x - FLT'Ceiling(x) ?
remrF (x; y) FLT'Remainder(x, y) ?
sqrtF (x) Sqrt(x) ?
rsqrtF (x) RSqrt(x) y

add loF (x; y) Add Low(x, y) y
sub loF (x; y) Sub Low(x, y) y
mul loF (x; y) Mul Low(x, y) y
div restF (x; y) Div Rest(x, y) y
sqrt restF (x) Sqrt Rest(x) y
mulF!F 0(x; y) Prod(x, y) y

where x, y, and z are expressions of type FLT, and where xs is an expression of type array of

C.2 Ada 91

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

FLT.

The parameters for LIA-2 operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF Err Hypotenuse(x) y

max err expF Err Exp(x) y
max err powerF Err Power(x) y

max err sinhF Err Sinh(x) y
max err tanhF Err Tanh(x) y

big angle rF Big Radian Angle(x) y
max err sinF Err Sin(x) y
max err tanF Err Tan(x) y

min angular unitF Smallest Angular Unit(x) y
big angle uF Big Angle(x) y
max err sinuF (u) Err Sin Cycle(u) y
max err tanuF (u) Err Tan Cycle(u) y

max err convertF Err Convert(x) y
max err convertF 0 Err Convert To String y
max err convertD0 Err Convert To String y

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) Hypotenuse(x, y) y

powerFI(b; z) b ** z ?
expF (x) Exp(x) ?
expm1F (x) ExpM1(x) y
exp2F (x) Exp2(x) y
exp10F (x) Exp10(x) y
powerF (b; y) b ** y ?
power1pm1F (b; y) Power1PM1(b, y) y

lnF (x) Log(x) ?
ln1pF (x) Log1P(x) y
log2F (x) Log2(x) y
log10F (x) Log10(x) y
logbaseF (b; x) Log(x, b) (note parameter order) ?
logbase1p1pF (b; x) Log1P1P(x, b) y

sinhF (x) SinH(x) ?
coshF (x) CosH(x) ?
tanhF (x) TanH(x) ?
cothF (x) CotH(x) ?
sechF (x) SecH(x) y

92 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

cschF (x) CscH(x) y

arcsinhF (x) ArcSinH(x) ?
arccoshF (x) ArcCosH(x) ?
arctanhF (x) ArcTanH(x) ?
arccothF (x) ArcCotH(x) ?
arcsechF (x) ArcSecH(x) y
arccschF (x) ArcCscH(x) y

radF (x) Rad(x) y
axis radF (x) Rad(x, h, v) (note out parameters) y

sinF (x) Sin(x) ?
cosF (x) Cos(x) ?
tanF (x) Tan(x) ?
cotF (x) Cot(x) ?
secF (x) Sec(x) y
cscF (x) Csc(x) y
cossinF (x) CosSin(x, c, s) (note out parameters) y

arcsinF (x) ArcSin(x) ?
arccosF (x) ArcCos(x) ?
arctanF (x) ArcTan(x) ?
arccotF (x) ArcCot(x) ?
arcctgF (x) ArcCtg(x) y
arcsecF (x) ArcSec(x) y
arccscF (x) ArcCsc(x) y
arcF (x; y) ArcTan(y, x) or ArcCot(x, y) ?

cycleF (u; x) Cycle(x, u) (note parameter order) y
axis cycleF (u; x) Cycle(x, u, h, v) y

sinuF (u; x) Sin(x, u) (note parameter order) ?
cosuF (u; x) Cos(x, u) ?
tanuF (u; x) Tan(x, u) ?
cotuF (u; x) Cot(x, u) ?
secuF (u; x) Sec(x, u) y
cscuF (u; x) Csc(x, u) y
cossinuF (u; x) CosSin(x, u, c, s) y

arcsinuF (u; x) ArcSin(x, u) ?
arccosuF (u; x) ArcCos(x, u) ?
arctanuF (u; x) ArcTan(x, Cycle=>u) ?
arccotuF (u; x) ArcCot(x, Cycle=>u) ?
arcctguF (u; x) ArcCtg(x, u) y
arcsecuF (u; x) ArcSec(x, u) y
arccscuF (u; x) ArcCsc(x, u) y
arcuF (u; x; y) ArcTan(y, x, u) or ArcCot(x, y, u) ?

rad to cycleF (x; u) Rad to Cycle(x, u) y
cycle to radF (u; x) Cycle to Rad(u, x) y

C.2 Ada 93

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

cycle to cycleF (u; x; v) Cycle to Cycle(u, x, v) y
where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in Ada are always explicit and usually use the destination
datatype name as the name of the conversion function, except when converting to/from strings.

convertI!I0(x) INT2(x) ?
convertI00!I(s) Get(s,n,w) ?
convertI!I00(x) Put(s,x,base?) ?
convertI00!I(f) Get(f?,n,w?) ?
convertI!I00(x) Put(h?,x,w?,base?) ?

roundingF!I(y) INT(FLT'Unbiased Rounding(y)) ?
oorF!I(y) INT(FLT'Floor(y)) ?
ceilingF!I(y) INT(FLT'Ceiling(y)) ?

convertI!F (x) FLT(x) ?

convertF!F 0(y) FLT2(y) ?
convertF 00!F (s) Get(s,n,w?) ?
convertF 00!F (f) Get(f?,n,w?) ?
convertF!F 00(y) Put(s,y,Aft=>a?,Exp=>e?) ?
convertF!F 00(y) Put(h?,y,Fore=>i?,Aft=>a?,Exp=>e?) ?

convertD!F (z) FLT(z) ?
convertD0!F (s) Get(s,n,w?) ?
convertD0!F (f) Get(f?,n,w?) ?

convertF!D(y) FXD(y) ?
convertF!D0(y) Put(s,y,Aft=>a?,Exp=>0) ?
convertF!D0(y) Put(h?,y,Fore=>i?,Aft=>a?,Exp=>0) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional. e is greater than 0.

Ada provides non-negative numerals for all its integer and oating point types. The default
base is 10, but all bases from 2 to 16 can be used. There is no di�erentiation between the numerals
for di�erent oating point types, nor between numerals for di�erent integer types, but integer
numerals (without a point) cannot be used for oating point types, and `real' numerals (with a
point) cannot be used for integer types. Integer numerals can have an exponent part though.
The details are not repeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numeric
Literals, clause 3.5.4 Integer Types, and clause 3.5.6 Real Types.

The Ada standard does not specify any numerals for in�nities and NaNs. Suggestion:

+1+1+1 FLT'Infinity y
qNaN FLT'NaN y
sNaN FLT'SigNaN y

as well as string formats for reading and writing these values as character strings.

Ada has a notion of `exception' that implies a non-returnable, but catchable, change of con-
trol ow. Ada uses its exception mechanism as its default means of noti�cation. Ada ignores
underow noti�cations since an Ada exception is inappropriate for an underow noti�cation.
On underow the continuation value (speci�ed in LIA-2) is used directly without recording the
underow itself. Ada uses the exception Constraint Error for pole and overow noti�cations,

94 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

and the exception Numerics.Argument Error for invalid noti�cations. Since Ada exceptions are
non-returnable changes of control ow, no continuation value is provided for these noti�cations.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

C.3 BASIC

The programming language BASIC is de�ned by ANSI X3.113-1987 (R1998) [41], endorsed by
ISO/IEC 10279:1991, Information technology { Programming languages { Full BASIC [17].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

BASIC has no user accessible datatype corresponding to the LIA datatype Boolean.

BASIC has one primitive computational data type, numeric. The model presented by the
BASIC language is that of a real number with decimal radix and a speci�ed (minimum) number
of signi�cant decimal digits. Numeric data is not declared directly, but any special characteristics
are inferred from how they are used and from any OPTIONS that are in force.

The BASIC statement OPTION ARITHMETIC NATIVE ties the numeric type more closely to the
underlying implementation. The precision and type of NATIVE numeric data is implementation
dependent.

Since the BASIC numeric data type does not match the integer type required by the LIA-1,
this binding example does not include any of the LIA-2 operations for integer data types.

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

maxF (x; y) MAX(x, y) y
minF (x; y) MIN(x, y) y
mmaxF (x; y) MMAX(x, y) y
mminF (x; y) MMIN(x, y) y
max seqF (xs) MAXS(xs) y
min seqF (xs) MINS(xs) y
mmax seqF (xs) MMAXS(xs) y
mmin seqF (xs) MMINS(xs) y

dimF (x; y) MONUS(x, y) y
roundingF (x) ROUNDING(x) y
oorF (x) FLOOR(x) ?
ceilingF (x) CEILING(x) y
rounding restF (x) x - ROUNDING(x) y
oor restF (x) x - FLOOR(x) ?
ceiling restF (x) x - CEILING(x) y
remrF (x; y) REMAINDER(x, y) y
sqrtF (x) SQRT(x) ?
rsqrtF (x) RSQRT(x) y

add loF (x; y) ADD LOW(x, y) y

C.3 BASIC 95

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

sub loF (x; y) SUB LOW(x, y) y
mul loF (x; y) MUL LOW(x, y) y
div restF (x; y) DIV REST(x, y) y
sqrt restF (x) SQRT REST(x) y

where x, y, and z are expressions of type numeric, and where xs is an expression of type array
of numeric.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF ERR HYPOTENUSE y

max err expF ERR EXP y
max err powerF ERR POWER y

max err sinhF ERR SINH y
max err tanhF ERR TANH y

big angle rF BIG RADIAN ANGLE y
max err sinF ERR SIN y
max err tanF ERR TAN y

min angular unitF MIN ANGLE UNIT y
big angle uF BIG ANGLE y
max err sinuF (u) ERR SIN CYCLE(u) y
max err tanuF (u) ERR TAN CYCLE(u) y
max err convertF ERR CONVERT y
max err convert0F ERR CONVERT TO STRING y
max err convertD ERR CONVERT TO STRING y

where u is an expression of type numeric.

The LIA-2 oating point operations are listed below, along with the syntax used to invoke
them. BASIC has a degree mode and a radian mode for the trigonometric operations.

hypotF (x; y) HYPOT(x, y) y

expF (x) EXP(x) ?
expm1F (x) EXPM1(x) y
exp2F (x) EXP2(x) y
exp10F (x) EXP10(x) y
powerF (b; y) POWER(b, y) y
power1pm1F (b; y) POWER1PM1(b, y) y

lnF (x) LOG(x) ?
ln1pF (x) LOG1P(x) y
log2F (x) LOG2(x) ?
log10F (x) LOG10(x) ?
logbaseF (b; x) LOGBASE(b, x) y
logbase1p1pF (b; x) LOGBASE1P1P(b, x) y

sinhF (x) SINH(x) ?
coshF (x) COSH(x) ?
tanhF (x) TANH(x) ?
cothF (x) COTH(x) y

96 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

sechF (x) SECH(x) y
cschF (x) CSCH(x) y

arcsinhF (x) ARCSINH(x) y
arccoshF (x) ARCCOSH(x) y
arctanhF (x) ARCTANH(x) y
arccothF (x) ARCCOTH(x) y
arcsechF (x) ARCSECH(x) y
arccschF (x) ARCCSCH(x) y

radF (x) NORMANGLE(x) (when in radian mode) y

sinF (x) SIN(x) (when in radian mode) ?
cosF (x) COS(x) (when in radian mode) ?
tanF (x) TAN(x) (when in radian mode) ?
cotF (x) COT(x) (when in radian mode) ?
secF (x) SEC(x) (when in radian mode) y
cscF (x) CSC(x) (when in radian mode) y

arcsinF (x) ARCSIN(x) (when in radian mode) ?
arccosF (x) ARCCOS(x) (when in radian mode) ?
arctanF (x) ARCTAN(x) (when in radian mode) ?
arccotF (x) ARCCOT(x) (when in radian mode) ?
arcctgF (x) ARCCTG(x) (when in radian mode) y
arcsecF (x) ARCSEC(x) (when in radian mode) y
arccscF (x) ARCCSC(x) (when in radian mode) y
arcF (x; y) ANGLE(x,y) (when in radian mode) ?

cycleF (u; x) NORMANGLEU(u,x) y

sinuF (u; x) SINU(u,x) y
cosuF (u; x) COSU(u,x) y
tanuF (u; x) TANU(u,x) y
cotuF (u; x) COTU(u,x) y
secuF (u; x) SECU(u,x) y
cscuF (u; x) CSCU(u,x) y

arcsinuF (u; x) ARCSINU(u,x) y
arccosuF (u; x) ARCCOSU(u,x) y
arctanuF (u; x) ARCTANU(u,x) y
arccotuF (u; x) ARCCOTU(u,x) y
arcctguF (u; x) ARCCTGU(u,x) y
arcsecuF (u; x) ARCSECU(u,x) y
arccscuF (u; x) ARCCSCU(u,x) y
arcuF (u; x; y) ANGLEU(u,x,y) y

cycleF (360; x) NORMANGLE(x) (when in degree mode) y

sinuF (360; x) SIN(x) (when in degree mode) ?
cosuF (360; x) COS(x) (when in degree mode) ?
tanuF (360; x) TAN(x) (when in degree mode) ?

C.3 BASIC 97

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

cotuF (360; x) COT(x) (when in degree mode) ?
secuF (360; x) SEC(x) (when in degree mode) y
cscuF (360; x) CSC(x) (when in degree mode) y

arcsinuF (360; x) ARCSIN(x) (when in degree mode) ?
arccosuF (360; x) ARCCOS(x) (when in degree mode) ?
arctanuF (360; x) ARCTAN(x) (when in degree mode) ?
arccotuF (360; x) ARCCOT(x) (when in degree mode) ?
arcctguF (360; x) ARCCTG(x) (when in degree mode) y
arcsecuF (360; x) ARCSEC(x) (when in degree mode) y
arccscuF (360; x) ARCCSC(x) (when in degree mode) y
arcuF (360; x; y) ANGLE(x,y) (when in degree mode) ?

rad to cycleF (x; u) RAD TO CYCLE(x, u) y
cycle to radF (u; x) CYCLE TO RAD(u, x) y
cycle to cycleF (u; x; v) CYCLE TO CYCLE(u, x, v) y

where b, x, y, u, and v are expressions of type numeric.

Arithmetic value conversions in BASIC are always tied to reading and writing text.

convertF 00!F (stdin) READ x ?
convertF!F 00(y) PRINT y ?

convertD0!F (stdin) READ x ?

where x is a variable of type numeric, y is an expression of type numeric.

BASIC provides non-negative numerals for numeric in base 10.

BASIC does not specify any numerals for in�nities and NaNs. Suggestion:

+1+1+1 INFINITY y
qNaN NAN y
sNaN SIGNAN y

as well as string formats for reading and writing these values as character strings.

BASIC has a notion of `exception' that implies a non-returnable change of control ow. BASIC
uses its exception mechanism as its default means of noti�cation. BASIC ignores underow noti-
�cations since a BASIC exception is inappropriate for an underow noti�cation. On underow
the continuation value (speci�ed in LIA-2) is used directly without recording the underow it-
self. BASIC uses the exception number 1003 (Numeric supplied function overow) for overow,
the exception number 3001 (Division by zero) for pole, and the exception numbers 301x(?) for
invalid. Since BASIC exceptions are non-returnable changes of control ow, no continuation
value is provided for these noti�cations.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

C.4 C

The programming language C is de�ned by ISO/IEC 9899:1990, Information technology { Pro-
gramming languages { C [18], currently under revision (C9x FDIS).

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

98 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The LIA-1 datatype Boolean is implemented by the C datatype int (1 = true and 0 =
false). (Revised C will provide a Bool datatype.)

Every implementation of C has integral datatypes int, long int, unsigned int, and unsigned
long int. INT is used below to designate one of the integer datatypes.

C has three oating point datatypes: float, double, and long double. FLT is used below
to designate one of the oating point datatypes.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x; y) imax(x, y) y
minI(x; y) imin(x, y) y
max seqI(xs) imax arr(xs,nr of items) y*
min seqI(xs) imin arr(xs,nr of items) y*

dimI(x; y) idim(x, y) y
powerI(x; y) ipower(x, y) y
shift2 I(x; y) shift2(x, y) y
shift10 I(x; y) shift10(x, y) y
sqrtI(x) isqrt(x) y

dividesI (x; y) does divide(x, y) y
dividesI (x; y) x != 0 && y % x == 0 ?
evenI(x) x % 2 == 0 ?
oddI(x) x % 2 != 0 ?
divfI(x; y) div(x, y) y
modaI(x; y) mod(x, y) y
groupI(x; y) group(x, y) y
padI(x; y) pad(x, y) y
quotI(x; y) quot(x, y) y
remrI(x; y) iremainder(x, y) y
gcdI (x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI(xs) gcd arr(xs,nr of items) y*
lcm seqI(xs) lcm arr(xs,nr of items) y*

add wrapI(x; y) add wrap(x, y) y
add ovI(x; y) add over(x, y) y
sub wrapI(x; y) sub wrap(x, y) y
sub ovI(x; y) sub over(x, y) y
mul wrapI(x; y) mul wrap(x, y) y
mul ovI(x; y) mul over(x, y) y

where x and y are expressions of the same integer type and where xs is an expression of type
array of an integer type. (The operations marked with * needs one name per integer datatype.)

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
(type generic macros) used to invoke them:

minF (x; y) nmin(x,y) y
maxF (x; y) nmax(x,y) y
mminF (x; y) fmin(x,y) ?(C9x)

C.4 C 99

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

mmaxF (x; y) fmax(x,y) ?(C9x)
min seqF (xs) nmin arr(xs,nr of items) y*
max seqF (xs) nmax arr(xs,nr of items) y*
mmin seqF (xs) fmin arr(xs,nr of items) y*
mmax seqF (xs) fmax arr(xs,nr of items) y*

dimF (x; y) fdim(x,y) ?(C9x)
roundingF (x) nearbyint(x) (when in round to nearest mode) ?(C9x)
oorF (x) floor(x) ?
ceilingF (x) ceil(x) ?
rounding restF (x) x - nearbyint(x) (when in round to nearest mode) ?(C9x)
oor restF (x) x - floor(x) ?
ceiling restF (x) x - ceil(x) ?
remrF (x; y) remainder(x,y) ?(C9x)
sqrtF (x) sqrt(x) ?
rsqrtF (x) rsqrt(x) y

add loF (x; y) add low(x, y) y
sub loF (x; y) sub low(x, y) y
mul loF (x; y) mul low(x, y) y
div restF (x; y) div rest(x, y) y
sqrt restF (x) sqrt rest(x) y
mulF!F 0(x; y) dprod(x, y) y

where x, y and z are expressions of the same oating point type, and where xs is an expression
of type array of a oating point type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax (type generic macros):

max err hypotF err hypot(x) y

max err expF err exp(x) y
max err powerF err power(x) y

max err sinhF err sinh(x) y
max err tanhF err tanh(x) y

big angle rF big radian angle(x) y
max err sinF err sin(x) y
max err tanF err tan(x) y

min angular unitF smallest angle unit(x) y
big angle uF big angle(x) y
max err sinuF (u) err sin cycle(u) y
max err tanuF (u) err tan cycle(u) y

max err convertF err convert(x) y
max err convertF 0 err convert to string y
max err convertD0 err convert to string y

where x and u are expressions of a oating point type. Several of the parameter functions are
constant for each type (and library), the argument is then used only to di�erentiate among the
oating point types.

100 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

C has a pow operation that does not conform to LIA-2, but may be speci�ed in LIA-2 terms
as:

powF (x; y) = 1 if x is a quiet NaN and y = 0
= powF (x; 0) if y =���0
= powerFZ(x; y) if y 2 F \ Z
= powerF (x; y) otherwise

C has a hypot operation that does not conform to LIA-2, but may be speci�ed in LIA-2 terms
as:

hhypotF (x; y) = +1+1+1 if x is a quiet NaN and y 2 f�1�1�1;+1+1+1g
=+1+1+1 if x 2 f�1�1�1;+1+1+1g and y is a quiet NaN
= hypotF (x; y) otherwise

The LIA-2 elementary oating point operations are listed below, together with the non-LIA-2
powF and hhypotF , along with the syntax (type generic macros) used to invoke them:

hypotF (x; y) hypotenuse(x, y) y
hhypotF (x; y) hypot(x, y) ? Not LIA-2!

powerFI(b; z) poweri(b, z) y
expF (x) exp(x) ?
expm1F (x) expm1(x) ?(C9x)
exp2F (x) exp2(x) ?
exp10F (x) exp10(x) y
powerF (b; y) power(b, y) y
powF (b; y) pow(b, y) ? Not LIA-2!
power1pm1F (b; y) power1pm1(b, y) y

lnF (x) log(x) ?
ln1pF (x) log1p(x) ?(C9x)
log2F (x) log2(x) ?
log10F (x) log10(x) ?
logbaseF (b; x) logbase(b, x) y
logbase1p1pF (b; x) logbase1p1p(b, x) y

sinhF (x) sinh(x) ?
coshF (x) cosh(x) ?
tanhF (x) tanh(x) ?
cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) asinh(x) ?
arccoshF (x) acosh(x) ?
arctanhF (x) atanh(x) ?
arccothF (x) acoth(x) y
arcsechF (x) asech(x) y
arccschF (x) acsch(x) y

radF (x) radian(x) y
axis radF (x) axis rad(x, &h, &v) (note out parameters) y

sinF (x) sin(x) ?

C.4 C 101

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) y
secF (x) sec(x) y
cscF (x) csc(x) y
cossinF (x) cossin(x, &c, &s) y

arcsinF (x) asin(x) ?
arccosF (x) acos(x) ?
arctanF (x) atan(x) ?
arccotF (x) acot(x) y
arcctgF (x) actg(x) y
arcsecF (x) asec(x) y
arccscF (x) acsc(x) y
arcF (x; y) atan2(y, x) ?

cycleF (u; x) cycle(u, x) y
axis cycleF (u; x) axis cycle(u, x, &h, &v) y

sinuF (u; x) sinu(u, x) y
cosuF (u; x) cosu(u, x) y
tanuF (u; x) tanu(u, x) y
cotuF (u; x) cotu(u, x) y
secuF (u; x) secu(u, x) y
cscuF (u; x) cscu(u, x) y
cossinuF (u; x) cossinu(u, x, &c, &s) y

arcsinuF (u; x) asinu(u, x) y
arccosuF (u; x) acosu(u, x) y
arctanuF (u; x) atanu(u, x) y
arccotuF (u; x) acotu(u, x) y
arcctguF (u; x) actgu(u, x) y
arcsecuF (u; x) asecu(u, x) y
arccscuF (u; x) acscu(u, x) y
arcuF (u; x; y) atan2u(u, y, x) y

rad to cycleF (x; u) radian to cycle(x, u) y
cycle to radF (u; x) cycle to radian(u, x) y
cycle to cycleF (u; x; v) cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of the same oating point type.

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as `casts', except when converting to/from strings. The rules
for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

convertI!I0(x) (INT2)x ?
convertI00!I(s) sscanf(s,"%no",&r) ?
convertI00!I(s) sscanf(s,"%nd",&r) ?
convertI00!I(s) sscanf(s,"%nx",&r) ?
convertI00!I(f) fscanf(f,"%no",&r) ?
convertI00!I(f) fscanf(f,"%nd",&r) ?

102 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

convertI00!I(f) fscanf(f,"%nx",&r) ?
convertI!I00(x) sprintf(s,"%no",x) ?
convertI!I00(x) sprintf(s,"%nd",x) ?
convertI!I00(x) sprintf(s,"%nx",x) ?
convertI!I00(x) fprintf(h,"%no",x) ?
convertI!I00(x) fprintf(h,"%nd",x) ?
convertI!I00(x) fprintf(h,"%nx",x) ?

roundingF!I(y) (INT)nearbyint(y) (when in round to nearest mode) ?
oorF!I(y) (INT)floor(y) ?
ceilingF!I(y) (INT)ceil(y) ?

convertI!F (x) (FLT)x ?

convertF!F 0(y) (FLT2)y ?
convertF 00!F (s) sscanf(s,"%e",&r) ?
convertF 00!F (f) fscanf(f,"%e",&r) ?
convertF!F 00(y) sprintf(s,"%.de",x) ?
convertF!F 00(y) fprintf(h,"%.de",x) ?

convertD0!F (s) sscanf(s,"%f",&r) ?
convertD0!F (f) fscanf(f,"%f",&r) ?

convertF!D0(y) sprintf(s,"%.df",x) ?
convertF!D0(y) fprintf(h,"%.df",x) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional. e is greater than 0.

C9x provides non-negative numerals for all its integer and oating point types. The default
base is 10, but base 8 (for integers) and 16 (both integer and oat) can be used too. Numerals for
di�erent integer types are distinguished by suÆxes. Numerals for di�erent oating point types
are distinguished by suÆx: f for float, no suÆx for double, l for long double. Numerals for
oating point types must have a `.' in them. The details are not repeated in this example binding,
see ISO/IEC FDIS 9899, clause 6.4.4.1 Integer constants, and clause 6.4.4.2 Floating constants.

C9x speci�es numerals (as macros) for in�nities and NaNs for float:

+1+1+1 INFINITY ?
qNaN NAN ?
sNaN SIGNAN y

as well as string formats for reading and writing these values as character strings.

C9x has two ways of handling arithmetic errors. One, for backwards compatibility, is by
assigning to errno. The other is by recording of indicators, the method preferred by LIA-2, which
can be used for oating point errors. For C9x, the absolute precision underow noti�cation
is ignored. The behaviour for noti�cation upon integer operations initiating a noti�cation is,
however, not de�ned by C9x.

C.5 C++

The programming language C++ is de�ned by ISO/IEC 14882:1998, Programming languages {
C++ [19].

C.5 C++ 103

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

This example binding recommends that all identi�ers suggested here be de�ned in the names-
pace std::math.

The LIA-1 datatype Boolean is implemented by the C++ datatype bool.

Every implementation of C++ has integral datatypes int, long int, unsigned int, and
unsigned long int. INT is used below to designate one of the integer datatypes.

C++ has three oating point datatypes: float, double, and long double. FLT is used
below to designate one of the oating point datatypes.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x; y) max(x, y) ?
minI(x; y) min(x, y) ?
max seqI(xs) xs.max() ?
min seqI(xs) xs.min() ?

dimI(x; y) dim(x, y) y
powerI(x; y) power(x, y) y
sqrtI(x) sqrt(x) y
shift2I(x; y) shift2(x, y) y
shift10I(x; y) shift10(x, y) y

dividesI(x; y) does divide(x, y) y
dividesI(x; y) y != 0 && y % x == 0 ?
evenI(x) x % 2 == 0 ?
oddI(x) x % 2 != 0 ?
divfI(x; y) div(x, y) y
modaI(x; y) mod(x, y) y
groupI(x; y) group(x, y) y
padI(x; y) pad(x, y) y
quotI(x; y) quot(x, y) y
remrI(x; y) iremainder(x, y) y
gcdI(x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI(xs) xs.gcd() y
lcm seqI(xs) xs.lcm() y

add wrapI(x; y) add wrap(x, y) y
add ovI(x; y) add over(x, y) y
sub wrapI(x; y) sub wrap(x, y) y
sub ovI(x; y) sub over(x, y) y
mul wrapI(x; y) mul wrap(x, y) y
mul ovI(x; y) mul over(x, y) y

where x and y are expressions of the same integer type and where xs is an expression of type
valarray of an integer type.

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

104 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

maxF (x; y) nmax(x, y) y
minF (x; y) nmin(x, y) y
mmaxF (x; y) max(x, y) ?(unclear)
mminF (x; y) min(x, y) ?(unclear)
max seqF (xs) xs.nmax() y
min seqF (xs) xs.nmin() y
mmax seqF (xs) xs.max() ?(unclear)
mmin seqF (xs) xs.min() ?(unclear)

dimF (x; y) dim(x, y) y
roundingF (x) round(x) y
oorF (x) floor(x) ?
ceilingF (x) ceil(x) ?
rounding restF (x) x - round(x) y
oor restF (x) x - floor(x) ?
ceiling restF (x) x - ceil(x) ?

mulF!F 0(x; y) dprod(x, y) y
remrF (x; y) remainder(x, y) y
sqrtF (x) sqrt(x) ?
rsqrtF (x) reciprocal sqrt(x) y

add loF (x; y) add low(x, y) y
sub loF (x; y) sub low(x, y) y
mul loF (x; y) mul low(x, y) y
div restF (x; y) div rest(x, y) y
sqrt restF (x) sqrt rest(x) y

where x, y and z are expressions of the same oating point type, and where xs is an expression
of type valarray of a oating point type.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF err hypotenuse<FLT>() y

max err expF err exp<FLT>() y
max err powerF err power<FLT>() y

max err sinhF err sinh<FLT>() y
max err tanhF err tanh<FLT>() y

big angle rF big radian angle<FLT>() y
max err sinF err sin<FLT>() y
max err tanF err tan<FLT>() y

min angular unitF smallest angle unit<FLT>() y
big angle uF big angle<FLT>() y
max err sinuF (u) err sin cycle(u) y
max err tanuF (u) err tan cycle(u) y

max err convertF err convert<FLT>() y
max err convertF 0 err convert to string() y

C.5 C++ 105

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

max err convertD0 err convert to string() y
where u is an expression of a oating point type. Several of the parameter functions are constant
for each type (and library).

The LIA-2 elementary oating point operations are listed below, along with the syntax (type
generic macros) used to invoke them:

hypotF (x; y) hypotenuse(x, y) y

powerFI(b; z) poweri(b, z) y
expF (x) exp(x) ?
expm1F (x) expm1(x) y
exp2F (x) exp2(x) y
exp10F (x) exp10(x) y
powerF (b; y) power(b, y) y
powF (b; y) pow(b, y) ? Not LIA-2! (See C.)
power1pm1F (b; y) power1pm1(b, y) y

lnF (x) log(x) ?
ln1pF (x) log1p(x) y
log2F (x) log2(x) y
log10F (x) log10(x) ?
logbaseF (b; x) logbase(b, x) y
logbase1p1pF (b; x) logbase1p1p(b, x) y

sinhF (x) sinh(x) ?
coshF (x) cosh(x) ?
tanhF (x) tanh(x) ?
cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) asinh(x) ?
arccoshF (x) acosh(x) ?
arctanhF (x) atanh(x) ?
arccothF (x) acoth(x) y
arcsechF (x) asech(x) y
arccschF (x) acsch(x) y

radF (x) rad(x) y
axis radF (x) axis rad(x, &h, &v) (note out parameters) y

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) y
secF (x) sec(x) y
cscF (x) csc(x) y
cossinF (x) cossin(x, &c, &s) y

arcsinF (x) asin(x) ?
arccosF (x) acos(x) ?

106 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arctanF (x) atan(x) ?
arccotF (x) acot(x) y
arcctgF (x) actg(x) y
arcsecF (x) asec(x) y
arccscF (x) acsc(x) y
arcF (x; y) atan2(y, x) ?

cycleF (u; x) cycle(u, x) y
axis cycleF (u; x) axis cycle(u, x, &h, &v) y

sinuF (u; x) sinu(u, x) y
cosuF (u; x) cosu(u, x) y
tanuF (u; x) tanu(u, x) y
cotuF (u; x) cotu(u, x) y
secuF (u; x) secu(u, x) y
cscuF (u; x) cscu(u, x) y
cossinuF (x) cossinu(u, x, &c, &s) y

arcsinuF (u; x) asinu(u, x) y
arccosuF (u; x) acosu(u, x) y
arctanuF (u; x) atanu(u, x) y
arccotuF (u; x) acotu(u, x) y
arcctguF (u; x) actgu(u, x) y
arcsecuF (u; x) asecu(u, x) y
arccscuF (u; x) acscu(u, x) y
arcuF (u; x; y) atan2u(u, y, x) y

rad to cycleF (x; u) radian to cycle(x, u) y
cycle to radF (u; x) cycle to radian(u, x) y
cycle to cycleF (u; x; v) cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in C++ are can be explicit or implicit. The rules for when
implicit conversions are applied is not repeated here. The explicit arithmetic value conversions
are usually expressed as `casts', except when converting to/from strings.

convertI!I0(x) (INT2)x ?
convertI00!I(s) sscanf(s,"%no",&r) ?
convertI00!I(s) sscanf(s,"%nd",&r) ?
convertI00!I(s) sscanf(s,"%nx",&r) ?
convertI00!I(f) fscanf(f,"%no",&r) ?
convertI00!I(f) fscanf(f,"%nd",&r) ?
convertI00!I(f) fscanf(f,"%nx",&r) ?
convertI!I00(x) sprintf(s,"%no",x) ?
convertI!I00(x) sprintf(s,"%nd",x) ?
convertI!I00(x) sprintf(s,"%nx",x) ?
convertI!I00(x) fprintf(h,"%no",x) ?
convertI!I00(x) fprintf(h,"%nd",x) ?
convertI!I00(x) fprintf(h,"%nx",x) ?

roundingF!I(y) (INT)nearbyint(y) (when in round to nearest mode) ?
oorF!I(y) (INT)floor(y) ?

C.5 C++ 107

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

ceilingF!I(y) (INT)ceil(y) ?

convertI!F (x) (FLT)x ?

convertF!F 0(y) (FLT2)y ?
convertF 00!F (s) sscanf(s,"%e",&r) ?
convertF 00!F (f) fscanf(f,"%e",&r) ?
convertF!F 00(y) sprintf(s,"%.de",x) ?
convertF!F 00(y) fprintf(h,"%.de",x) ?

convertD0!F (s) sscanf(s,"%f",&r) ?
convertD0!F (f) fscanf(f,"%f",&r) ?

convertF!D0(y) sprintf(s,"%.df",x) ?
convertF!D0(y) fprintf(h,"%.df",x) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional. e is greater than 0.

C++ provides non-negative numerals for all its integer and oating point types in base 10.
Numerals for di�erent integer types are distinguished by suÆxes. Numerals for di�erent oating
point types are distinguished by suÆx: f for float, no suÆx for double, l for long double.
Numerals for oating point types must have a `.' in them. The details are not repeated in
this example binding, see ISO/IEC 14882, clause 2.9.1 Integer literals, and clause 2.9.4 Floating
literals.

C++ does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 INFINITY y
qNaN NAN y
sNaN SIGNAN y

as well as string formats for reading and writing these values as character strings.

C++ has completely unde�ned behaviour on arithmetic noti�cation. An implementation
wishing to conform to LIA-2 should provide a means for recording of indicators, similar to C9x.

C.6 Fortran

The programming language Fortran is de�ned by ISO/IEC 1539-1:1997, Information technology
{ Programming languages { Fortran { Part 1: Base language [23].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Fortran datatype LOGICAL corresponds to the LIA datatype Boolean.

Every implementation of Fortran has one integer datatype, denoted as INTEGER, and two
oating point data type denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to o�er additional INTEGER types with a di�erent range and
additional REAL types with di�erent precision or range, parameterised with the KIND parameter.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

108 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

maxI(x; y) MAX(x, y) ?
minI(x; y) MIN(x, y) ?
max seqI(xs) MAX(xs[1], xs[2], ..., xs[n]) or MAXVAL(xs) ?
min seqI(xs) MIN(xs[1], xs[2], ..., xs[n]) or MINVAL(xs) ?

dimI(x; y) DIM(x, y) ?
powerI(x; y) x ** y ?
shift2I(x; y) SHIFT2(x, y) y
shift10I(x; y) SHIFT10(x, y) y
sqrtI(x) ISQRT(x) y

dividesI (x; y) DIVIDES(x, y) y
evenI(x) MODULO(x,2) == 0 ?
oddI(x) MODULO(x,2) != 0 ?
divfI(x; y) DIV(x, y) y
modaI(x; y) MODULO(x, y) ?
groupI(x; y) GROUP(x, y) y
padI(x; y) PAD(x, y) y
quotI(x; y) QUOTIENT(x, y) y
remrI(x; y) REMAINDER(x, y) y

gcdI (x; y) GCD(x, y) y
lcmI(x; y) LCM(x, y) y
gcd seqI(xs) GCDVAL(xs) y
lcm seqI(xs) LCMVAL(xs) y

add wrapI(x; y) ADD WRAP(x, y) y
add ovI(x; y) ADD OVER(x, y) y
sub wrapI(x; y) SUB WRAP(x, y) y
sub ovI(x; y) SUB OVER(x, y) y
mul wrapI(x; y) MUL WRAP(x, y) y
mul ovI(x; y) MUL OVER(x, y) y

where x and y are expressions of type INTEGER and where xs is an expression of type array of
INTEGER.

The additional non-transcendental oating point operations are listed below, along with the
syntax used to invoke them:

maxF (x; y) MAX(x, y) ?
minF (x; y) MIN(x, y) ?
mmaxF (x; y) MMAX(x, y) y
mminF (x; y) MMIN(x, y) y
max seqF (xs) MAX(xs[1], xs[2], ..., xs[n]) or MAXVAL(xs) ?
min seqF (xs) MIN(xs[1], xs[2], ..., xs[n]) or MINVAL(xs) ?
mmax seqF (xs) MMAX(xs[1], xs[2], ..., xs[n]) or MMAXVAL(xs) y
mmin seqF (xs) MMIN(xs[1], xs[2], ..., xs[n]) or MMINVAL(xs) y

dimF (x; y) DIM(x, y) ?
roundingF (x) IEEE RINT(x) (if in round to nearest mode) (?)
oorF (x) IEEE RINT(x) (if in round towards �1�1�1 mode) (?)
ceilingF (x) IEEE RINT(x) (if in round towards +1+1+1 mode) (?)
rounding restF (x) x - IEEE RINT(x) (if in round to nearest mode) (?)

C.6 Fortran 109

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

oor restF (x) x - IEEE RINT(x) (if in round towards �1�1�1 mode) (?)
ceiling restF (x) x - IEEE RINT(x) (if in round towards +1+1+1 mode) (?)
remrF (x; y) IEEE REM(x, y) (?)
sqrtF (x) SQRT(x) ?
rsqrtF (x) RSQRT(x) y
mulF!F 0(x; y) DPROD(x, y) ?

add loF (x; y) ADD LOW(x, y) y
sub loF (x; y) SUB LOW(x, y) y
mul loF (x; y) MUL LOW(x, y) y
div restF (x; y) DIV REST(x, y) y
sqrt restF (x) SQRT REST(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of
FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF ERR HYPOTENUSE(x) y

max err expF ERR EXP(x) y
max err powerF ERR POWER(x) y

max err sinhF ERR SINH(x) y
max err tanhF ERR TANH(x) y

big angle rF BIG RADIAN ANGLE(x) y
max err sinF ERR SIN(x) y
max err tanF ERR TAN(x) y

min angular unitF MIN ANGLE UNIT(x) y
big angle uF BIG ANGLE(x) y
max err sinuF (u) ERR SIN CYCLE(u) y
max err tanuF (u) ERR TAN CYCLE(u) y

max err convertF ERR CONVERT(x) y
max err convertF 0 ERR CONVERT TO STRING y
max err convertD0 ERR CONVERT TO STRING y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) HYPOT(x, y) y

powerFI(b; z) b ** z ?
expF (x) EXP(x) ?
expm1F (x) EXPM1(x) y
exp2F (x) EXP2(x) y
exp10F (x) EXP10(x) y
powerF (b; y) b ** y ?
power1pm1F (b; y) POWER1PM1(b, y) y

110 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

lnF (x) LOG(x) ?
ln1pF (x) LOG1P(x) y
log2 F (x) LOG2(x) y
log10 F (x) LOG10(x) ?
logbaseF (b; x) LOGBASE(b, x) y
logbase1p1pF (b; x) LOGBASE1P1P(b, x) y

sinhF (x) SINH(x) ?
coshF (x) COSH(x) ?
tanhF (x) TANH(x) ?
cothF (x) COTH(x) y
sechF (x) SECH(x) y
cschF (x) CSCH(x) y

arcsinhF (x) ASINH(x) y
arccoshF (x) ACOSH(x) y
arctanhF (x) ATANH(x) y
arccothF (x) ACOTH(x) y
arcsechF (x) ASECH(x) y
arccschF (x) ACSCH(x) y

radF (x) RAD(x) y

sinF (x) SIN(x) ?
cosF (x) COS(x) ?
tanF (x) TAN(x) ?
cotF (x) COT(x) y
secF (x) SEC(x) y
cscF (x) CSC(x) y

arcsinF (x) ASIN(x) ?
arccosF (x) ACOS(x) ?
arctanF (x) ATAN(x) ?
arccotF (x) ACOT(x) y
arcctgF (x) ACTG(x) y
arcsecF (x) ASEC(x) y
arccscF (x) ACSC(x) y
arcF (x; y) ATAN2(y, x) ?

cycleF (u; x) CYCLE(u,x) y

sinuF (u; x) SINU(u,x) y
cosuF (u; x) COSU(u,x) y
tanuF (u; x) TANU(u,x) y
cotuF (u; x) COTU(u,x) y
secuF (u; x) SECU(u,x) y
cscuF (u; x) CSCU(u,x) y

arcsinuF (u; x) ASINU(u,x) y
arccosuF (u; x) ACOSU(u,x) y

C.6 Fortran 111

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arctanuF (u; x) ATANU(u,x) y
arccotuF (u; x) ACOTU(u,x) y
arcctguF (u; x) ACTGU(u,x) y
arcsecuF (u; x) ASECU(u,x) y
arccscuF (u; x) ACSCU(u,x) y
arcuF (u; x; y) ATAN2U(u,y,x) y

cycleF (360; x) DEGREES(x) y

sinuF (360; x) SIND(x) y
cosuF (360; x) COSD(x) y
tanuF (360; x) TAND(x) y
cotuF (360; x) COTD(x) y
secuF (360; x) SECD(x) y
cscuF (360; x) CSCD(x) y

arcsinuF (360; x) ASIND(x) y
arccosuF (360; x) ACOSD(x) y
arctanuF (360; x) ATAND(x) y
arccotuF (360; x) ACOTD(x) y
arcctguF (360; x) ACTGD(x) y
arcsecuF (360; x) ASECD(x) y
arccscuF (360; x) ACSCD(x) y
arcuF (360; x; y) ATAN2D(y,x) y

rad to cycleF (x; u) RAD TO CYCLE(x, u) y
cycle to radF (u; x) CYCLE TO RAD(u, x) y
cycle to cycleF (u; x; v) CYCLE TO CYCLE(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from strings.

convertI!I0(x) INT(x,kind) ?

lbla FORMAT (Bn) ?(binary)
convertI00!I(f) READ (UNIT=f,FMT=lbla) r ?
convertI!I00(x) WRITE (UNIT=h, FMT=lbla) x ?

lblb FORMAT (On) ?(octal)
convertI00!I(f) READ (UNIT=f,FMT=lblb) r ?
convertI!I00(x) WRITE (UNIT=h, FMT=lblb) x ?

lblc FORMAT (In) ?(decimal)
convertI00!I(f) READ (UNIT=f,FMT=lblc) r ?
convertI!I00(x) WRITE (UNIT=h, FMT=lblc) x ?

lbld FORMAT (Zn) ?(hexadecimal)
convertI00!I(f) READ (UNIT=f,FMT=lbld) r ?
convertI!I00(x) WRITE (UNIT=h, FMT=lbld) x ?

roundingF!I(y) ROUND(y,kind?) y
oorF!I(y) FLOOR(y,kind?) ?
ceilingF!I(y) CEILING(y,kind?) ?

112 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

convertI!F (x) REAL(x,kind) or sometimes DBLE(x) ?

convertF!F 0(y) REAL(y,kind) or sometimes DBLE(y) ?

lble FORMAT (Fw.d) ?
lblf FORMAT (Dw.d) ?
lblg FORMAT (Ew.d) ?
lblh FORMAT (Ew.dEe) ?
lbli FORMAT (ENw.d) ?
lblj FORMAT (ENw.dEe) ?
lblk FORMAT (ESw.d) ?
lbll FORMAT (ESw.dEe) ?

convertF 00!F (f) READ (UNIT=f,FMT=lblx) t ?
convertF!F 00(y) WRITE (UNIT=h, FMT=lblx) y ?

convertD0!F (f) READ (UNIT=f,FMT=lblx) t ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0.

Fortran provides base 10 non-negative numerals for all of its integer and oating point types.
Numerals for oating point types must have a `.' in them. The KIND of the a numeral is indicated
by a suÆx. The details are not repeated in this example binding, see ISO/IEC 1539-1, clause
4.3.1.1 Integer type, and clause 4.3.1.2 Real type.

Fortran does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 INFINITY y
qNaN NAN y
sNaN SIGNAN y

as well as string formats for reading and writing these values as character strings.

Fortran provides recording of indicators for oating point arithmetic noti�cations, the LIA-2
preferred method. See ISO/IEC TR 15580:1998, Information technology { Programming lan-
guages { Fortran { Floating-point exception handling [24]. absolute precision underow no-
ti�cations are however ignored.

C.7 Haskell

The programming language Haskell is de�ned by Report on the programming language Haskell 98
[66], together with Standard libraries for the Haskell 98 programming panguage [67].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Haskell datatype Bool corresponds to the LIA datatype Boolean.

Every implementation of Haskell has at least two integer datatypes Integer, which is unlim-
ited, and Int, and at least two oating point datatypes, Float, and Double. The notation INT
is used to stand for the name of one of the integer datatypes, and FLT is used to stand for the
name of one of the oating point datatypes in what follows.

C.7 Haskell 113

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x; y) max x y or x `max` y ?
minI(x; y) min x y or x `min` y ?
max seqI(xs) maximum xs ?
min seqI(xs) minimum xs ?

dimI(x; y) dim x y or x `dim` y y
powerI(x; y) x ^ y or (^) x y ?
shift2I(x; y) shift2 x y or x `shift2` y y
shift10I(x; y) shift10 x y or x `shift10` y y
sqrtI(x) isqrt x y

dividesI(x; y) divides x y or x `divides` y y
evenI(x) even x ?
oddI(x) odd x ?
divfI(x; y) div x y or x `div` y ?
modaI(x; y) mod x y or x `mod` y ?
groupI(x; y) grp x y or x `grp` y y
padI(x; y) pad x y or x `pad` y y
quotI(x; y) ratio x y or x `ratio` y y
remrI(x; y) remainder x y or x `remainder` y y
gcdI(x; y) gcd x y or x `gcd` y ?
lcmI(x; y) lcm x y or x `lcm` y ?
gcd seqI(xs) gcd seq xs y
lcm seqI(xs) lcm seq xs y

add wrapI(x; y) x +: y y
add ovI(x; y) x +:+ y y
sub wrapI(x; y) x -: y y
sub ovI(x; y) x -:+ y y
mul wrapI(x; y) x *: y y
mul ovI(x; y) x *:+ y y

where x and y are expressions of type INT and where xs is an expression of type [INT].

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

maxF (x; y) max x y or x `max` y ?
minF (x; y) min x y or x `min` y ?
mmaxF (x; y) mmax x y or x `mmax` y y
mminF (x; y) mmin x y or x `mmin` y y
max seqF (xs) maximum xs ?
min seqF (xs) minimum xs ?
mmax seqF (xs) mmaximum xs y
mmin seqF (xs) mminimum xs y

dimF (x; y) dim x y or x `dim` y y
roundingF (x) fromInteger (round x) ?
oorF (x) fromInteger (floor x) ?
ceilingF (x) fromInteger (ceiling x) ?
rounding restF (x) x - fromInteger (round x) ?
oor restF (x) x - fromInteger (floor x) ?

114 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

ceiling restF (x) x - fromInteger (ceiling x) ?
remrF (x; y) remainder x y or x `remainder` y y
sqrtF (x) sqrt x ?
rsqrtF (x) rsqrt x y

add loF (x; y) x +:- y y
sub loF (x; y) x -:- y y
mul loF (x; y) x *:- y y
div restF (x; y) x /:* y y
sqrt restF (x) sqrt rest x y
mulF!F 0(x; y) prod x y y

where x, y and z are expressions of type FLT, and where xs is an expression of type [FLT].

The binding for the oor, round, and ceiling operations here take advantage of the unbounded
Integer type in Haskell, and that Integer is the default integer type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF err hypotenuse x y

max err expF err exp x y
max err powerF err power x y

max err sinhF err sinh x y
max err tanhF err tanh x y

big angle rF big radian angle x y
max err sinF err sin x y
max err tanF err tan x y

min angular unitF min angle unit x y
big angle uF big angle x y
max err sinuF (u) err sin cycle u y
max err tanuF (u) err tan cycle u y

max err convertF err convert x y
max err convertF 0 err convert "" y
max err convertD0 err convert "" y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) hypotenuse x y y

powerFI(b; z) b ^^ z or (^^) b z ?
expF (x) exp x ?
expm1 F (x) expM1 x y
exp2F (x) exp2 x y
exp10F (x) exp10 x y
powerF (b; y) b ** y or (**) b y ?

C.7 Haskell 115

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

power1pm1F (b; y) power1PM1 b y or b `power1PM1` y y

lnF (x) log x ?
ln1pF (x) log1P x y
log2F (x) log2 x y
log10F (x) log10 x y
logbaseF (b; x) logBase b x or b `logBase` x ?
logbase1p1pF (b; x) logBase1P1P b x y

sinhF (x) sinh x ?
coshF (x) cosh x ?
tanhF (x) tanh x ?
cothF (x) coth x y
sechF (x) sech x y
cschF (x) csch x y

arcsinhF (x) asinh x ?
arccoshF (x) acosh x ?
arctanhF (x) atanh x ?
arccothF (x) acoth x y
arcsechF (x) asech x y
arccschF (x) acsch x y

radF (x) radians x y
axis radF (x) axis radians x y

sinF (x) sin x ?
cosF (x) cos x ?
tanF (x) tan x ?
cotF (x) cot x y
secF (x) sec x y
cscF (x) csc x y
cossinF (x) cosSin x y

arcsinF (x) asin x ?
arccosF (x) acos x ?
arctanF (x) atan x ?
arccotF (x) acot x y
arcctgF (x) actg x y
arcsecF (x) asec x y
arccscF (x) acsc x y
arcF (x; y) atan2 y x ?

cycleF (u; x) cycle u x y
axis cycleF (u; x) axis cycle u x y

sinuF (u; x) sinU u x y
cosuF (u; x) cosU u x y
tanuF (u; x) tanU u x y
cotuF (u; x) cotU u x y
secuF (u; x) secU u x y

116 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

cscuF (u; x) cscU u x y
cossinuF (x) cosSinU u x y

arcsinuF (u; x) asinU u x y
arccosuF (u; x) acosU u x y
arctanuF (u; x) atanU u x y
arccotuF (u; x) acotU u x y
arcctguF (u; x) acotU u x y
arcsecuF (u; x) asecU u x y
arccscuF (u; x) acscU u x y
arcuF (u; x; y) atan2U u y x y

rad to cycleF (x; u) rad to cycle x u y
cycle to radF (u; x) cycle to rad u x y
cycle to cycleF (u; x; v) cycle to cycle u x v y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in Haskell are always explicit. They are done with the overloaded
fromIntegral and fromFractional operations.

convertI!I0(x) fromIntegral x ?
convertI00!I(x) read s ?
convertI!I00(x) show x ?

roundingF!I(y) round(y) ?
oorF!I(y) floor(y) ?
ceilingF!I(y) ceiling(y) ?

convertI!F (x) fromIntegral x ?

convertF!F 0(y) fromFractional y ?
convertF 00!F (s) read s .?
convertF!F 00(y) show y ...?

convertD0!F (s) read s .?

convertF!D0(y) show y ...?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type.

Haskell provides non-negative numerals for all its integer and oating point types in base is 10.
There is no di�erentiation between the numerals for di�erent oating point types, nor between
numerals for di�erent integer types, and integer numerals can be used for oating point values.
Integer numerals stand for a value in Integer (the unbounded integer type) and an implicit
fromInteger operation is applied to it. Fractional numerals stand for a value in Rationale (the
unbounded type of rational numbers) and an implicit fromRational operation is applied to it.

Haskell does not specify any numerals for in�nities and NaNs. Suggestion:

+1+1+1 infinity y
qNaN quietNaN y
sNaN sigallingNaN y

as well as string formats for reading and writing these values as character strings.

C.7 Haskell 117

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

Haskell has the notion of error, which results in a change of `control ow', which cannot be
returned from, nor caught. An error results in the termination of the program. (There are
suggestions to improve this.) pole for integer types and invalid (in general) are considered to
be error. No noti�cation results for underow, and the continuation value (speci�ed by LIA-
2) is used directly, since recording of indicators is not available and error is inappropriate for
underow. The handling of integer overow is implementation dependent. The handling of
oating point overow and pole should be to return a suitable in�nity (speci�ed by LIA-2), if
possible, without any noti�cation, since recording of indicators is not available.

C.8 Java

The programming language Java is de�ned by The Java Language Speci�cation [65].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided. The LIA-2 operations that are provided in Java
2 (marked \?" below) are in the �nal class java.lang.Math.

The Java datatype boolean corresponds to the LIA datatype Boolean.

Every implementation of Java has the integral datatypes int, and long.

Java has two oating point datatypes, float and double, which must conform to IEC 60559.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) min(x, y) ?
maxI(x; y) max(x, y) ?
min seqI(xs) min arr(xs) y
max seqI(xs) max arr(xs) y

dimI(x; y) dim(x, y) y
sqrtI(x) sqrt(x) y
powerI(x; y) power(x, y) y

dividesI(x; y) divides(x, y) y
evenI(x) x % 2 == 0 ?
oddI(x) x % 2 != 0 ?
divfI(x; y) div(x, y) y
modaI(x; y) mod(x, y) y
groupI(x; y) group(x, y) y
padI(x; y) pad(x, y) y
quotI(x; y) quot(x, y) y
remrI(x; y) rem(x, y) y
gcdI(x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI(xs) gcd arr(xs) y
lcm seqI(xs) lcm arr(xs) y

add wrapI(x; y) add wrap(x, y) y
add ovI(x; y) add over(x, y) y
sub wrapI(x; y) sub wrap(x, y) y
sub ovI(x; y) sub over(x, y) y

118 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

mul wrapI(x; y) mul wrap(x, y) y
mul ovI(x; y) mul over(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

minF (x; y) min(x, y) ?
maxF (x; y) max(x, y) ?
mmaxF (x; y) mmax(x, y) y
mminF (x; y) mmin(x, y) y
min seqF (xs) min arr(xs) y
max seqF (xs) max arr(xs) y
mmax seqF (xs) mmax(xs) y
mmin seqF (xs) mmin(xs) y

roundingF (x) rint(x) ?
oorF (x) floor(x) ?
ceilingF (x) ceil(x) ?

dimF (x; y) dim(x, y) y
dprodF!F 0(x; y) dprod(x, y) y
remrF (x; y) IEEEremainder(x, y) ? (only for double)
sqrtF (x) sqrt(x) ?
rsqrtF (x) rsqrt(x) y

add loF (x; y) add low(x, y) y
sub loF (x; y) sub low(x, y) y
mul loF (x; y) mul low(x, y) y
div restF (x; y) div rest(x, y) y
sqrt restF (x) sqrt rest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF err hypotenuse(x) y

max err expF err exp(x) y
max err powerF (b; x) err power(b, x) y

max err sinhF err sinh(x) y
max err tanhF err tanh(x) y

big radian angleF big radian angle(x) y
max err sinF err sin(x) y
max err tanF err tan(x) y

min angular unitF smallest angular unit(x) y
big angleF big angle(x) y
max err sinuF (u) err sin cycle(u) y
max err tanuF (u) err tan cycle(u) y

C.8 Java 119

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

max err convertF err convert(x) y
max err convertF 0 err convert to string y
max err convertD0 err convert to string y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them. These are de�ned only for double not for float.

hypotF (x; y) hypotenuse(x, y) y

powerFI(b; z) poweri(b, z) y
expF (x) exp(x) ?
expm1F (x) expm1(x) y
exp2F (x) exp2(x) y
exp10F (x) exp10(x) y
powerF (b; y) power(b, y) y
powF (b; y) pow(b, y) ? Not LIA-2!
power1pm1F (b; y) power1pm1(b, y) y

lnF (x) log(x) ?
ln1pF (x) log1p(x) y
log2F (x) log2(x) y
log10F (x) log10(x) y
logbaseF (b; x) log(b, x) y
logbase1p1pF (b; x) log1p1p(b, x) y

sinhF (x) sinh(x) y
coshF (x) cosh(x) y
tanhF (x) tanh(x) y
cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) asinh(x) y
arccoshF (x) acosh(x) y
arctanhF (x) atanh(x) y
arccothF (x) acoth(x) y
arcsechF (x) asech(x) y
arccschF (x) acsch(x) y

radF (x) radian(x) y
axis radF (x) axis rad(x) y

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) y
secF (x) sec(x) y
cscF (x) csc(x) y

120 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arcsinF (x) asin(x) ?
arccosF (x) acos(x) ?
arctanF (x) atan(x) ?
arccotF (x) acot(x) y
arcctgF (x) actg(x) y
arcsecF (x) asec(x) y
arccscF (x) acsc(x) y
arcF (x; y) atan2(y, x) ?

cycleF (u; x) cycle(u, x) y
axis cycleF (u; x) axis cycle(u, x) y

sinuF (u; x) sinu(u, x) y
cosuF (u; x) cosu(u, x) y
tanuF (u; x) tanu(u, x) y
cotuF (u; x) cotu(u, x) y
secuF (u; x) secu(u, x) y
cscuF (u; x) cscu(u, x) y

arcsinuF (u; x) asinu(u, x) y
arccosuF (u; x) acosu(u, x) y
arctanuF (u; x) atanu(u, x) y
arccotuF (u; x) acotu(u, x) y
arcctguF (u; x) actgu(u, x) y
arcsecuF (u; x) asecu(u, x) y
arccscuF (u; x) acscu(u, x) y
arcuF (u; x; y) atan2u(u, y, x) y

rad to cycleF (x; u) radian to cycle(x, u) y
cycle to radF (u; x) cycle to radian(u, x) y
cycle to cycleF (u; x; v) cycle to cycle(u, x, v) y
rad to cycleF (x; 360) toDegrees(x) ?
cycle to radF (360; x) toRadians(x) ?

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in Java can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as `casts', except when converting to/from strings.

convertI!I0(x) (INT2)x ?
convertI00!I(s) Integer.parseInt(s) ?
convertI00!I(s) Integer.parseInt(s,radix) ?
convertI00!I(s) Long.parseLong(s) ?
convertI00!I(s) Long.parseLong(s,radix) ?
convertI!I00(x) Integer.toString(x) ?
convertI!I00(x) Integer.toString(x,radix) ?
convertI!I00(x) Integer.toBinaryString(x) ?
convertI!I00(x) Integer.toOctalString(x) ?
convertI!I00(x) Integer.toHexString(x) ?
convertI!I00(x) Long.toString(x) ?
convertI!I00(x) Long.toString(x,radix) ?
convertI!I00(x) Long.toBinaryString(x) ?

C.8 Java 121

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

convertI!I00(x) Long.toOctalString(x) ?
convertI!I00(x) Long.toHexString(x) ?
convertI!I00(x) ""+x ?

roundingF!I(y) (INT)rint(y) ?
oorF!I(y) (INT)floor(y) ?
ceilingF!I(y) (INT)ceil(y) ?

convertI!F (x) (FLT)x ?

convertF!F 0(y) (FLT2)y ?
convertF 00!F (s) Float.parseFloat(s) ?
convertF 00!F (s) Double.parseDouble(s) ?
convertF!F 00(y) Float.toString(x) ?
convertF!F 00(y) Double.toString(x) ?

convertD0!F (s) Float.parseFloat(s) ?
convertD0!F (s) Double.parseDouble(s) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional. e is greater than 0.

Java provides non-negative numerals for all its integer and oating point types. The default
base is 10, but for integers base 8 and 16 can be used too. Numerals for di�erent integer types are
distinguished by suÆxes. Numerals for di�erent oating point types are distinguished by suÆx:
f for float, no suÆx for double, l for long double. Numerals for oating point types must
have a `.' in them. The details are not repeated in this example binding, see The Java Language
Speci�cation, clause 3.10.1 Integer literals, and clause 3.10.2 Floating-point literals.

Java speci�es numerals for in�nities and NaNs:

+1+1+1 Float.POSITIVE INFINITY ?
+1+1+1 Double.POSITIVE INFINITY ?
�1�1�1 Float.NEGATIVE INFINITY ?
�1�1�1 Double.NEGATIVE INFINITY ?
qNaN Float.NaN ?
qNaN Double.NaN ?
sNaN Float.SigNaN y
sNaN Double.SigNaN y

as well as string formats for writing these values as character strings. However, in�nities and
NaNs cannot be converted from string.

Java has a notion of `exception' that implies a non-returnable, but catchable, change of con-
trol ow. Java uses its exception mechanism as its default means of noti�cation. Java ignores
underow noti�cations since a Java exception is inappropriate for an underow noti�cation.
On underow the continuation value (speci�ed in LIA-2) is used directly without recording the
underow itself. Java also ignores pole and overow noti�cations for oating point operations,
and the continuation value (speci�ed in LIA-2) is used directly without recording the pole or
overow itself. Java uses the exception java.lang.ArithmeticException for invalid noti�ca-
tions and for pole noti�cations for integer operations. Java, however, ignores pole and invalid
for log and sqrt. Java uses java.lang.NumberFormatException for invalid (and pole) noti�-
cations for operations that convert from string. Since Java exceptions are non-returnable changes
of control ow, no continuation value is provided for these noti�cations.

122 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations, including those that Java ignores when the
numeric noti�cation handling mechanism is by Java exceptions. Recording of indicators is the
LIA-2 preferred means of handling numeric noti�cations.

C.9 Common Lisp

The programming language Common Lisp is de�ned by ANSI X3.226-1994, Information Tech-
nology { Programming Language { Common Lisp [43].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatypeBoolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp has one unbounded integer datatype. Any mathemat-
ical integer is assumed to have a representation as a Common Lisp data object, subject only to
total memory limitations.

Common Lisp has four oating point types: short-float, single-float, double-float, and
long-float. Not all of these oating point types must be distinct.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) (min x y) ?
maxI(x; y) (max x y) ?
min seqI(xs) (min . xs) or (min x1 x2 ... xn) ?
max seqI(xs) (max . xs) or (max x1 x2 ... xn) ?

dimI(x; y) (dim x y) y
sqrtI(x) (isqrt x) y
powerI(x; y) (expt x y) (returns a rational on negative power) ?
shift2I(x; y) (shift2 x y) y
shift10I(x; y) (shift10 x y) y

dividesI (x; y) (dividesp x y) y
evenI(x) (evenp x) ?
oddI(x) (oddp x) ?

(the floor, ceiling, and round can also accept oating point arguments)
(multiple-value-bind (flr md) (floor x y))

divfI(x; y) flr or (floor x y) ?
modaI(x; y) md or (mod x y) ?

(multiple-value-bind (ceil pd) (ceiling x y))
groupI(x; y) ceil or (ceiling x y) ?
padI(x; y) (- pd) ?

(multiple-value-bind (rnd rm) (round x y))
quotI(x; y) rnd or (round x y) ?
remrI(x; y) rm ?

C.9 Common Lisp 123

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

gcdI(x; y) (gcd x y) (deviation: (gcd 0 0) is 0) ?
lcmI(x; y) (lcm x y) ?
gcd seqI(xs) (gcd . xs) or (gcd x1 x2 ... xn) ?
lcm seqI(xs) (lcm . xs) or (lcm x1 x2 ... xn) ?

add wrapI(x; y) (add-wrap x y) y
add ovI(x; y) (add-over x y) y
sub wrapI(x; y) (sub-wrap x y) y
sub ovI(x; y) (sub-over x y) y
mul wrapI(x; y) (mul-wrap x y) y
mul ovI(x; y) (mul-over x y) y

where x and y are expressions of type INT and where xs is an expression of type list of INT.

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

minF (x; y) (min x y) ?
maxF (x; y) (max x y) ?
min seqF (xs) (min . xs) or (min x1 x2 ... xn) ?
max seqF (xs) (max . xs) or (max x1 x2 ... xn) ?

(multiple-value-bind (flr frem) (ffloor x))
oorF (x) (ffloor x) or flr ?
oor restF (x) frem ?

(multiple-value-bind (rnd rrem) (fround x))
roundingF (x) (fround x) or rnd ?
rounding restF (x) rrem ?

(multiple-value-bind (cln crem) (fceiling x))
ceilingF (x) (fceiling x) or cln ?
ceiling restF (x) crem ?

dimF (x; y) (dim x y) y

(multiple-value-bind (rqt remainder) (fround x y))
remrF (x; y) remainder ?
sqrtF (x) (sqrt x) (returns a complex on negative arg.) ?
rsqrtF (x) (rsqrt x) y
dprodF!F 0(x; y) (prod x y) y

add loF (x; y) (add-low x y) y
sub loF (x; y) (sub-low x y) y
mul loF (x; y) (mul-low x y) y
div restF (x; y) (div-rest x y) y
sqrt restF (x) (sqrt-rest x) y

where x, y and z are data objects of the same oating point type, and where xs is a data objects
that is a list of data objects of (the same, in this binding) oating point type. Note that Common
Lisp allows mixed number types in many of its operations. This example binding does not explain
that in detail.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF (err-hypotenuse x) y

124 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

max err expF (err-exp x) y
max err powerF (err-power x) y

max err sinhF (err-sinh x) y
max err tanhF (err-tanh x) y

big radian angleF (big-radian-angle x) y
max err sinF (err-sin x) y
max err tanF (err-tan x) y

min angular unitF (minimum-angular-unit x) y
big angle uF (big-angle x) y
max err sinuF (u) (err-sin-cycle u) y
max err tanuF (u) (err-tan-cycle u) y

max err convertF (err convert x) y
max err convertF err-convert-to-string y
max err convertD err-convert-to-string y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) (hypotenuse x y) y

powerFI(b; z) (expt b z) ?
expF (x) (exp x) ?
exp2F (x) (exp2 x) y
exp10F (x) (exp10 x) y
expm1F (x) (expm1 x) y
powerF (b; y) (expt b y) (deviation: (expt 0.0 0.0) is 1) ?
power1pm1F (b; y) (expt1pm1 b y) y

lnF (x) (log x) (returns a complex on negative arg.) ?
ln1pF (x) (log1p x) y
log2F (x) (log2 x) y
log10F (x) (log10 x) y
logbaseF (b; x) (log x b) (note parameter order) ?
logbase1p1pF (b; x) (log1p x b) y

sinhF (x) (sinh x) ?
coshF (x) (cosh x) ?
tanhF (x) (tanh x) ?
cothF (x) (coth x) y
sechF (x) (sech x) y
cschF (x) (csch x) y

arcsinhF (x) (asinh x) ?
arccoshF (x) (acosh x) (returns a complex when x < 1) ?

C.9 Common Lisp 125

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arctanhF (x) (atanh x) (returns a complex when jxj > 1) ?
arccothF (x) (acoth x) y
arcsechF (x) (asech x) y
arccschF (x) (acsch x) y

radF (x) (radians x) y
axis radF (x) (axis rad x) y
sinF (x) (sin x) ?
cosF (x) (cos x) ?
tanF (x) (tan x) ?
cotF (x) (cot x) y
secF (x) (sec x) y
cscF (x) (csc x) y

arcsinF (x) (asin x) (returns a complex when jxj > 1) ?
arccosF (x) (acos x) (returns a complex when jxj > 1) ?
arctanF (x) (atan x) ?
arccotF (x) (acot x) y
arcctgF (x) (actg x) y
arcsecF (x) (asec x) y
arccscF (x) (acsc x) y
arcF (x; y) (atan y x) ?

cycleF (u; x) (cycle u x) y
axis cycleF (u; x) (axis cycle u x) y
sinuF (u; x) (sinU u x) y
cosuF (u; x) (cosU u x) y
tanuF (u; x) (tanU u x) y
cotuF (u; x) (cotU u x) y
secuF (u; x) (secU u x) y
cscuF (u; x) (cscU u x) y

arcsinuF (u; x) (asinU u x y
arccosuF (u; x) (acosU u x y
arctanuF (u; x) (atanU u x y
arccotuF (u; x) (acotU u x y
arcctguF (u; x) (actgU u x) y
arcsecuF (u; x) (asecU u x) y
arccscuF (u; x) (acscU u x) y
arcuF (u; x; y) (atanU u y x) y

rad to cycleF (x; u) (rad to cycle x u) y
cycle to radF (u; x) (cycle to rad u x) y
cycle to cycleF (u; x; v) (cycle to cycle u x v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in Common Lisp are can be explicit or implicit. The rules for
when implicit conversions are done is implementation de�ned.

convertI!I00(x) (format nil "~wB" x) ?(binary)
convertI!I00(x) (format nil "~wO" x) ?(octal)
convertI!I00(x) (format nil "~wD" x) ?(decimal)

126 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

convertI!I00(x) (format nil "~wX" x) ?(hexadecimal)
convertI!I00(x) (format nil "~r; wR" x) ?(radix r)
convertI!I00(x) (format nil "~@R" x) ?(roman numeral)

roundingF!I(y) (round y) ?
oorF!I(y) (floor y) ?
ceilingF!I(y) (ceiling y) ?

convertI!F (x) (float x kind) ?

convertF!F 0(y) (float y kind) ?
convertF!F 00(y) (format nil "~wF" y) ?
convertF!F 00(y) (format nil "~w; e; k; cE" y) ?
convertF!F 00(y) (format nil "~w; e; k; cG" y) ?

convertF!D0(y) (format nil "~r; w,0,#F" y) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression
of type FXD, where FXD is a �xed point type. Convertion from string to numeric value is in
Common Lisp done via a general read procedure, which reads Common Lisp `S-expressions'.

Common Lisp provides non-negative numerals for all its integer and oating point types in
base 10. There is no di�erentiation between the numerals for di�erent oating point datatypes,
nor between numerals for di�erent integer types, and integer numerals can be used for oating
point values.

Common Lisp does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 infinity-FLT y
qNaN nan-FLT y
sNaN signan-FLT y

as well as string formats for reading and writing these values as character strings.

Common Lisp has a notion of `exception', but it is unclear if it is used for any of the arithmetic
operations for overow or pole. However, Common Lisp has no notion of compile time type
checking, and an operation can return di�erently typed values for di�erent arguments. When
justi�able, Common Lisp arithmetic operations returns a complex oating point value rather
than giving a noti�cation, even if the argument(s) to the operation were not complex. For
instance, (sqrt -1) (quietly) returns a representation of 0 + i.

C.10 ISLisp

The programming language ISLisp is de�ned by ISO/IEC 13816:1997, Information technology
{ Programming languages, their environments and system software interfaces { Programming
language ISLISP [25].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

ISLisp does not have a single datatype that corresponds to the LIA datatypeBoolean. Rather,
NIL corresponds to false and T corresponds to true.

C.10 ISLisp 127

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

Every implementation of ISLisp has one unbounded integer datatype. Any mathematical
integer is assumed to have a representation as a ISLisp data object, subject only to total memory
limitations.

ISLisp has one oating point type required to conform to IEC 60559.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) (min x y) ?
maxI(x; y) (max x y) ?
min seqI(xs) (min . xs) or (min x1 x2 ... xn) ?
max seqI(xs) (max . xs) or (max x1 x2 ... xn) ?

dimI(x; y) (dim x y) y
sqrtI(x) (isqrt x) ?
powerI(x; y) (expt x y) (deviation: (expt 0 0) is 1) ?
shift2I(x; y) (shift2 x y) y

shift10I(x; y) (shift10 x y) y

dividesI(x; y) (dividesp x y) y
evenI(x) (evenp x) y
oddI(x) (oddp x) y
divfI(x; y) (div x y) ?
modaI(x; y) (mod x y) ?
groupI(x; y) (group x y) y
padI(x; y) (pad x y) y
quotI(x; y) (quot x y) y
remrI(x; y) (remainder x y) y
gcdI(x; y) (gcd x y) (deviation: (gcd 0 0) is 0) ?
lcmI(x; y) (lcm x y) ?
gcd seqI(xs) (gcds xs) y
lcm seqI(xs) (lcms xs) y

add wrapI(x; y) (add wrap x y) y
add ovI(x; y) (add over x y) y
sub wrapI(x; y) (sub wrap x y) y
sub ovI(x; y) (sub over x y) y
mul wrapI(x; y) (mul wrap x y) y
mul ovI(x; y) (mul over x y) y

where x and y are expressions of type INT and where xs is an expression of type list of INT.

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

minF (x; y) (min x y) ?
maxF (x; y) (max x y) ?
mminF (x; y) (mmin x y) y
mmaxF (x; y) (mmax x y) y
min seqF (xs) (min . xs) or (min x1 x2 ... xn) ?
max seqF (xs) (max . xs) or (max x1 x2 ... xn) ?
mmin seqF (xs) (mmin . xs) or (mmin x1 x2 ... xn) y
mmax seqF (xs) (mmax . xs) or (mmax x1 x2 ... xn) y

oorF (x) (float (floor x)) ?

128 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

roundingF (x) (float (round x)) ?
ceilingF (x) (float (ceiling x)) ?

dimF (x; y) (dim x y) y
dprodF!F 0(x; y) (prod x y) y
remrF (x; y) (remainder x y) y
sqrtF (x) (sqrt x) ?
rsqrtF (x) (rsqrt x) y

add loF (x; y) (add low x y) y
sub loF (x; y) (sub low x y) y
mul loF (x; y) (mul low x y) y
div restF (x; y) (div rest x y) y
sqrt restF (x) (sqrt rest x) y

where x, y and z are data objects of the same oating point type, and where xs is an data objects
that are lists of data objects of the same oating point type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF (err-hypotenuse x) y

max err expF (err-exp x) y
max err powerF (err-power x) y

max err sinhF (err-sinh x) y
max err tanhF (err-tanh x) y

big radian angleF (big-radian-angle x) y
max err sinF (err-sin x) y
max err tanF (err-tan x) y

min angular unitF (minimum-angular-unit x) y
big angleF (big-angle x) y
max err sinuF (u) (err-sin-cycle u) y
max err tanuF (u) (err-tan-cycle u) y

max err convertF err-convert-to-string y
max err convertD err-convert-to-string y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) (hypotenuse x y) y

powerFI(b; z) (expt b z) ?
expF (x) (exp x) ?
expm1 F (x) (expm1 x) y
exp2F (x) (exp2 x) y
exp10F (x) (exp10 x) y
powerF (b; y) (expt b y) ?

C.10 ISLisp 129

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

power1pm1 F (b; y) (expm1 b y) y

lnF (x) (log x) ?
ln1pF (x) (log1p x) y
log2F (x) (log2 x) y
log10F (x) (log10 x) y
logbaseF (b; x) (logbase b x) y
logbase1p1pF (b; x) (logbase1p b x) y

sinhF (x) (sinh x) ?
coshF (x) (cosh x) ?
tanhF (x) (tanh x) ?
cothF (x) (coth x) y
sechF (x) (sech x) y
cschF (x) (csch x) y

arcsinhF (x) (asinh x) y
arccoshF (x) (acosh x) y
arctanhF (x) (atanh x) ?
arccothF (x) (acoth x) y
arcsechF (x) (asech x) y
arccschF (x) (acsch x) y

axis radF (x) (axis rad x) y
radF (x) (radians x) y

sinF (x) (sin x) ?
cosF (x) (cos x) ?
tanF (x) (tan x) ?
cotF (x) (cot x) y
secF (x) (sec x) y
cscF (x) (csc x) y

arcsinF (x) (asin x) ?
arccosF (x) (acos x) ?
arctanF (x) (atan x) ?
arccotF (x) (acot x) y
arcctgF (x) (actg x) y
arcsecF (x) (asec x) y
arccscF (x) (acsc x) y
arcF (x; y) (atan2 y x) ?

axis cycleF (u; x) (axis cycle u x) y
cycleF (u; x) (cycle u x) y

sinuF (u; x) (sinU u x) y
cosuF (u; x) (cosU u x) y
tanuF (u; x) (tanU u x) y
cotuF (u; x) (cotU u x) y
secuF (u; x) (secU u x) y
cscuF (u; x) (cscU u x) y

130 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arcsinuF (u; x) (asinU u x y
arccosuF (u; x) (acosU u x y
arctanuF (u; x) (atanU u x y
arccotuF (u; x) (acotU u x y
arcctguF (u; x) (actgU u x) y
arcsecuF (u; x) (asecU u x) y
arccscuF (u; x) (acscU u x) y
arcuF (u; x; y) (atan2U u y x) y

rad to cycleF (x; u) (rad to cycle x u) y
cycle to radF (u; x) (cycle to rad u x) y
cycle to cycleF (u; x; v) (cycle to cycle u x v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in ISLisp are can be explicit or implicit. The rules for when
implicit conversions are done is implementation de�ned.

convertI!I00(x) (format g "~B" x) ?(binary)
convertI!I00(x) (format g "~O" x) ?(octal)
convertI!I00(x) (format g "~D" x) ?(decimal)
convertI!I00(x) (format g "~X" x) ?(hexadecimal)
convertI!I00(x) (format g "~rR" x) ?(radix r)
convertI!I00(x) (format-integer g x r) ?(radix r)

roundingF!I(y) (round y) ?
oorF!I(y) (floor y) ?
ceilingF!I(y) (ceiling y) ?

convertI!F (x) (float x kind) ?

convertF!F 0(y) (float y kind) ?
convertF!F 00(y) (format g "~G" y) ?
convertF!F 00(y) (format-float g y) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. Conversion from string to numeric value is in ISLisp
done via a general read procedure, which reads ISLisp `S-expressions'.

ISLisp provides non-negative numerals for its integer and oating point types in base is 10.

ISLisp does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 infinity y
qNaN nan y
sNaN signan y

as well as string formats for reading and writing these values as character strings.

ISLisp has a notion of `error' that implies a catchable, possibly returnable, change of control
ow. ISLisp uses its exception mechanism as its default means of noti�cation. ISLisp ignores
underow noti�cations. On underow the continuation value (speci�ed in LIA-2) is used
directly without recording the underow itself. ISLisp uses the error domain-error for invalid
and some pole noti�cations, the error arithmetic-error for overow noti�cations, and the
error division-by-zero for other pole noti�cations.

C.10 ISLisp 131

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

C.11 Modula-2

The programming language Modula-2 is de�ned by ISO/IEC 10514-1:1996, Information tech-
nology { Programming languages - Part 1: Modula-2, Base Language [26]. An implementation
should follow all the requirements of LIA-2 unless otherwise speci�ed by this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Modula-2 datatype Boolean corresponds to the LIA datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) imin(x, y) y
maxI(x; y) imax(x, y) y
min seqI(xs) iminArr(xs) y
max seqI(xs) imaxArr(xs) y

dimI(x; y) idim(x, y) y
sqrtI(x) isqrt(x) y
powerI(x; y) ipower(x, y) y

dividesI(x; y) divides(x, y) y
evenI(x) not odd(x) ?
oddI(x) odd(x) ?
divfI(x; y) div(x, y) y
modaI(x; y) x mod y ?
groupI(x; y) group(x, y) y
padI(x; y) pad(x, y) y
quotI(x; y) ratio(x, y) y
remrI(x; y) residue(x, y) y
gcdI(x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI(xs) gcdarr(xs) y
lcm seqI(xs) lcmarr(xs) y

add wrapI(x; y) addwrap(x, y) y
add ovI(x; y) addover(x, y) y
sub wrapI(x; y) subwrap(x, y) y
sub ovI(x; y) subover(x, y) y
mul wrapI(x; y) mulwrap(x, y) y
mul ovI(x; y) mulover(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array [] of

INT.

The additional non-transcendental oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) min(x, y) y
maxF (x; y) max(x, y) y

132 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

mminF (x; y) mmin(x, y) y
mmaxF (x; y) mmax(x, y) y
min seqF (xs) minarr(xs) y
max seqF (xs) maxarr(xs) y
mmin seqF (xs) mminarr(xs) y
mmax seqF (xs) mmaxarr(xs) y

dimF (x; y) dim(x, y) y
roundingF (x) rounding(x) y
oorF (x) floor(x) y
ceilingF (x) ceiling(x) y
rounding restF (x) x - rounding(x) y
oor restF (x) x - floor(x) y
ceiling restF (x) x - ceiling(x) y
dprodF!F 0(x; y) prod(x, y) y
remrF (x; y) remainder(x, y) y
sqrtF (x) sqrt(x) ?
rsqrtF (x) rsqrt(x) y

add loF (x; y) addlow(x, y) y
sub loF (x; y) sublow(x, y) y
mul loF (x; y) mullow(x, y) y
div restF (x; y) divrest(x, y) y
sqrt restF (x) sqrtrest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array []

of FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF err hypotenuse(x) y

max err expF err exp(x) y
max err powerF err power(x) y

max err sinhF err sinh(x) y
max err tanhF err tanh(x) y

big radian angleF big radian angle(x) y
max err sinF err sin(x) y
max err tanF err tan(x) y

min angular unitF min angle unit(x) y
big angle uF big angle(x) y
max err sinuF (u) err sin cycle(u) y
max err tanuF (u) err tan cycle(u) y

max err convertF err convert(x) y
max err convertF err convert to string y
max err convertD err convert to string y

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point

C.11 Modula-2 133

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) hypotenuse(x, y) y

powerFI(b; z) powerI(b, z) y
expF (x) exp(x) ?
expm1F (x) expm1(x) y
exp2F (x) exp2(x) y
exp10F (x) exp10(x) y
powerF (b; y) power(b, y) ?
power1pm1 F (b; y) power1PM1(b, y) y

lnF (x) ln(x) ?
ln1pF (x) ln1P(x) y
log2F (x) log2(x) y
log10F (x) log10(x) y
logbaseF (b; x) log(x, b) y
logbase1p1pF (b; x) log1P1P(x, b) y

sinhF (x) sinh(x) y
coshF (x) cosh(x) y
tanhF (x) tanh(x) y
cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) arcsinh(x) y
arccoshF (x) arccosh(x) y
arctanhF (x) arctanh(x) y
arccothF (x) arccoth(x) y
arcsechF (x) arcsech(x) y
arccschF (x) arccsch(x) y

radF (x) radian(x) y
axis radF (x) axis rad(x) y

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) y
secF (x) sec(x) y
cscF (x) csc(x) y

arcsinF (x) arcsin(x) ?
arccosF (x) arccos(x) ?
arctanF (x) arctan(x) ?
arccotF (x) arccot(x) y
arcctgF (x) arcctg(x) y
arcsecF (x) arcsec(x) y
arccscF (x) arccsc(x) y

134 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arcF (x; y) angle(x, y) y

cycleF (u; x) cycle(u, x) y
axis cycleF (u; x) axis cycle(u, x) y

sinuF (u; x) sinu(u, x) y
cosuF (u; x) cosu(u, x) y
tanuF (u; x) tanu(u, x) y
cotuF (u; x) cotu(u, x) y
secuF (u; x) secu(u, x) y
cscuF (u; x) cscu(u, x) y

arcsinuF (u; x) arcsinu(u, x) y
arccosuF (u; x) arccosu(u, x) y
arctanuF (u; x) arctanu(u, x) y
arccotuF (u; x) arccotu(u, x) y
arcctguF (u; x) arcctgu(u, x) y
arcsecuF (u; x) arcsecu(u, x) y
arccscuF (u; x) arccscu(u, x) y
arcuF (u; x; y) angleu(u, x, y) y

rad to cycleF (x; u) Radian to cycle(x, u) y
cycle to radF (u; x) Cycle to radian(u, x) y
cycle to cycleF (u; x; v) Cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in C are can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as `casts', except when converting to/from strings.

convertI!I0(x) INT(x) ?
convertI00!I0(f) ReadCard(f,r) ?
convertI00!I(f) ReadInt(f,r) ?
convertI0!I00(x) WriteCard(h,x) ?
convertI!I00(x) WriteInt(h,x) ?

roundingF!I(y) round(y) ?
oorF!I(y) floor(y) ?
ceilingF!I(y) ceiling(y) ?

convertI!F (x) FLT(x) ?

convertF!F 0(y) FLT2(y) ?
convertF 00!F (f) ReadReal(f,z) ?
convertF!F 00(y) WriteFloat(f,y,a,w) ?
convertF!F 00(y) WriteEng(h,y,a,w) ?
convertF!F 00(y) WriteReal(h,y,a,w) ?

convertD0!F (f) ReadReal(f,z) ?

convertF!D0(y) WriteFixed(h,y,a,w) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of

C.11 Modula-2 135

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional. e is greater than 0.

Modula-2 provides base 8, 10, and 16 non-negative numerals for all its integer types, and base
10 non-negative numerals for all its oating point types. Numerals for oating point types must
have a `.' in them. The details are not repeated in this example binding, see ISO/IEC 10514-1,
clause 6.8.7.1 Whole Number Literals, and clause 6.8.7.2 Real Literals.

Modula-2 does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 INFINITY y
qNaN NAN y
sNaN SIGNAN y

as well as string formats for reading and writing these values as character strings.

Modula-2 has a notion of `exception' that implies a non-returnable, but catchable, change of
control ow. Modula-2 uses its exception mechanism as its default means of noti�cation. Modula-
2 ignores underow noti�cations since an Modula-2 exception is inappropriate for an underow
noti�cation. On underow the continuation value (speci�ed in LIA-2) is used directly without
recording the underow itself. Modula-2 uses the exceptions WHOLE-ZERO-DIVISION, WHOLE-ZERO-REMAINDER,
NEGATIVE-SQRT-ARG, NONPOSITIVE-LN-ARG, NONPOSITIVE-POWER-ARG, TAN-OVERFLOW (for pole,
not overow?), ARCSIN-ARG-MAGNITUDE, and ARCCOS-ARG-MAGNITUDE for pole and invalid noti�-
cations. The exceptions WHOLE-OVERFLOW and REAL-OVERFLOW are used for overow noti�cations.
Since Modula-2 exceptions are non-returnable changes of control ow, no continuation value is
provided for these noti�cations.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

C.12 Pascal and Extended Pascal

The programming language Pascal is de�ned by ISO/IEC 7185:1990, Information technology -
Programming languages { Pascal [28]. The programming language Extended Pascal is de�ned in
ISO/IEC 10206:1991 Information technology { Programming languages { Extended Pascal [29].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Pascal datatype Boolean corresponds to the LIA datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) Imin(x, y) y
maxI(x; y) Imax(x, y) y
min seqI(xs) IminArr(xs) y
max seqI(xs) ImaxArr(xs) y

dimI(x; y) Idim(x, y) y
sqrtI(x) Isqrt(x) y
powerI(x; y) x pow y ?(Extended Pascal)

dividesI(x; y) Divides(x, y) y
evenI(x) (not Odd(x)) ?

136 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

oddI(x) Odd(x) ?
divfI(x; y) Divi(x, y) y
modaI(x; y) Modulo(x, y) y
groupI(x; y) Group(x, y) y
padI(x; y) Pad(x, y) y
quotI(x; y) Ratio(x, y) y
remrI(x; y) Residue(x, y) y
gcdI (x; y) Gcd(x, y) y
lcmI(x; y) Lcm(x, y) y
gcd seqI(xs) GcdArr(xs) y
lcm seqI(xs) LcmArr(xs) y

add wrapI(x; y) AddWrap(x, y) y
add ovI(x; y) AddOver(x, y) y
sub wrapI(x; y) SubWrap(x, y) y
sub ovI(x; y) SubOver(x, y) y
mul wrapI(x; y) MulWrap(x, y) y
mul ovI(x; y) MulOver(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

minF (x; y) Min(x, y) y
maxF (x; y) Max(x, y) y
mminF (x; y) MMin(x, y) y
mmaxF (x; y) MMax(x, y) y
min seqF (xs) MinArr(xs) y
max seqF (xs) MaxArr(xs) y
mmin seqF (xs) MMinarr(xs) y
mmax seqF (xs) MMaxarr(xs) y

roundingF (x) Rounding(x) y
floorF (x) Floor(x) y
ceilingF (x) Ceiling(x) y

dimF (x; y) Dim(x, y) y
dprodF!F 0(x; y) Prod(x, y) y
remrF (x; y) Remainder(x, y) y
sqrtF (x) Sqrt(x) ?
rsqrtF (x) Rsqrt(x) y

add loF (x; y) AddLow(x, y) y
sub loF (x; y) SubLow(x, y) y
mul loF (x; y) MulLow(x, y) y
div restF (x; y) DivRest(x, y) y
sqrt restF (x) SqrtRest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF Err hypotenuse(x) y

C.12 Pascal and Extended Pascal 137

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

max err expF Err exp(x) y
max err powerF Err power(x) y

max err sinhF Err sinh(x) y
max err tanhF Err tanh(x) y

big radian angleF Big radian angle(x) y
max err sinF Err sin(x) y
max err tanF Err tan(x) y

min angular unitF Min angle unit(x) y
big angleF Big angle(x) y
max err sinuF (u) Err sin cycle(u) y
max err tanuF (u) Err tan cycle(u) y

max err convertF Err convert(x) y
max err convertF 0 Err convert to string y
max err convertD0 Err convert to string y

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) Hypotenuse(x, y) y

powerFI(b; z) b pow z ?(Extended Pascal)
expF (x) Exp(x) ?
expm1F (x) ExpM1(x) y
exp2F (x) Exp2(x) y
exp10F (x) Exp10(x) y
powerF (b; y) b ** y ?(Extended Pascal)
power1pm1F (b; y) Power1PM1(b, y) y

lnF (x) Ln(x) ?
ln1pF (x) Ln1P(x) y
log2F (x) Log2(x) y
log10F (x) Log10(x) y
logbaseF (b; x) Log(x, b) y
logbase1p1pF (b; x) Log1P1P(x, b) y

sinhF (x) Sinh(x) y
coshF (x) Cosh(x) y
tanhF (x) Tanh(x) y
cothF (x) Coth(x) y
sechF (x) Sech(x) y
cschF (x) Csch(x) y

arcsinhF (x) Arcsinh(x) y
arccoshF (x) Arccosh(x) y

138 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arctanhF (x) Arctanh(x) y
arccothF (x) Arccoth(x) y
arcsechF (x) Arcsech(x) y
arccschF (x) Arccsch(x) y

radF (x) Radian(x) y
axis radF (x) Axis Radian(x, h, v) y

sinF (x) Sin(x) ?
cosF (x) Cos(x) ?
tanF (x) Tan(x) y
cotF (x) Cot(x) y
secF (x) Sec(x) y
cscF (x) Csc(x) y

arcsinF (x) Arcsin(x) y
arccosF (x) Arccos(x) y
arctanF (x) Arctan(x) ?
arccotF (x) Arccot(x) y
arcctgF (x) Arccot(x) y
arcsecF (x) Arcsec(x) y
arccscF (x) Arccsc(x) y
arcF (x; y) Angle(x, y) y

cycleF (u; x) Cycle(u, x) y
axis cycleF (u; x) Axis Cycle(u, x, h, v) y

sinuF (u; x) SinU(u, x) y
cosuF (u; x) CosU(u, x) y
tanuF (u; x) TanU(u, x) y
cotuF (u; x) CotU(u, x) y
secuF (u; x) SecU(u, x) y
cscuF (u; x) CscU(u, x) y

arcsinuF (u; x) ArcsinU(u, x) y
arccosuF (u; x) ArccosU(u, x) y
arctanuF (u; x) ArctanU(u, x) y
arccotuF (u; x) ArccotU(u, x) y
arcctguF (u; x) ArccotU(u, x) y
arcsecuF (u; x) ArcsecU(u, x) y
arccscuF (u; x) ArccscU(u, x) y
arcuF (u; x; y) AngleU(u, x, y) y

rad to cycleF (x; u) RadianToCycle(x, u) y
cycle to radF (u; x) CycleToRadian(u, x) y
cycle to cycleF (u; x; v) CycleToCycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in C are can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as `casts', except when converting to/from strings.

C.12 Pascal and Extended Pascal 139

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

convertI00!I(f) read(f?, r) ?
convertI!I00(x) write(h?, x:n?) ?

roundingF!I(y) round(y) ?
oorF!I(y) floor(y) y
ceilingF!I(y) ceiling(y) y

convertF 00!F (f) read(f?,m) ?
convertF!F 00(y) write(h?,y:i) ?

convertD0!F (f) read(f?,m) ?

convertF!D0(y) write(h?,y:i:a) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional. e is greater than 0.

Pascal provides base 10 non-negative numerals for its only integer type and only oating point
type. Numerals for oating point types must have a `.' in them. The details are not repeated in
this example binding, see ISO/IEC FDIS 9899, clause xxxxxx, and clause yyyyy.

Pascal does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 INFINITY y
qNaN NAN y
sNaN SIGNAN y

as well as string formats for reading and writing these values as character strings.

Pascal has the notion of `error', which results in a change of `control ow', which cannot be
returned from, nor caught. An `error' results in the termination of the program. pole for integer
types and invalid (in general) are considered to be error. No noti�cation results for underow,
and the continuation value (speci�ed by LIA-2) is used directly, since recording of indicators is
not available and `error' is inappropriate for underow. The handling of integer overow is
implementation dependent. The handling of oating point overow and pole should be to return
a suitable in�nity (speci�ed by LIA-2), if possible, without any noti�cation, since recording of
indicators is not available.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

C.13 PL/I

The programming language PL/I is de�ned by ANSI X3.53-l976 (R1998), Programming languages
{ PL/I [44], and endorsed by ISO 6160:1979, Programming languages { PL/I [30]. The program-
ming language General Purpose PL/I is de�ned by ISO/IEC 6522:1992, Information technology
{ Programming languages { PL/I general-purpose subset [31], also: ANSI X3.74-1987 (R1998).

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

140 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

The LIA datatype Boolean is implemented in the PL/I datatype BIT(1) (1 = true and 0 =
false).

An implementation of PL/I provides at least one integer data type, and at least one oating
point data type. The attribute FIXED(n,0) selects a signed integer datatype with at least n
(decimal or binary) digits of storage. The attribute FLOAT(k) selects a oating point datatype
with at least n (decimal or binary) digits of precision.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) min(x, y) ?
maxI(x; y) max(x, y) ?
min seqI(xs) min(xs[1], xs[2], ..., xs[n]) ?
max seqI(xs) max(xs[1], xs[2], ..., xs[n]) ?

dimI(x; y) dim(x, y) y
sqrtI(x) sqrt(x) y
powerI(x; y) x ** y ?

dividesI (x; y) divides(x, y) y
evenI(x) mod(x) = 0 ?
oddI(x) mod(x) := 0 ?
divfI(x; y) divi(x, y) y
modaI(x; y) mod(x, y) ?
groupI(x; y) group(x, y) y
padI(x; y) pad(x, y) y
quotI(x; y) ratio(x, y) y
remrI(x; y) residue(x, y) y
gcdI (x; y) gcd(x, y) y
lcmI(x; y) lcm(x, y) y
gcd seqI(xs) gcd(xs) y
lcm seqI(xs) lcm(xs) y

add wrapI(x; y) add wrap(x, y) y
add ovI(x; y) add over(x, y) y
sub wrapI(x; y) sub wrap(x, y) y
sub ovI(x; y) sub over(x, y) y
mul wrapI(x; y) mul wrap(x, y) y
mul ovI(x; y) mul over(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array of INT.

The LIA-2 non-transcendental oating point operations are listed below, along with the syntax
used to invoke them:

minF (x; y) min(x, y) ?
maxF (x; y) max(x, y) ?
min seqF (xs) min(xs[1], xs[2], ..., xs[n]) ?
max seqF (xs) max(xs[1], xs[2], ..., xs[n]) ?

roundingF (x) round(x) ?
floorF (x) floor(x) y
ceilingF (x) ceil(x) y

dimF (x; y) dim(x, y) y
dprodF!F 0(x; y) prod(x, y) y

C.13 PL/I 141

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

remrF (x; y) remainder(x, y) y
sqrtF (x) sqrt(x) ?
rsqrtF (x) rsqrt(x) y

add loF (x; y) add low(x, y) y
sub loF (x; y) aub low(x, y) y
mul loF (x; y) mul low(x, y) y
div restF (x; y) div rest(x, y) y
sqrt restF (x) sqrt rest(x) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF err hypotenuse(x) y

max err expF err exp(x) y
max err powerF err power(x) y

max err sinhF err sinh(x) y
max err tanhF err tanh(x) y

big radian angleF big radian angle(x) y
max err sinF err sin(x) y
max err tanF err tan(x) y

min angular unitF min angle unit(x) y
big angleF big angle(x) y
max err sinuF (u) err sin cycle(u) y
max err tanuF (u) err tan cycle(u) y

max err convertF err convert to string y
max err convertD err convert to string y

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) hypotenuse(x, y) y

powerFI(b; z) poweri(b, z) y
expF (x) exp(x) ?
expm1F (x) expm1(x) y
exp2F (x) exp2(x) y
exp10F (x) exp10(x) y
powerF (b; y) power(b, y) y
power1pm1F (b; y) power1pm1(b, y) y

lnF (x) log(x) ?
ln1pF (x) log1p(x) y
log2F (x) log2(x) ?

142 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

log10F (x) log10(x) ?
logbaseF (b; x) log(b, x) y
logbase1p1pF (b; x) log1p1p(b, x) y

sinhF (x) sinh(x) ?
coshF (x) cosh(x) ?
tanhF (x) tanh(x) ?
cothF (x) coth(x) y
sechF (x) sech(x) y
cschF (x) csch(x) y

arcsinhF (x) arcsinh(x) ?
arccoshF (x) arccosh(x) ?
arctanhF (x) arctanh(x) ?
arccothF (x) arccoth(x) y
arcsechF (x) arcsech(x) y
arccschF (x) arccsch(x) y

radF (x) rad(x) y
axis radF (x) axis rad(x) y

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) ?
secF (x) sec(x) y
cscF (x) csc(x) y

arcsinF (x) arcsin(x) ?
arccosF (x) arccos(x) ?
arctanF (x) arctan(x) ?
arccotF (x) arccot(x) y
arcctgF (x) arcctg(x) y
arcsecF (x) arcsec(x) y
arccscF (x) arccsc(x) y
arcF (x; y) arc(x, y) ?

cycleF (u; x) cycle(u,x) y
axis cycleF (u; x) axis cycle(u,x) y

sinuF (u; x) sin(u,x) y
cosuF (u; x) cos(u,x) y
tanuF (u; x) tan(u,x) y
cotuF (u; x) cot(u,x) y
secuF (u; x) sec(u,x) y
cscuF (u; x) csc(u,x) y

arcsinuF (u; x) arcsin(u,x) y
arccosuF (u; x) arccos(u,x) y
arctanuF (u; x) arctan(u,x) ?
arccotuF (u; x) arccot(u,x) y

C.13 PL/I 143

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arcctguF (u; x) arcctg(u,x) ?
arcsecuF (u; x) arcsec(u,x) y
arccscuF (u; x) arccsc(u,x) y
arcuF (u; x; y) arc(u,x,y) y

sinuF (360; x) sind(x) ?
cosuF (360; x) cosd(x) ?
tanuF (360; x) tand(x) ?
cotuF (360; x) cotd(x) ?
secuF (360; x) secd(x) y
cscuF (360; x) cscd(x) y

arcsinuF (360; x) arcsind(x) ?
arccosuF (360; x) arccosd(x) ?
arctanuF (360; x) arctand(x) ?
arccotuF (360; x) arccotd(x) ?
arcctguF (360; x) arcctgd(x) ?
arcsecuF (360; x) arcsecd(x) y
arccscuF (360; x) arccscd(x) y
arcuF (360; x; y) arcd(y,x) y

rad to cycleF (x; u) rad to cycle(x, u) y
cycle to radF (u; x) cycle to rad(u, x) y
cycle to cycleF (u; x; v) cycle to cycle(u, x, v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in PL/I are can be explicit or implicit. The rules for when
implicit conversions are applied is not repeated here. The explicit arithmetic value conversions
are usually expressed as `casts', except when converting to/from strings.

convertI!I0(x) FIXED(x, p) ?
convertI00!I(f) GET FILE (f)? EDIT (r) (F(w)); ?
convertI!I00(x) PUT FILE (h)? EDIT (x) (F(w)); ?

roundingF!I(y) FIXED(ROUND(y, 0),p) ?
oorF!I(y) FIXED(FLOOR(y), p) ?
ceilingF!I(y) FIXED(CEIL(y), p) ?

convertI!F (x) FLOAT(x, p) ?
convertI!F (x) DECIMAL(x, p) ?
convertI!F (x) BINARY(x, p) ?

convertF!F 0(y) FLOAT(y, p) ?
convertF!F 0(y) DECIMAL(y, p) ?
convertF!F 0(y) BINARY(y, p) ?
convertF 00!F (f) GET FILE (f)? EDIT (t) (E(w,a)); ?
convertF!F 00(y) PUT FILE (h)? EDIT (y) (E(w,a)); ?

convertD0!F (f) GET FILE (f)? EDIT (t) (F(w,a)); ?

convertF!D0(y) FIXED(y, p, a)) ?
convertF!D0(y) PUT FILE (h)? EDIT (y) (F(w,a)); ?

144 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0. A ? above indicates that the parameter is optional. a is greater than 0.

PL/I provides base 10 non-negative numerals for all its integer and oating point types.

PL/I does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 INFINITY y
qNaN NAN y
sNaN SIGNAN y

as well as string formats for reading and writing these values as character strings.

PL/I has a notion of `condition' that implies a non-returnable, but catchable (in an ON-unit),
change of control ow. PL/I uses its condition mechanism as its default means of noti�ca-
tion. PL/I uses the condition UNDERFLOW for underow noti�cations. PL/I uses the condition
ZERODIVIDE for pole noti�cations, and the conditions FIXEDOVERFLOW, SIZE, and OVERFLOW for
overow noti�cations, and the exception UNDEFINED (y) for invalid noti�cations. Since PL/I
exceptions are non-returnable changes of control ow, no continuation value is provided for these
noti�cations. This is inappropriate, especially for underow, so UNDERFLOW noti�cations are
ignored if there is no ON-clause for UNDERFLOW in the program.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

C.14 SML

The programming language SML is de�ned by The De�nition of Standard ML (Revised) [68].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The SML datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of SML has at least one integer datatype, int, and at least one oating
point datatype, real. The notation INT is used to stand for the name of one of the integer
datatypes, and FLT is used to stand for the name of one of the oating point datatypes in what
follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) x min y or op min (x,y) ?
maxI(x; y) x max y or op max (x,y) ?
min seqI(xs) minimum xs y
max seqI(xs) maximum xs y

dimI(x; y) x dim y or op dim (x,y) y
sqrtI(x) isqrt x y
powerI(x; y) x pow y or op pow (x,y) y

dividesI (x; y) divides (x,y) y
evenI(x) even x y
oddI(x) odd x y
divfI(x; y) x div y or op div (x,y) ?

C.14 SML 145

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

modaI(x; y) x mod y or op mod (x,y) ?
groupI(x; y) group (x,y) y
padI(x; y) pad (x,y) y
quotI(x; y) ratio (x,y) y
remrI(x; y) residue (x,y) y
gcdI(x; y) gcd (x,y) ?
lcmI(x; y) lcm (x,y) ?
gcd seqI(xs) gcd seq xs y
lcm seqI(xs) lcm seq xs y

add wrapI(x; y) x +: y y
add ovI(x; y) x +:+ y y
sub wrapI(x; y) x -: y y
sub ovI(x; y) x -:+ y y
mul wrapI(x; y) x *: y y
mul ovI(x; y) x *:+ y y

where x and y are expressions of type INT and where xs is an expression of type INT list.

The additional non-transcendental oating point operations are listed below, along with the
syntax used to invoke them:

minF (x; y) x min y or op min (x,y) ?
maxF (x; y) x max y or op max (x,y) ?
mminF (x; y) x mmin y or op mmin (x,y) y
mmaxF (x; y) x mmax y or op mmax (x,y) y
min seqF (xs) minimum xs y
max seqF (xs) maximum xs y
mmin seqF (xs) mminimum xs y
mmax seqF (xs) mmaximum xs y

roundingF (x) realRound x y
floorF (x) realFloor x ?
ceilingF (x) realCeil x ?

dimF (x; y) dim (x,y) y
dprodF!F 0(x; y) prod (x,y) y
remrF (x; y) remainder (x,y) y
sqrtF (x) sqrt x ?
rsqrtF (x) rsqrt x y

add loF (x; y) x +:- y y
sub loF (x; y) x -:- y y
mul loF (x; y) x *:- y y
div restF (x; y) x /:* y y
sqrt restF (x) sqrt rest x y

where x, y and z are expressions of type FLT, and where xs is an expression of type FLT list.

The binding for the oor, round, and ceiling operations here take advantage of the unlimited
Integer type in SML, and that Integer is the default integer type.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

max err hypotF err hypotenuse x y

146 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

max err expF err exp x y
max err powerF err power x y

max err sinhF err sinh x y
max err tanhF err tanh x y

big angle rF big radian angle x y
max err sinF err sin x y
max err tanF err tan x y

min angular unitF min angular unit x y
big angle uF big angle x y
max err sinuF (u) err sin cycle u y
max err tanuF (u) err tan cycle u y

max err convertF err convert(x) y
max err convertF 0 err convert to string y
max err convertD0 err convert to string y

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the oating point
types.

The LIA-2 elementary oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) hypotenuse (x,y) y

powerFI(b; z) b ^^ z or op ^^ (x,y) y
expF (x) exp x ?
expm1F (x) expM1 x y
exp2F (x) exp2 x y
exp10F (x) exp10 x y
powerF (b; y) b ** y y
powF (b; y) b pow y or op pow (x,y) ? Not LIA-2! (See C.)
power1pm1F (b; y) power1PM1 (b,y) y

lnF (x) ln x ?
ln1pF (x) ln1P x y
log2F (x) log2 x y
log10F (x) log10 x ?
logbaseF (b; x) log base (b,x) y
logbase1p1pF (b; x) log base1P1P (b,x) y

sinhF (x) sinh x ?
coshF (x) cosh x ?
tanhF (x) tanh x ?
cothF (x) coth x y
sechF (x) sech x y
cschF (x) csch x y

arcsinhF (x) arcsinh x y

C.14 SML 147

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arccoshF (x) arccosh x y
arctanhF (x) arctanh x y
arccothF (x) arccoth x y
arcsechF (x) arcsech x y
arccschF (x) arccsch x y

radF (x) radians x y
axis radF (x) axis rad x y

sinF (x) sin x ?
cosF (x) cos x ?
tanF (x) tan x ?
cotF (x) cot x y
secF (x) sec x y
cscF (x) csc x y

arcsinF (x) arcsin x ?
arccosF (x) arccos x ?
arctanF (x) arctan x ?
arccotF (x) arccot x y
arcctgF (x) arcctg x y
arcsecF (x) arcsec x y
arccscF (x) arccsc x y
arcF (x; y) arctan2 (y,x) ?

cycleF (u; x) cycle (u,x) y
axis cycleF (u; x) axis cycle (u,x) y

sinuF (u; x) sinU (u,x) y
cosuF (u; x) cosU (u,x) y
tanuF (u; x) tanU (u,x) y
cotuF (u; x) cotU (u,x) y
secuF (u; x) secU (u,x) y
cscuF (u; x) cscU (u,x) y

arcsinuF (u; x) arcsinU (u,x) y
arccosuF (u; x) arccosU (u,x) y
arctanuF (u; x) arctanU (u,x) y
arccotuF (u; x) arccotU (u,x) y
arcctguF (u; x) arcctgU (u,x) y
arcsecuF (u; x) arcsecU (u,x) y
arccscuF (u; x) arccscU (u,x) y
arcuF (u; x; y) arctan2U (u,y,x) y

rad to cycleF (x; u) rad to cycle (x,u) y
cycle to radF (u; x) cycle to rad (u,x) y
cycle to cycleF (u; x; v) cycle to cycle (u,x,v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Type conversions in SML are always explicit.

convertI!I0(x) fromLarge x or toLarge x ?

148 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

convertI00!I(s) fromString s ?
convertI00!I(s) scan radix getc s ?
convertI!I00(x) toString x ?

roundingF!I(y) round y ?
roundingF!I(y) toInt IEEEReal.TO NEAREST y ?
roundingF!I(y) toLargeInt IEEEReal.TO NEAREST y ?
oorF!I(y) floor y ?
oorF!I(y) toInt IEEEReal.TO NEGINF y ?
oorF!I(y) toLargeInt IEEEReal.TO NEGINF y ?
ceilingF!I(y) ceiling y ?
ceilingF!I(y) toInt IEEEReal.TO POSINF y ?
ceilingF!I(y) toLargeInt IEEEReal.TO POSINF y ?

convertI!F (x) fromInt x ?
convertI!F (x) fromLargeInt x ?

convertF!F 0(y) toLarge y ?
convertF!F 0(y) fromLarge IEEEReal.TO NEAREST y ?
convertF 00!F (s) fromString s ?
convertF 00!F (s) fromDecimal s ?
convertF 00!F (s) scan getc s ?
convertF!F 00(y) fmt (SCI a) y ?
convertF!F 00(y) toDecimal y ?

convertD0!F (s) fromString s ?
convertD0!F (s) scan getc s ?

convertF!D0(y) fmt (FIX a) y ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0.

SML provides non-negative base 10 numerals for all its integer and oating point types. There
is no di�erentiation between the numerals for di�erent oating point types, nor between numerals
for di�erent integer types, but integer numerals cannot be used for oating point values. The
details are not repeated in this example binding, see The De�nition of Standard ML (Revised) [68].

SML speci�es numerals for in�nities, but not NaNs:

+1+1+1 posInf ?
�1�1�1 negInf ?
qNaN NaN y
sNaN sigNaN y

An implementation wishing to conform to LIA-2 should also provide string formats for reading
and writing these values as character strings.

SML has a notion of `exception' that implies a non-returnable, but catchable, change of control
ow. SML uses its exception mechanism as its default means of noti�cation. SML ignores
underow noti�cations since an SML exception is inappropriate for an underow noti�cation.
On underow the continuation value (speci�ed in LIA-2) is used directly without recording the
underow itself. SML uses the exception Div for pole noti�cations, the exception Overflow

for overow noti�cations, and the exception Domain for invalid noti�cations (except for sin,
cos, or tan given an in�nitary argument, where the invalid noti�cation is ignored). Since SML

C.14 SML 149

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

exceptions are non-returnable changes of control ow, no continuation value is provided for these
noti�cations.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

150 Example bindings for speci�c languages

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

Annex D

(informative)

Bibliography

This annex gives references to publications relevant to LIA-2.

EDITOR'S NOTE { The naming of the standards appears unsystematic, but is as taken
from ISO's, IEC's and ANSI's websites.

International standards documents

[1] ISO/IEC JTC1 Directives, Part 3: Drafting and presentation of International Standards,
1989.

[2] IEC 60559:1989, Binary oating-point arithmetic for microprocessor systems. (Also:
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.)

[3] ISO/IEC 10967-1:1994, Information technology { Language independent arithmetic { Part
1: Integer and oating point arithmetic, (LIA-1).

[4] ISO/IEC FCD4 10967-2, Information technology { Language independent arithmetic { Part
2: Elementary numerical functions, 1999, (LIA-2). (This document.)

[5] ISO/IEC 10967-3, Information technology { Language independent arithmetic { Part 3:
Complex oating point arithmetic and complex elementary numerical functions, (LIA-3).
(To be published.)

[6] ISO 6093:1985, Information processing { Representation of numerical values in character
strings for information interchange.

[7] ISO/IEC TR 10176:1998, Information technology { Guidelines for the preparation of pro-
gramming language standards.

[8] ISO/IEC TR 10182:1993, Information technology { Programming languages, their environ-
ments and system software interfaces { Guidelines for language bindings.

[9] ISO/IEC 13886:1996, Information technology { Language-Independent Procedure Calling,
(LIPC).

[10] ISO/IEC 11404:1996, Information technology { Programming languages, their environments
and system software interfaces { Language-independent datatypes, (LID).

[11] ISO/IEC 8652:1995, Information technology { Programming languages { Ada.

[12] ISO/IEC 11430:1994, Information technology { Programming languages { Generic package
of elementary functions for Ada.

[13] ISO/IEC 13813:1998, Information technology { Programming languages { Generic packages
of real and complex type declarations and basic operations for Ada (including vector and
matrix types).

[14] ISO/IEC 13814:1998, Information technology { Programming languages { Generic package
of complex elementary functions for Ada.

[15] ISO 8485:1989, Programming languages { APL.

[16] ISO/IEC DIS 13751, Information technology { Programming languages, their environments
and system software interfaces { Programming language APL, extended, 1999.

D. Bibliography 151

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

[17] ISO/IEC 10279:1991, Information technology { Programming languages { Full BASIC. (Es-
sentially an endorsement of ANSI X3.113-1987 (R1998) [41].)

[18] ISO/IEC 9899:1990, Programming languages { C. Currently under revision: ISO/IEC FDIS
9899, 1999.

[19] ISO/IEC 14882:1998, Programming languages { C++.

[20] ISO 1989:1985, Programming languages { COBOL. (Endorsement of ANSI X3.23-l985
(R1991) [42].) Currently under revision (1998).

[21] ISO/IEC 16262:1998, Information technology - ECMAScript language speci�cation.

[22] ISO/IEC 15145:1997, Information technology { Programming languages { FORTH. (Also:
ANSI X3.215-1994.)

[23] ISO/IEC 1539-1:1997, Information technology { Programming languages { Fortran - Part 1:
Base language.

[24] ISO/IEC TR 15580:1998, Information technology { Programming languages { Fortran {
Floating-point exception handling.

[25] ISO/IEC 13816:1997, Information technology { Programming languages, their environments
and system software interfaces { Programming language ISLISP.

[26] ISO/IEC 10514-1:1996, Information technology { Programming languages { Part 1: Modula-
2, Base Language.

[27] ISO/IEC 10514-2:1998, Information technology { Programming languages { Part 2: Generics
Modula-2.

[28] ISO 7185:1990, Information technology { Programming languages { Pascal.

[29] ISO/IEC 10206:1991, Information technology { Programming languages { Extended Pascal.

[30] ISO 6160:1979, Programming languages { PL/I. (Endorsement of ANSI X3.53-l976 (R1998)
[44].)

[31] ISO/IEC 6522:1992, Information technology { Programming languages { PL/I general-
purpose subset. (Also: ANSI X3.74-1987 (R1998).)

[32] ISO/IEC 13211-1:1995, Information technology { Programming languages { Prolog { Part 1:
General core.

[33] ISO/IEC 9075:1992, Information technology { Database languages { SQL.

[34] ISO/IEC 8824-1:1995, Information technology { Abstract Syntax Notation One (ASN.1) {
Part 1: Speci�cation of basic notation.

[35] ISO/IEC 9001:1994, Quality systems { Model for quality assurance in design, development,
production, installation and servicing.

[36] ISO/IEC 9126:1991, Information technology { Software product evaluation { Quality char-
acteristics and guidelines for their use.

[37] ISO/IEC 12119:1994, Information technology { Software packages { Quality requirements
and testing.

[38] ISO/IEC 14598-1:1999, Information technology { Software product evaluation { Part 1: Gen-
eral overview.

152 Bibliography

Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

National standards documents

[39] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

[40] ANSI/IEEE Standard 854-1987, IEEE Standard for Radix-Independent Floating-Point Arith-
metic.

[41] ANSI X3.113-1987 (R1998), Information technology { Programming languages { Full BASIC.

[42] ANSI X3.23-l985 (R1991), Programming languages { COBOL.

[43] ANSI X3.226-1994, Information Technology { Programming Language { Common Lisp.

[44] ANSI X3.53-l976 (R1998), Programming languages { PL/I.

[45] ANSI/IEEE 1178-1990, IEEE Standard for the Scheme Programming Language.

[46] ANSI/NCITS 319-1998, Information Technology { Programming Languages { Smalltalk.

Books, articles, and other documents

[47] J. S. Squire (ed), Ada Letters, vol. XI, No. 7, ACM Press (1991).

[48] M. Abramowitz and I. Stegun (eds), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Tenth Printing, 1972, Superintendent of Documents, U.S.
Government Printing OÆce, Washington, D.C. 20402.

[49] J. Du Croz and M. Pont, The Development of a Floating-Point Validation Package, NAG
Newsletter, No. 3, 1984.

[50] J. W. Demmel and X. Li, Faster Numerical Algorithms via Exception Handling, 11th Inter-
national Symposium on Computer Arithmetic, Winsor, Ontario, June 29 - July 2, 1993.

[51] D. Goldberg,What Every Computer Scientist Should Know about Floating-Point Arithmetic.
ACM Computing Surveys, Vol. 23, No. 1, March 1991.

[52] J. R. Hauser, Handling Floating-Point Exceptions in Numeric Programs. ACM Transactions
on Programming Languages and Systems, Vol. 18, No. 2, March 1986, Pages 139-174.

[53] W. Kahan, Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing's
Sign Bit, Chapter 7 in The State of the Art in Numerical Analysis ed. by M Powell and A
Iserles (1987) Oxford.

[54] W. Kahan, Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic, Panel Discussion of Floating-Point Past, Present and Future, May 23, 1995, in
a series of San Francisco Bay Area Computer Historical Perspectives, sponsored by SUN
Microsystems Inc.

[55] U. Kulisch and W. L. Miranker, Computer Arithmetic in Theory and Practice, Academic
Press, 1981.

[56] U. Kulisch and W. L. Miranker (eds), A New Approach to Scienti�c Computation, Academic
Press, 1983.

[57] D. C. Sorenson and P. T. P. Tang, On the Orthogonality of Eigenvectors Computed by Divide-
and-Conquer Techniques, SIAM Journal of Numerical Analysis, Vol. 28, No. 6, p. 1760,
algorithm 5.3.

[58] Floating-Point C Extensions in Technical Report Numerical C Extensions Committee X3J11,
April 1995, SC22/WG14 N403, X3J11/95-004.

D. Bibliography 153

ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

[59] David M. Gay, Correctly Rounded Binary-Decimal and Decimal-Binary Conversions, AT&T
Bell Laboratories, Numerical Analysis Manuscript 90-10, November 1990.

[60] M. Payne and R. Hanek, Radian Reduction for Trigonometric Functions, SIGNUM Newslet-
ter, Vol. 18, January 1983.

[61] M. Payne and R. Hanek, Degree Reduction for Trigonometric Functions, SIGNUM Newslet-
ter, Vol. 18, April 1983.

[62] N. L. Schryer, A Test of a Computer's Floating-Point Unit, Computer Science Technical
Report No. 89, AT&T Bell Laboratories, Murray Hill, NJ, 1981.

[63] G. Bohlender, W. Walter, P Kornerup, D. W. Matula, Semantics for Exact Floating Point
Operations, IEEE Arithmetic 10, 1992.

[64] W. Walter et al., Proposal for Accurate Floating-Point Vector Arithmetic, Mathematics and
Computers in Simulation, vol. 35, no. 4, pp. 375-382, IMACS, 1993.

[65] James Gosling, Bill Joy, Guy Steele, The Java Language Speci�cation.

[66] Simon Peyton Jones et al., Report on the programming language Haskell 98, February 1999.

[67] Simon Peyton Jones et al., Standard libraries for the Haskell 98 programming language,
February 1999.

[68] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen, The De�nition of Standard
ML (Revised), The MIT Press, 1997, ISBN: 0-262-63181-4.

154 Bibliography

