IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Draft Standard for Information Technology—
Portable Operating System Interface (POSIX®)

Draft Technical Standard: Base Definitions, Issue 7

Prepared by the Austin Group (Www.opengroup.org/austin)

Copyright © 2006 The Institute of Electrical & Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2006 The Open Group
Thames Tower, Station Road, Reading, Berkshire RG1 1LX, UK

All rights reserved.

Except as permitted below, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright
owners. This is an unapproved draft, subject to change. Permission is hereby granted for Austin Group participants to reproduce
this document for purposes.of IEEE, The Open Group, and JTC1 standardization activities. Other entities seeking permission to
reproduce this document for standardization purposes or other activities must contact the copyright owners for an appropriate
license. Use of information contained within this unapproved draft is at your own risk.

Portions of this document ‘are derived with permission from copyrighted material owned by Hewlett-Packard Company,
International Business Machines Corporation, Novell Inc., The Open Software Foundation, and Sun Microsystems, Inc.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. i

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Abstract

This standard defines a standard operating system interface and environment, including a command interpreter (or “shell”), and
common utility programs to support applications portability at the source code level. This standard is intended to be used by both
applications developers and system implementors and comprises four major components (each in an associated volume):

» General terms, concepts, and interfaces common to all volumes of this standard, including utility conventions and C-language
header definitions, are included in the Base Definitions volume.

« Definitions for system service functions and subroutines, language-specific system services for the C programming language,
function issues, including portability, error handling, and error recovery, are included in the System Interfaces volume.

« Definitions for a standard source code-level interface to command interpretation services (a “shell”) and common utility
programs for application programs are included in the Shell and Utilities volume.

« Extended rationale that did not fit well into the rest of the document structure, which contains historical information
concerning the contents of this standard and why features were included or discarded by the standard developers, is included
in the Rationale (Informative) volume.

The following areas are outside the scope of this standard:
+ Graphics interfaces
« Database management system interfaces
o Record I/O considerations
« Object or binary code portability
» System configuration and resource availability

This standard describes the external characteristics and facilities that are of importance to applications developers, rather than the
internal construction techniques employed to achieve these capabilities. Special emphasis is placed on those functions and facilities
that are needed in a wide variety of commercial applications.

Keywords

application program interface (API), argument, asynchronous, basic regular expression (BRE), batch job, batch system, built-in
utility, byte, child, command language interpreter, CPU, extended regular expression (ERE), FIFO, file access control mechanism,
input/output (I/0), job control, network, portable operating system interface (POSIX®), parent, shell, stream, string, synchronous,
system, thread, X/Open System Interface (XSI)

Feedback

This standard hasbeen prepared by the Austin Group. Feedback relating to the material contained in this standard may be
submitted using the Austin Group web site at www.opengroup.org/austin/bugreport.html.

ii Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

http://www.opengroup.org/austin/bugreport.html

® NN O O o W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Contents

Chapter 1 Introduction 1
1.1 SCOPE ...ttt 1
1.2 CONFOTINANCE ..ottt ettt ete et e et e eeteeetaeenaeeesesenteeeseseseeereeenreeenes 2
1.3 NOIrmMative REFEIENCESccuvieviiiiieeeeeeeeeeeetee ettt ens 2
14 TErMINOLOZYeovmeieiiiiiiciii e 3
1.5 POrtabilitycoiieiiiiiiii s 4
15.1 (@0 Yo =TSO TSTR 4
152 Margin Code NOtation ...l 11

Chapter 2 Conformance 13
2.1 Implementation CoNfOrmMance.... o ..o 13
2.1.1 Requirementsol 13
2.1.2 DOCUMENEATION. ... e et e e et e e reeeeeaeeeeneeeenaeeeenns 13
2.1.3 POSIX CONFOTIMANCEevvevvieeeeeeeee ettt eeree et e eaeeereseeaeeeresereeeseeenreas 14
2.1.3.1 POSIX System Interfacesiviiniiciciicccccccceeceeees 14
2.1.3.2 POSIX Shell and UHHHESccveeeviieic et 16
214 XST CONFOIINAINCEieeeeeeeee e eree e et e e b e s e reeeeeeeteeereeeseeerreeeneeeneeennes 17
2141 XSI System Interfaces.......iococeueueeiiiiiiiiehcccccces 17
2142 XSI Shell and Utilities CONfOrmance.............iveiveeeeeeeveeeeeeeeeeee e ens 18
2.15 OPtioN GIOUPS wucviviviiiiniiiiectieic e 18
2.1.5.1 Subprofiling Considerations............ccccccceueuiiiiiiiiiiiiciiiccceeceee 18
2152 XS Option GIOUPS ..cvcveiiiiisiieihciic e 20
2.1.6 OPHONS ...t e 24
2.1.6.1 System Interfaces ... i i 24
2.1.6.2 Shell and UHIEIES . .iec. ittt e e et eeaeeeaeeeneeens 25
2.2 Application CONfOrmance ..o 27
2.2.1 Strictly Conforming POSIX Applicationcccccoecueuiiciiciiiccicinicnnas 27
222 Conforming POSIX Application.........ccccccucucuiiiiiiiiiiiiiiciicccccccnes 28
2221 ISO/IEC Conforming POSIX Application..........cccccoeeeviiciviriniciicncnnens 28
2222 <National Body> Conforming POSIX Application..........cccccccoeiururununnes 28
223 Conforming POSIX Application Using Extensions..........ccccccoeoeucuinunnnes 28
224 Strictly Conforming XSI Application...........cccccceeuiiiiiiciciiiiiiiicnas 28
225 Conforming XSI Application Using Extensions...........cccccccoeciiiuinnnnes 29
2.3 Language-Dependent Services for the C Programming Language 29
2.4 Other Language-Related Specificationscccooveivnininninnnnnnnncnenen. 29

Chapter 3 Definitions 31
3.1 ADOTHIVE REICASE ...ttt et ereeens 31
3.2 Absolute Pathnameoovooviiiiieeieeececeeceeeeeee et 31
3.3 ACCESS IMOAE....eiiieeeeeee ettt ettt ettt et e e ete e ereeereeenes 31
34 Additional File Access Control MechaniSmccccoeeveeeveeveeeeeecneeeeeeneee 31
3.5 AdAIess SPACE ... 31
3.6 Advisory INformation ... 31
3.7 Affirmative RESPONSE. ... 32

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. iii

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

3.8 AlTt i
39 Alert Character (<alert>)ccccoevevievievieieeeieeeeeeeeeese e
3.10 Alias NaME ..o
3.11 ALGNMENt ...
3.12 Alternate File Access Control Mechanism...........cccocoevveinnee
3.13 Alternate Signal Stackoooveviiriiiiiiie
3.14 Ancillary Data ...
3.15 Angle Bracketsc.coouvieiiiiiiinii e
3.16 APPLCALION ..o
3.17 Application Address ...
3.18 Application Program Interface (API).......cccccocvvvvviiinininnes
3.19 Appropriate Privileges........ccccocoivviiiniiiiicn
3.20 ATZUMENE ..ottt
3.21 AT (2 THMET) ettt
3.22 ASEETISK .o
3.23 Async-Cancel-Safe Function ...,
3.24 Asynchronous Events ...
3.25 Asynchronous Input and Output..........cccoeeviiiiiniiinnns
3.26 Async-Signal-Safe Functioncccccooeeiniieiccicce
3.27 Asynchronously-Generated Signal-.........cccccocovvviniinininnns
3.28 Asynchronous I/O Completion ...
3.29 Asynchronous I/O Operation ...,
3.30 Authentication ...
3.31 Authorization ...l
3.32 Background JOb..........cicoiiiienii i
3.33 Background Processc.cioeuieiieiieincis i
3.34 Background Process Group. (or Background Job)
3.35 Backquote......ovoii i
3.36 Backslash.........i i e
3.37 Backspace Character (<backspace>):.......ccccoivvniinniiinnnns
3.38 Barrier ...
3.39 Base Character..............cciuciiiiiiniiiccccens
3.40 Basename ...
3.41 Basic Regular Expression (BRE)cccccoeeiiiiiiiiiiiiiieiiiennns
3.42 Batch Access List.....c.c..iiiiiiieeeceeeeeeeeeee e
3.43 Batch Administrator.........c.ccceeueueueueeieeeeieeieeceeeeeenenenes
3.44 Batch CHENt. ...l
3.45 Batch Destination..........c.ccceeueuereueieieeieieeneeieeereeeeeenenenes
3.46 Batch Destination Identifierc.cccccceeeeececececeeenenas
3.47 Batch Directiveccccoueueiiieiiieieiiieceeeiceceeeeeeeee e
3.48 BatCh JOD...uiiiieieieeeeeee e
3.49 Batch Job Attributeccceevveivieirieieeeeeeeee e
3.50 Batch Job Identifierccoeevveireireieeieeeeeeee e
3.51 Batch Job Name......ccecivieirieieirieieeeeeeeee e
3.52 Batch JoObD OWNETc.ooviiiiiieiieeeee e
3.53 Batch Job Priority ...
3.54 Batch JOb State......c.ccveivieirieiieireeee e
3.55 Batch Name Service........cccocvueeueieueieieieieeeeeieerceeeeenenenenes
3.56 Batch Name Space ...
3.57 Batch INOEoviiiciiiccccccccceeeeceee e
3.58 Batch Operator ...
3.59 Batch QUEUE ...ttt

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

Contents

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Contents
3.60 Batch QUEUE AIIDULEovevieeieeieicieeeeeeeee et 39
3.61 Batch QUEUE POSIHIONcvevieiieiieiieiictieeee ettt 39
3.62 Batch Quete Priority ... 39
3.63 Batch Rerunability ..o 39
3.64 BatCh RESTATt.....ccviiiieieicieeeeetetetete ettt ss s se b be b 40
3.65 BatCh SEIVET ...c.vivieieeieieieieiettetee ettt esb st s ssesseseeseesaebe e 40
3.66 Batch Server NAIMEccveveieiieiieietieiee ettt sb s e ssess e eseebeese e 40
3.67 BatCh SEIVICE.....iviiiieieiieieieteteette ettt ettt ab et rsessesseseeseeseeseens 40
3.68 Batch Service REQUEST ..ot 40
3.69 Batch SUDIMISSIONcuiiieeieeieiieticteeret ettt ettt ee et eb bbb essesseseess 40
3.70 Batch SYStemcoviiiiiiiiiiii s 40
3.71 Batch Target USer.........cocoieiiiiiciicic s 41
3.72 BatCh USET ...c.veviieieiieeieiieiieiteteeteetete ettt ettt ta ettt sae bbb e b essessessessesis 41
3.73 BIN oottt ettt ettt et b bbb e st eraereeses 41
3.74 Blank Character (<bIank=>)cccocevieirieinieirieirieeseereteeee et 41
3.75 BIanK LINE ...cveieieeieeiceeeet sl ittt ettt et ettt ees et evesbesve et e b ebe b essesbesseseess 41
3.76 Blocked Process (01 Thread).....ov..eeveeveeerieinieirieieieieeeee e 41
3.77 BlOCKING ...t 41
3.78 Block-Mode Terminal........occeeceeiionineerieseeie et eeee e e e sse e e 41
3.79 Block Special File ..ottt 42
3.80 BIateS e uveeiiee et ettt st sttt e st e baesabeeaeas 42
3.81 53 T <] - S STt 42
3.82 BrO@dCast......ccveviieesicieieieseee et e ettt r e s sreenne e 42
3.83 Built-In Utility (or Built-In) ..ot 42
3.84 BYEE e e e e e e 42
3.85 Byte Input/Output FUNCHONSc.coviiiiiii 43
3.86 Carriage-Return Character (<carriage-return>).......cccccooovevvieriieinicininnnnn. 43
3.87 (@ T = Tl (<) o RSSO 43
3.88 Character ATTAY it 43
3.89 Character Class ..l ueiieereeieseece e ireeseseeeseeeessesseessesseessesssessesssesseessesseessens 43
3.90 (G 4 F=0 =Tl (<) g =1 A USSR 43
3.91 Character Special File...c.....vciiiiiiiiicicicccc s 44
3.92 Character StrNg ... 44
3.93 Child PIOCESScvieeveieiiiveeiesieeieseetee et e ete st stestesseesaessesaesseessasseessesssensens 44
3.94 CHICUMITLEX .ottt ettt ettt e et teebe st e et e besbessesbessessessessans 44
3.95 CLOCK 1. ittt it ettt ettt e et e te st e et e e e st et eesaessesseeseesaesseessesseessaseensanseensans 44
3.96 CLOCK JUMP ciciiitiiiiicceccccnc st s 44
3.97 CLOCK THCK . iittetietietesieetestee et e ettt et s et e s e e s e sreesseesaessesssesaeessasseensenseessens 44
3.98 Coded Character Set........cceceiiecierieieeieieeeete ettt ere e ae e be e sesseensens 44
3.99 (o Te 1T USSR 45
3.100 Collating Elementcoovmueiiiiiieiicice e 45
3.101 (o)1 F=1 5 o) o H USSR 45
3.102 Collation SEQUENCEcuvviviiiiiriiiiicicicitictcr s 45
3.103 COlUMN POSIEION ..ottt ettt st ae e sae e ae e se e essessaensans 45
3.104 COMIMANA ..ottt ettt a et a et eteeteebeeseebesbesbessessessassessesnans 46
3.105 Command Language Interpreter.............ccocoeveiriiiciiiciciiecccees 46
3.106 Composite Graphic Symbol..........cccccevviiiiiiiiiin, 46
3.107 Condition Variable..........ccceceiiecierieiieeeieeteeeeere et sans 46
3.108 CoNNECLEA SOCKEL......ocuviuieiieiicticticteieietet ettt ettt ete et sb s esbesbessessesnens 46
3.109 (003 4 1'g 1=t 5o) o HU USRS 46
3.110 CoNNECION MOAEveeeeiiieieiieieceeee ettt sae et sre b e reessesseensans 46
3.111 ConNection]ess MOAEcccueieeierieiieeeeeee ettt 47
Base Definitions, Issue % Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. \)

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

Vi

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

3.112
3.113
3.114
3.115
3.116
3.117
3.118
3.119
3.120
3.121
3.122
3.123
3.124
3.125
3.126
3.127
3.128
3.129
3.130
3.131
3.132
3.133
3.134
3.135
3.136
3.137
3.138
3.139
3.140
3.141
3.142
3.143
3.144
3.145
3.146
3.147
3.148
3.149
3.150
3.151
3.152
3.153
3.154
3.155
3.156
3.157
3.158
3.159
3.160
3.161
3.162
3.163

Contents
Control Character ..., 47
Control OPerator ... 47
Controlling ProCess.........cccviiiiiiiiiiiiiiiiiii s 47
Controlling Terminal.........cccooovvviiiiiiiiii s 47
Conversion Descriptor ..., 47
Core File ..o 47
CPU Time (Execution Time)......ccccoevierieirririnineneniesiesieseeieetee et 47
CPU-TIME CLOCK .ocvrviviiiriiiiiiiiiii s 48
CPU-TIMe TIMET ..o 48
CUTTENT JOD ittt sttt ettt 48
Current Working DireCtorycocoeueueviimieiiiincieecci e 48
CUrsor POSIHION «..cucuiuieiiiiic 48
Datagramocviiiiiiiii s 48
Data Segment ..o 48
Deferred Batch SEIVICe.......ccoovvviviimiiiiiiiiic s 48
DEVICE ...t 48
Device ID.....oiiice it 49
DAIECIOTY et 49
Directory Entry (or Link) ..o, 49
Directory Streamo i i 49
DisSarm (@ TIMET) ...cetieeereerienienieer i ettt ettt ettt et et 49
DIASPIAY «vvvivii i s 49
Display LinNe.........ivcoiiiiiii i 49
DOHAT SIgN ...l e 49
DOt i s 50
DOt-DOt .ot 50
DOUDIE-QUOLE si.ceveeeeeeeece e ittt ae et e b e s eaeseeesaessaesseesnessesnsens 50
DOWNSHIftING ... 50
DIIVET ..o 50
Effective Group ID.....cooviiiiiiinii s 50
Effective User ID.......cco.iiitiitiss s 50
Eight-Bit Transparency. ..., 51
Empty Directory ... 51
Empty LINE ..o 51
Empty String (or Null String)cccooveimieiiiicc 51
Empty Wide-Character String..........c.cccovvevvniiniiiiiiees 51
Encoding RULe ..cci v 51
Entire Regular EXpression ... 51
EPOCH .. 51
Equivalence Class ..o, 52
BIa e s 52
Event Management..........c.ccviiiiiiiiiiniiii s 52
Executable File ... 52
EX@CULE .o 52
Execution Time........coooviii 52
Execution Time MONitOIiNgcccoovirinniiiiiininiiinnn s 52
EXPaNd ..o s 53
Extended Regular Expression (ERE).........ccccooiiiiiiiiiniiicccenes 53
Extended Security Controls..........c.ccoeiiiiiiiiiiiicccs 53
Feature Test MacTO.........coeiieieiiiicc s 53
FIEId oo s 53
FIFO Special File (0r FIFO)......cccccoiiiiiiiiiiieeeecceeeeee e eeenenenens 53

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Contents
3.164 LB ettt
3.165 File DesCription ...
3.166 File DeSCIiptoro
3.167 File Group Class........cocoiiiiiiiiii e
3.168 FALE MOAE .ttt st
3.169 File MOAE BitS....couiieiiieieieieieieeeeee ettt sttt
3.170 FALENAIME ...ttt ettt ettt
3.171 FALE OFfSEL vttt sttt
3.172 File Other ClassSccceiieerieeieiiieesieeste sttt sttt s
3.173 File OWNET ClasScouieueriiriiienieieieietetete ettt ettt
3.174 File Permission Bitsccccoeiirerienienieieieeceeeeseeeeee e
3.175 File Serial NUMDETcccoiiiiiieiiieiette et
3.176 File SYStem.....ccviiiiiiii
3.177 File TYP@ . ceuiiiiiiic s
3.178 FALEET -ttt ettt ettt
3.179 First Open (Of @ File).......ccccciiuriiiiiiieicieecce e
3.180 FLOW CONETOL. ..ttt ettt sttt
3.181 Foreground JOb ...t
3.182 Foreground Process...........iveeeeefiimnieieiiccie e
3.183 Foreground Process Group (or Foreground Job) ..o,
3.184 Foreground Process Group ID........cciiiiiii
3.185 Form-Feed Character (<form-feed>).....cccooevrerrenrenineneeneeneeseeseeee
3.186 Graphic Character ...,
3.187 Group Database ...t s
3.188 Group ID i
3.189 Group NaME.......ooiii i
3.190 Hard LImit it e ettt
3.191 Hard Link ittt
3.192 Home DiIrectOry w...ivueeieieiciiciiciiicc e
3.193 Host Byte Order s
3.194 Incomplete Line ...l
3.195 I e e ettt ettt sttt
3.196 Instrumented Application i.....i.cccoviiiiiiiiiiiii s
3.197 Interactive Shell.........cico e
3.198 InternatioNaliZation:l .o
3.199 Interprocess CommuNICAtION ...,
3.200 TNVOKE .. ittt
3.201 0D ettt
3.202 JOD CONETOL....eieieiieiieee ettt sttt sttt
3.203 JOb CONtrOl JOD TD...cuviiieiiieieiereeeeeee ettt
3.204 Last Close (Of @ FIle) ...ccevveerieiieirieirieerietree ettt
3.205 LTI ettt ettt
3.206 LANGET v s
3.207 LNIK ¢ttt sttt
3.208 LANK COUNT ettt ettt s
3.209 L0Cal CUSLOMIS ...ttt ettt ettt
3.210 Local Interprocess Communication (Local IPC) ..o,
3.211 LOCALE et
3.212 LOCAlIZATION ..ttt
3.213 LOGIN ettt
3.214 Login NAMEcooiiiiic
3.215 IMAD et
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. Vii

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

viii

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

3.216
3.217
3.218
3.219
3.220
3.221
3.222
3.223
3.224
3.225
3.226
3.227
3.228
3.229
3.230
3.231
3.232
3.233
3.234
3.235
3.236
3.237
3.238
3.239
3.240
3.241
3.242
3.243
3.244
3.245
3.246
3.247
3.248
3.249
3.250
3.251
3.252
3.253
3.254
3.255
3.256
3.257
3.258
3.259
3.260
3.261
3.262
3.263
3.264
3.265
3.266
3.267

Contents
Marked MeSSagecovuviimimiiniiiiiiii s 61
Matched.......cviiiiiii s 61
Memory Mapped Files.........cccocooiiiiiiiii, 61
MemOry ODJect.......ooiiiiiiiiii 61
Memory-ReSidentcocviiiiiiiiiiiiiiii s 61
MESSAZEoviviviviviiiiiiiiisiit s 61
Message Catalogcococueueiiririeieiicic e 62
Message Catalog DeScriptoroccueuiirieiiiiiciec 62
MeSSage QUELEceuiviiiiiiie s 62
MOAE...iiiiiiitcct s 62
Monotonic ClOCK.......oiiiiiiiiiii s 62
Mount POINt ..o 62
Multi-Character Collating Element ..o 62
IMIULEX .ottt 62
INAINE ..ot 63
Named STREAM ..ol 63
NaN (NOt @ NUMDET)clrueriires ittt sttt 63
Native Language.ciieriiiiisiinininnninsnssesss s 63
Negative RESPONSEcooiiiiviiiiiiiiiiiiiisniee s 63
NEIWOTK ..ol s 63
Network Address ...t 63
Network Byte Order: ...t 64
Newline Character (KNEWLIINES)c.cociici it seeneens 64
Nice ValUue ..ot 64
NON-BIOCKING ...ovitiii s 64
Non-Spacing Characters........cccoiiiii s 64
INUL it s 64
NULL BYE it 65
NULL POINEEr ... it 65
INUILSEING ©.voi e 65
Null Wide-Character Code............ccivuitiimiminniiiiiinns 65
Number Sign ..ot 65
Object FIle ..o 65
Ottt s 65
Offset MaXilmUIN ...l 65
Opaque AdAIESS ..o 65
Open File........iciiiiii s 65
Open File DeScriptionocooucueiiiiiieiieiec e 66
OPErandcoiiiiiiiiiiiic s 66
OPLIAtOTovvtiiitictctt s 66
OPHION. ettt 66
OptioN-ATgUMENtooviiiiiiietet s 66
OreNtatioN.....c.cuiviviiiiiiiicicccc s 66
Orphaned Process Group ...t 66
PaG..eiiiiiiiiii s 67
Page SiZe c.eovviieii s 67
Parameter ... 67
Parent DireCtory ..o 67
Parent PIOCESSoviieieiiiiieictcctc s 67
Parent Process ID ... 67
Pathname ... 68
Pathname Component ... 68

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

Contents

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

3.268 Path PrefiX. oottt ettt ere e e
3.269 Pattern c..ooeiieiieee e e
3.270 Period et e
3.271 PermiSSIONS...ccccuiiiiciiieciiee ettt e e e s tae e e ere e eeanes
3.272 PerSIStENCE ...vveeiiiiieiee e e
3.273 PIPE o
3.274 POIING .ot
3.275 Portable Character Set........c.oveeveeeeereereeereeeeeeeeeeere et
3.276 Portable Filename Character Setcooevevveeeevreeeeeeeeeereeeene
3.277 Positional Parametercecoeeeveeiieeieienieeeee et eevee e
3.278 PrealloCationc..cveerieeeeeeeeeceeeeeceete ettt et e
3.279 Preempted Process (or Thread) ..o,
3.280 Previous JOD ...
3.281 Printable Character...........ooovieeveeeeeeereeeeteeeeeeeeere et
3.282 Printable File........ooioiiiieieeeicecececeeteeeeteeve ettt
3.283 PIiOTItY woveeeiicc e
3.284 Priority Band ...t
3.285 Priority INVersion...........cceeiiiiinc e
3.286 Priority Scheduling...........ccccoeeiiiviiniieiic e
3.287 Priority-Based Scheduling.....iociv..iviiiniiicicns
3.288 Privilege ...
3.289 PrOCESS ..t e s
3.290 Process GIoUp ..o
3.291 Process Group ID ...
3.292 Process Group Leader ...,
3.293 Process Group Lifetime..........cicviiiiins
3.294 Process ID i e e e
3.295 Process LIfEtIme i ueeoricreiee ittt et seeeeve e eae e
3.296 Process Memory Lockingic..iuieicciiiiceecce,
3.297 Process Termination ...
3.298 Process-To-Process Communication ..ci..eeeeeveeeereeeeeneeseeruesnennes
3.299 Process Virtual TIMe.....coo.oieeriereeeereereeeerecreere et
3.300 Programi.. ..o i s
3.301 ProtOCOL ... ittt ettt et en
3.302 Pseudo-Terminal...........iioeeeieeeeeeeereereceeteere et e
3.303 RadixX Character i....coveocvieiiiecieeciee ettt eve e v erae s
3.304 Read-Only File System..........cccoovvviininiiiiiicn,
3.305 Read-WIite LOCKcovvevverieieteeeeeteeeeeteeeeee ettt
3.306 Real Group ID ...
3.307 REAI TAME...eo ittt ettt et e aeeeve e s veeeraeeens
3.308 Realtime Signal EXteNnsioncococeueviieiieieiiiiceecnce
3.309 REal USEI ID....cuiiiieieeeeeeeeeeeee ettt et eveeevae s
3.310 RECOTA. ..ottt ettt e ve e e ve e aae e
3.311 Redire@CHON.....ccouiieiiiiieeie ettt et e ereeerae e
3.312 Redirection Operator...........cccovvvveveiiriiiiiiiiiiiiiiceccccceeeas
3.313 Reentrant FUNCHONcooviiiiiiiciece e
3.314 Referenced Shared Memory Object..........cccouvviviiiniiniiiiiininnen.
3.315 REFTESN ...ttt ettt et ettt ereerrenrean
3.316 Regular EXpression........cocciicieiiiciciecece s
3.317 REZION.....coiiiiiiiiiii
3.318 Regular File........coooiiiii
3.319 Relative Pathname.........c.ooovovieeeerieiiiicieeeeeeeeeeeeeeeveee e

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

3.320 Relocatable Filecccooiiiiieiiiieieeeeeeeeeceeeeeenenenes
3.321 RelOCAtION ...ttt
3.322 Requested Batch Service.........cccooevveeieiiiiiiiiiiciiiiciicccns
3.323 (Time) ReSOIUtION.....c.evieieieieieiceieece e
3.324 RObUSt MULEX ..o
3.325 ROOt DITECLOTY ...oovveiictcicc e
3.326 Runnable Process (or Thread).......cccocueverieenieenieeneireceenen
3.327 Running Process (or Thread)cccocoveeeiiiiiiiiiiiiiiiciinennns
3.328 Saved Resource Limits........cccceiiiiiiiiiiiniiiiiecccennes
3.329 Saved Set-Group-ID ...
3.330 Saved Set-User-ID.......cccooiiiiiiiiiiicceeeeees
3.331 SchedUlingccevieiieiieicc
3.332 Scheduling Allocation Domain...........ccceeevieiieinicieieinn
3.333 Scheduling Contention SCope.......c.cccocevrveiieiiieiiiciieine
3.334 Scheduling POLCYcccoueuiiriiiciiicicicc e
3.335 SCIEEMN.....vviiiiiii s
3.336 SCIOLL .. S
3.337 5emMAPROTe ..o
3.338 SESSION ...t s
3.339 Session Leader ... iiiiiien
3.340 Session Lifetime ...t
3.341 Shared Memory ODbject ...t
3.342 Shell ..o
3.343 SHElL, the ..c.uviiieeieece e e b
3.344 Shell SCIIPtouiiiiiic i
3.345 Signal it
3.346 Signal Stack.....u.oeeiiiee i
3.347 SINGle-QUOte . i i
3.348 SIaSH . i e e e
3.349 SOCKEL. ... i
3.350 Socket Address ...t
3.351 Soft LIMit.....coooiiiiiiiiiins i
3.352 SOUICE COdE ...t
3.353 Space Character (<SPace>)ccceveuerirreeiererieeeeeeeenennes
3.354 SPAWTL. i e
3.355 Special Built-In ..i...ccooeiiiiiiiiic
3.356 Special Parameterc.cccoviuiuiuiieiieiiiinece e
3.357 SPIN LOCK ..ottt
3.358 SPOradic SEIVEToiviiiiiiriiiii
3.359 Standard Error..........ccociiiiiniiiiicns
3.360 Standard INPputccevveiiiiiii
3.361 Standard Output.......ccccceeeiiiiiiii
3.362 Standard Utilities.........cccccevviiiininiiiiiiiiicciiccn,
3.363 SHEAM....ciiiiiiii e
3.364 STREAM......oooiiiiiiiiiniiiiiic s
3.365 STREAM ENd ...
3.366 STREAM Head........ccccovuviiiiiiiiiiiiiiiicnns
3.367 STREAMS MultipleXor ..o
3.368 SHING oot
3.369 SUbShElL ..o
3.370 Successfully Transferred ...,
3.371 Supplementary Group ID.........ccccoceviiiiiiiiiiiiccccenes

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

Contents

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Contents
3.372 Suspended Job ... 82
3.373 Symbolic LinkK ... 82
3.374 Synchronized Input and Output ..o, 82
3.375 Synchronized I/O Completion..........cccciivviiiiiiiiiiiees 82
3.376 Synchronized I/O Data Integrity Completion..........cccoceviivviniinninnnnn. 83
3.377 Synchronized I/O File Integrity Completion..........ccccoevviiiiiniincninnnn. 83
3.378 Synchronized I/O Operation..........cccviivviiiniiiiies 83
3.379 Synchronous I/O Operation ..o, 83
3.380 Synchronously-Generated Signal..........cccccooviivinne, 83
3.381 SYSTEIM ..t 83
3.382 SyStem BOOt ..o 84
3.383 System Crash.......ccooiiiiiiii 84
3.384 System CONSOle.........coiiiiiiiiiic s 84
3.385 System Databasesccccoveiiiiiiiiiiiiiiii s 84
3.386 System Documentation.............cceeeeieieinieieniiiic s 84
3.387 SYStEM PrOCESSovvviiciesiiliic s 84
3.388 System ReDOOt ..ol 84
3.389 System Trace Event.........cccooeeiiiiiiiiiic s 84
3.390 System-Wide......cccooeviiiiiiiiiici s 85
3.391 Tab Character (<aD>) ...oceee il ittt ettt sttt seens 85
3.392 Terminal (or Terminal Device)iv.ciueierieirinireneeereseeteeeeeeeeeeeene 85
3.393 Text COIUMN ... s 85
3.394 TEXEFILE (ot s 85
3.395 Thread ... i 85
3.396 Thread IDu ... s 86
3.397 Thread List. ..o s 86
3.398 Thread-Safe.... ..o s 86
3.399 Thread-Specific Data Keyivoviiiiiiiiicns 86
3.400 THLAE o s 86
3.401 TIMEOULS.....o s 86
3.402 TIMET o e 86
3.403 TIMErIOVEITUN ...ttt s 87
3.404 TOKEIL ..viuiiiii i s 87
3.405 Trace Analyzer Process ... 87
3.406 Trace Controller Process ... 87
3.407 Trace EVENt ..o 87
3.408 Trace Event TyPe ... 87
3.409 Trace Event Type Mapping........cccoeeeeiniiieiieniieicceccs 87
3.410 Trace FIEET «ovveeiiie s 87
3.411 Trace Generation VerSioN..........iiiiiiiniineccceesee s 87
3.412 TEACE LOZ .ottt s 88
3.413 Trace POINt ... 88
3.414 Trace STrEAIMcuvviviiiiiicccct s 88
3.415 Trace Stream Identifier.........cccovviiiiiiiiiiiii, 88
3.416 Trace SYSteMcuuiviiiiiiiiciciccc s 88
3.417 Traced ProOCESScvuiuimimiiiiiiiiiiiicictcttct s 88
3.418 Tracing Status of a Trace Streamcccoooevvieiniciiiciiiicic s 88
3.419 Typed Memory Name Space.........coccvvviimimiiiniiininiiicnnnns 88
3.420 Typed Memory ODbJECt........ccouviiiiiiiiiiiiiiiiii s 88
3.421 Typed Memory Pool ..., 89
3.422 Typed Memory Port ... 89
3.423 UNDING....oiniiiiiiiiiii s 89
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. Xi

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

508

Xii

Chapter

Chapter

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

3.424
3.425
3.426
3.427
3.428
3.429
3.430
3.431
3.432
3.433
3.434
3.435
3.436
3.437
3.438
3.439
3.440
3.441
3.442
3.443
3.444

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
412
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.19.1
4.19.2
4.19.3
4.19.3.1
4.19.3.2
4.20
4.21
4.22

5

Contents
Unit Data......c.cooiviiiiiii 89
UPSHIftING oo 89
User Database..........cccccoiviiiiiiiiiiiiiici e 89
USET ID oo 89
USer Namec.covviiiiiiiiiii e 90
User Trace EVent ..., 90
UHLEY v 90
Variable.......oo e 90
Vertical-Tab Character (<vertical-tab>)cccoceevverirenirenieeneeneeseeeeee 90
WHite SPACE ... 90
Wide-Character Code (C Language)........c.cccovuvvvvviiininiinniniieennnns 90
Wide-Character Input/Output Functions.........cccccveivvviiiiniininnen, 91
Wide-Character Stringcccooeeiriiiiieiicie e 91
TWOT . 91
Working Directory (or Current Working Directory)..........cccoovvviviiinininnnce. 91
Worldwide Portability Interface............ccoovvvviiniiniiiniiicne, 91
WEIIEE o 91
XS s 91
XSI-CONfOIMANT ..ot et nene 92
ZOMDIE PrOCESSiueeeeiieee i e nene 92
FO o s 92
General Concepts 93
Concurrent EXecution ..o 93
Directory Protectionccoveeviiiiiiii i 93
Extended Security CoOntrols.........coovviiiisiivnns 93
File Access Permissionsucecciiiiininiiiis it 94
File Hierarchy i ..icoveriiiciiiticcciccicics s 94
FIlenames ... i 95
Filename Portability ... 95
File Times Update..........ivriiiiiiiiiincnecc s 95
Host and Network Byte Orders...........oooiiiiiiiiiiice, 95
Measurement of Exectution Time........c.cccoceiiiiiiiicieeieeeeeeeeeenenens 96
Memory Synchronization ... 96
Pathname Resolution ... 97
Process ID ReUSe........cccovviiiiiiiiiiiiiiii s 98
Scheduling POLICYcoveviueiieiicici s 98
Seconds Since the EPOch.........ccoeieiiiiiiiiiiiiiiie 98
SEMAPRNOLEoviiiiiiicc s 99
Thread-Safety ... 99
TEACINIE coveiiiiic s 99
Treatment of Error Conditions for Mathematical Functions....................... 102
Domain EITOT ..o 102
POLE BITOT ..ottt 102
RaANGE BITOT ..ottt 102
Result OVETflOWSc.cuiuiuiiimiiiiicicieicicceeeceeee e 102
Result Underflows......c.cccceceiieiiiciieiiceeeeeeeee e enenenens 102
Treatment of NaN Arguments for the Mathematical Functions................. 103
UHLEY v 103
Variable AsSigNmentcooeveiiiiiiiiii s 103
File Format Notation 105

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

509
510
511
512
513
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

541
542
543
544

545
546
547
548
549
550
551
552
553
554
555
556
557

Contents

Chapter

Chapter

Chapter

Chapter

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

6 Character Set 109
6.1 Portable Character Set.........ccoooiiiiiiiiii, 109
6.2 Character ENCOdINGcoviiueieiiiiiieieicci e 112
6.3 C Language Wide-Character Codes...........cccoouirieiniiniiiciiicce 113
6.4 Character Set Description File ..., 113
6.4.1 State-Dependent Character Encodings............cccoueueiriniiiniicciicciicinns 116
7 Locale 119
7.1 GeNETAL ..o 119
7.2 POSIX LOCALE ...t 120
7.3 Locale Definition.........cccoceeiuiieiuiiiiieceeeeceeeeeee e nenene 120
7.3.1 LC_CTYPE ... 122
7.3.1.1 LC_CTYPE Category in the POSIX Locale...........ccccooeviviiiniiniinninnen. 126
732 LC_COLLATE ..ottt 130
7.3.2.1 The collating-element Keywordccccouviiiieieiiiiiiiicc 131
7322 The collating-symbol Keywordccooieeeiiiiniiiicccce, 131
7.3.2.3 The order_start Keyword ..., 132
7.3.2.4 Collation Order ... 132
7.3.25 The order_end Keyword........ccccociiniiiniiiiiccccce, 135
7.3.2.6 LC_COLLATE Category in the POSIX Locale..........cccccoovrviviniinnininnen. 135
7.3.3 LC_MONETARY ..ot 137
7.3.3.1 LC_MONETARY Category in the POSIX Localecccccovueririrrnnnnnnnee. 140
734 LC.NUMERIC ..o 141
7.3.4.1 LC_NUMERIC Category in the POSIX Locale........c.cccoovririririrrnenennen. 142
7.3.5 LC TIME ... 142
7.35.1 LC_TIME Locale Definitioncoceeveive i it 142
7.35.2 LC_TIME C-Language ACCeSScccovurueriiiiersisnneneneieieeeseeeesesesesenenens 144
7.3.5.3 LC_TIME Category in the POSIX Locale ..o, 146
7.3.6 LC_MESSAGES......ooiiiiriiiiisiiinineeese s 148
7.3.6.1 LC_MESSAGES Category in the POSIX Localeccccceveueiirirrnenennen. 148
7.4 Locale Definition Grammar ... ceeceeeeeeeeeeeeeeeereseneseserenenens 149
7.4.1 Locale Lexical CONVENtions..........cccocvuieviviiiiiiniiiininniiisecnnes 149
7.4.2 Locale Grammar ..ot 150
8 Environment Variables 157
8.1 Environment Variable Definitioncccooovviiniiiiniiicne, 157
8.2 Internationalization Variables............cccooiiiiiiiiiiiie, 158
8.3 Other Environment Variables ..., 161
9 Regular Expressions 165
9.1 Regular Expression Definitionscccoceuvieiiiciniciciicccce 165
9.2 Regular Expression General Requirementscccccccoviviiviiiiniinnnn 166
9.3 Basic Regular EXPressions..........c.cccieieiiiiiciciiicicccce s 167
9.3.1 BREs Matching a Single Character or Collating Element...............cccc..... 167
9.3.2 BRE Ordinary Characters ... 167
9.3.3 BRE Special Characters ..o 167
9.3.4 Periods in BRES ... 168
9.3.5 RE Bracket EXPIeSSIONccceeviviiiiiiiieiiiiiiieicccceeeeee e 168
9.3.6 BREs Matching Multiple Characters.............cccocovviiiiiiiciiiiicns 170
937 BRE Precedence.........cccciiiiiiiniiiiiiiciic s 171
9.3.8 BRE Expression ANChOTINgocoviiiiiieiiiice 171
9.4 Extended Regular EXpIessionscccoeerueieiiinicieieiccieeeei s 171

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

Xiii

558
559
560
561
562
563
564
565
566
567
568
569
570

571
572
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596

597
598
599
600
601
602
603
604
605

Xiv

Chapter

Chapter

Chapter

Chapter

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Contents

9.4.1 EREs Matching a Single Character or Collating Element......................... 172
942 ERE Ordinary Characters ..., 172
943 ERE Special Characterscoovviviimiiininiiiiiiiieecssescnnes 172
9.4.4 Periods in ERES ..ot 173
9.4.5 ERE Bracket EXPIression.........cccueeiiiiiiiiiiiicieiiiccecscscseecscscscsencscsenennns 173
9.4.6 EREs Matching Multiple Characters..........ccccoovviiiviiiiiiiiniininnn, 173
94.7 ERE AIernationcceeueueieiiieieiiieieieieicicteeeeeeeesseseesesescsssssesesnnne 174
9.4.8 ERE Precedence............cooiiiiiiiiiiieiiiiccctssss e 174
9.49 ERE Expression ANChOTINgccoviiiiieiiiiic e, 174
9.5 Regular Expression Grammar ... 175
95.1 BRE/ERE Grammar Lexical CONvVeNntionsc.ooeveveveeveeiiveeneeerieeseeeennen 175
9.5.2 RE and Bracket Expression Grammarc.ccceoeeevererieeeenieneenenenneenns 176
9.5.3 ERE GIamIaTcccoeeviiiiiiiiiieieieieieieieieieeseseese s sesesssese s sssssesesssssnen 178
10 Directory Structure and Devices 181
10.1 Directory Structure and Files ..., 181
10.2 Output Devices and Terminal Types ..., 182
11 General Terminal Interface 183
1.1 Interface Characteristics ... 183
11.1.1 Opening a Terminal Device File ..., 183
11.1.2 Process GIOUPS.... it s 183
11.1.3 The Controlling Terminalc.ccco.iiimiicie e, 184
11.1.4 Terminal Access CONtrol.........cccoeveiiiiciiiniii 184
11.1.5 Input Processing and Reading Dataciceviiicieiiiice, 185
11.1.6 Canonical Mode Input Processingiccoineeiinnieiiccens 185
11.1.7 Non-Canonical Mode Input Processingcoeueveincieiniicicieiscie 186
11.1.8 Writing Data and Output Processing...........cccocoivinnnnn 187
11.1.9 Special Characters...........cocoooieiiiieiic e 187
11.1.10 Modem DiSCONNECE . cu. ..o 188
11.1.11 Closing a Terminal Device Filecicooeuiiiiiiiiiiciiicicccc e 188
11.2 Parameters that Can be Setu..........cooviiiiiiiii 189
11.2.1 The termios Structure.....i....ioeeeviiiciiii 189
11.2.2 INPUE MOAES ..ot 189
11.2.3 OUtPUt MOAES ...t 190
11.2.4 Control MOdesS........coviviiiiiiiiiiciciiiciiceec e 192
11.2.5 Local Modes. it 193
11.2.6 Special Control Characters.............coviivviiiiiiiiies 194
12 Utility Conventions 197
12.1 Utility Argument SYNtaX ... 197
12.2 Utility Syntax Guidelines ... 199
13 Headers 203
13.1 Format of ENtriescccvviviiiiiiiiiii s 203

KALON> .o 204

<arpa/inet.h>.........oii 206

<ASSItI> .o 207

<complex.h> 208

KCPLOIS (ot 211

KCEYPE> oo 213

<Airent.h>. .o 215

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Contents
<AIFENR> L 217
SEITNO.N> ..o 218
<fentlh> 222
<EENVI> 226
<float.h> . 230
<EMMSGh> ..o, 234
<fnmatch.h> ... 236
SEEWR> 237
<GLODR> ..o, 239
SGIP> 241
SICONV.AD Lo 243
<INtEyPpes. > ..o 244
<ASO646. 1> ... 246
<langinfo.h> ... 247
<HbGeN.h> ..., 250
<HmMitS.h> 251
<localeh> ... 265
<math.h> . 267
<monetary. > ... 274
<MQUETE.> ...l 275
<ndbm.h> 277
<net/if.h> ... 278
<netdb.h> ... 279
<netinet/in.h> ... 283
<netinet/tep.h> ... 287
<nl_types.h> i 288
SPOLLI> i s 289
SPthread. > i i e s 291
KPWALRS e et s 297
SPEZEX.N> o, 299
<sched.h> ... 301
<search.h> ... 303
<semaphore.h>............i 305
<SetfMP.h> L 307
<signal.h> i, 308
SSPAWILIS i 316
<stdarg.h> ...l 318
<StADOOLh> il 320
<stddef.h> ..o 321
<SEAINEh> 322
<SEAION> o 329
<SEALIDR> oo, 333
<SEHNGN> oo, 337
<SEHNGS.> oo 339
SSPOPES.> oo 340
SSYS/AIPCI> oo 345
<SYS/MMAN.h> ..o 347
<SYS/MSGI> .o, 350
<SYS/TESOUICE.N> ..., 352
<sys/select.h>........ccooiiiiiiii 354
<SYS/SEMLN> ..., 356
<SYS/SAIMLN> ..o, 358
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XV

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

681
682

683
684
685
686
687
688

XVi

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

List of Tables

3-1
5-1
6-1
6-2
7-1
10-1

Contents
<SYS/SOCKEt N> ..o, 360
<SYS/Stat. N> ..o 365
<SyS/statvs.h> ..o, 370
<sys/timeh>........cooiiii 372
<SYS/MES. N> ..o, 374
<SYS/YPES.N> ..o, 375
<SYS/UION> .o, 379
SSYSIUNLIS .o 380
<sys/utsname.h> ..., 381
<SYS/WaIt.h> ..o, 382
<SYSIOG N> .o 384
KEALNS ottt et 386
EEIMIOS. N> . 388
<tgmath.h> ..., 394
CHMEIIS ettt 398
KEFACES .ttt 402
SUBMIEDS Lo et 406
UNISEANDS Lo et 407
SUHME.NS o et 427
<SUEMPX> 428
SWECRAT RS L et 430
SWCtYPeh> . 435
<wordexp.h>......oii 437
Index 439
Job Control Job ID FOrmats......ic..iveieerieenieinieenieisieeeieeeesee e 59
Escape Sequences and Associated Actionsccceeeviiiiiiinnnnnen. 106
Portable Character Setcoeveiiiieitheninenieeeeseseeese et 109
Control CharacterSetiveireirerir ittt eseeeseeeaes 114
Valid Character Class Combinations..........cecceceeererienenenenienenenenieene 126
Control Character NamMES ...oucc.oiueeeirreeieieirieeeieeeieeteeeeee e eeseeeaes 182

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

689

690

691
692

693

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Foreword

Structure of the Standard
Notes to Reviewers

This section with side shading will not appear in the final copy. - Ed.

This section will be completed in a later draft.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

XVii

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

o1 Introduction

695 Note: This introduction is not part of IEEE Std 1003.1-200x, Standard for Information Technology —
696 Portable Operating System Interface (POSIX).

697 This draft standard was developed, and is maintained, by a joint working group of members of
698 the IEEE Portable Applications Standards Committee, members of The Open Group, and
699 members of ISO/IEC Joint Technical Committee 1. This joint working group is known as the
700 Austin Group.!

701 The Austin Group arose out of discussions amongst the parties which started in early 1998,
702 leading to an initial meeting and formation of the group in September 1998. The purpose of the
703 Austin Group is to develop and maintain the core open systems interfaces that are the POSIX®
704 1003.1 (and former 1003.2) standards, ISO/IEC 9945 Parts 1 to 4, and the core of the Single UNIX
705 Specification.

706 The approach to specification development has been one of “write once, adopt everywhere”,
707 with the deliverables being a set of specifications that carry the IEEE POSIX designation, The
708 Open Group’s Technical Standard designation, and an ISO/IEC designation.

709 This unique development has combined both the industry-led efforts and the formal
710 standardization activities into a single initiative, and included a wide spectrum of participants.
711 The Austin Group continues as the maintenance body for this document.

712 Anyone wishing to participate in the Austin Group should contact the chair with their request.
713 There are no fees for participation or:membership. You may participate as an observer or as a
714 contributor. You do not have to attend face-to-face. meetings to participate; electronic
715 participation is most. welcome. For more information on the Austin Group and how to
716 participate, see www.opengroup.org/austin.

717 Background

718 The developers of this standard represent a cross section of hardware manufacturers, vendors of
719 operating systems and other software development tools, software designers, consultants,
720 academics, authors, applications programmers, and others.

721 Conceptually, this standard describes a set of fundamental services needed for the efficient
722 construction of application programs. Access to these services has been provided by defining an
723 interface, using the C programming language, a command interpreter, and common utility
724 programs that establish standard semantics and syntax. Since this interface enables application
725 writers to write portable applications—it was developed with that goal in mind—it has been
726 designated POSIX,? an acronym for Portable Operating System Interface.

727 Although originated to refer to the original IEEE Std 1003.1-1988, the name POSIX more
728 correctly refers to a family of related standards: IEEE Std 1003.n and the parts of ISO/IEC 9945.
729 In earlier editions of the IEEE standard, the term POSIX was used as a synonym for
730 IEEE Std 1003.1-1988. A preferred term, POSIX.1, emerged. This maintained the advantages of
731 readability of the symbol “POSIX” without being ambiguous with the POSIX family of
732 1. The Austin Group is named after the location of the inaugural meeting held at the IBM facility in A&sminiSeptember 1998.

733 2. The name POSIX was suggested by Richard Stallman. Kpiscted to be pronouncemihz-icks, as n positive, not poh-six, or ather
734 variations. The pronunciation has been published in an attempt to promulgate a standaagizsfdreferring to a standard operating
735 system interface.

Xviii Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

http://www.opengroup.org/austin

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Introduction

736 standards.
737 Audience
738 The intended audience for this standard is all persons concerned with an industry-wide
739 standard operating system based on the UNIX system. This includes at least four groups of
740 people:
741 1. Persons buying hardware and software systems
742 2. Persons managing companies that are deciding on future corporate computing directions
743 3. Persons implementing operating systems, and especially
744 4. Persons developing applications where portability is an objective
745 Purpose
746 Several principles guided the development of this standard:
747 Application-Oriented
748 The basic goal was to promote portability of application programs across UNIX system
749 environments by developing a clear, consistent, ‘and unambiguous standard for the
750 interface specification of a portable operating system based on the UNIX system
751 documentation. This standard codifies the common, existing definition of the UNIX
752 system.
753 + Interface, Not Implementation
754 This standard defines an interface, not an implementation. No distinction is made between
755 library functions and system calls; both are referred to as functions. No details of the
756 implementation of ‘any function are given (although historical practice is sometimes
757 indicated in the RATIONALE section). Symbolic names are given for constants (such as
758 signals and error numbers) rather than numbers.
759 « Source, Not Object, Portability
760 This standard has been written so that a program written and translated for execution on
761 one conforming implementation may also be translated for execution on another
762 conforming implementation. This standard ‘does not guarantee that executable (object or
763 binary) code will execute under a different conforming implementation than that for which
764 it was translated, even if the underlying hardware is identical.
765 The C Language
766 The system interfaces and header definitions are written in terms of the standard C
767 language as specified in'the ISO C standard.
768 » No Superuser, No System Administration
769 There was no intention to specify all aspects of an operating system. System
770 administration facilities and functions are excluded from this standard, and functions
771 usable only by the superuser have not been included. Still, an implementation of the
772 standard interface may also implement features not in this standard. This standard is also
773 not concerned with hardware constraints or system maintenance.
774 ¢ Minimal Interface, Minimally Defined
775 In keeping with the historical design principles of the UNIX system, the mandatory core
776 facilities of this standard have been kept as minimal as possible. Additional capabilities
777 have been added as optional extensions.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XiX

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Introduction

778 ¢ Broadly Implementable

779 The developers of this standard endeavored to make all specified functions implementable
780 across a wide range of existing and potential systems, including;:

781 1. All of the current major systems that are ultimately derived from the original UNIX
782 system code (Version 7 or later)

783 2. Compatible systems that are not derived from the original UNIX system code

784 3. Emulations hosted on entirely different operating systems

785 4. Networked systems

786 5. Distributed systems

787 6. Systems running on a broad range of hardware

788 No direct references to this goal appear in this standard, but some results of it are
789 mentioned in the Rationale (Informative) volume:

790 » Minimal Changes to Historical Implementations

791 When the original version—IEEE Std 1003.1-1988—was published, there were no known
792 historical implementations that did not have to change. However, there was a broad
793 consensus on a set of functions, types, definitions, and concepts that formed an interface
794 that was common to most historical implementations.

795 The adoption of the 1988 and 1990 IEEE system interface standards, the 1992 IEEE shell
796 and utilities standard, the various Open Group (formerly X/Open) specifications, and the
797 2001 Edition of this standard and its technical corrigenda have have consolidated this
798 consensus, and this revision reflects the significantly increased level of consensus arrived
799 at since the original versions. The authors of the original versions tried, as much as
800 possible, to follow the principles below when creating new specifications:

801 1. By standardizing an interface like one in an historical implementation; for example,
802 directories

803 2. < By specifying an interface that is readily implementable in terms of, and backwards-
804 compatible with, historical implementations, such as the extended tar format
805 defined in the pax utility

806 3. By specifying an interface that, when added to an historical implementation, will
807 not conflict with it; for example, the sigaction () function

808 This standard is specifically not a codification of a particular vendor’s product.

809 It should be noted that implementations will have different kinds of extensions. Some will
810 reflect “historical usage” and will be preserved for execution of pre-existing applications.
811 These functions should be considered “obsolescent” and the standard functions used for
812 new applications. Some extensions will represent functions beyond the scope of this
813 standard. These need to be used with careful management to be able to adapt to future
814 extensions of this standard and/or port to implementations that provide these services in a
815 different manner.

816 « Minimal Changes to Existing Application Code

817 A goal of this standard was to minimize additional work for the developers of
818 applications. However, because every known historical implementation will have to
819 change at least slightly to conform, some applications will have to change.

XX Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

820

821
822

823

824

825

826

827

828
829

830

831

832

833

834

835
836

837

838
839

840
841

842
843

844

845
846

847

848
849
850

851

Introduction

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

This Standard

This

standard defines the Portable Operating System Interface (POSIX) requirements and

consists of the following volumes:

Base Definitions (this volume)
Shell and Utilities
System Interfaces

Rationale (Informative)

This Volume

The Base Definitions volume provides common definitions for this standard, therefore readers
should be familiar with it before using the other volumes.

This volume is structured as follows:

Chapter 1 is an introduction.

Chapter 2 defines the conformance requirements.
Chapter 3 defines general terms used.

Chapter 4 describes general concepts used.

Chapter 5 describes the notation used to specify file input and output formats in this
volume and the Shell and Utilities volume.

Chapter 6 describes the portable character set and the process of character set definition.

Chapter 7 describes the syntax for defining internationalization locales as well as the
POSIX locale provided on all systems.

Chapter 8 describes the use of environment variables for internationalization and other
purposes.

Chapter 9 describes the syntax of pattern matching using regular expressions employed by
many utilities and matched by the regcomp () and regexec() functions.

Chapter 10 describes files and devices found on all systems.

Chapter 11 describes the asynchronous terminal interface for many of the functions in the
System Interfaces volume and the stty utility in the Shell and Utilities volume.

Chapter 12 describes the policies for command line argument construction and parsing.

Chapter 13 defines the contents of headers which declare constants, macros, and data
structures that are needed by programs using the services provided by the System
Interfaces volume.

Comprehensive references are available in the index.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XXi

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

852
853
854

855
856

857

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

889

890
891
892

893
894
895

896
897
898
899

XXii

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Introduction

Typographical Conventions The following typographical conventions are used throughout this
standard. In the text, this standard is referred to as IEEE Std 1003.1-200x, which is technically
identical to The Open Group Base Specifications, Issue 7.

The typographical conventions listed here are for ease of reading only. Editorial inconsistencies
in the use of typography are unintentional and have no normative meaning in this standard.

Reference Example Notes
C-Language Data Structure aiocb
C-Language Data Structure Member aio_lio_opcode
C-Language Data Type long
C-Language External Variable errno
C-Language Function system ()
C-Language Function Argument argl
C-Language Function Family exec
C-Language Header <sys/stat.h>
C-Language Keyword return
C-Language Macro with Argument assert ()
C-Language Macro with No Argument INET_ADDRSTRLEN
C-Language Preprocessing Directive #define
Commands within a Utility a,c
Conversion Specification, Specifier /Modifier Character | %Ag, E 1
Environment Variable PATH
Error Number [EINTR]
Example Output Hel l o, Wrld
Filename /tmp
Literal Character c)\ LY 2
Literal String "abcde" 2
Optional Items in Utility Syntax [
Parameter <directory pathname>
Special Character <newline> 3
Symbolic Constant _POSIX_VDISABLE
Symbolic Limit, Configuration Value {LINE_MAX]} 4
Syntax #include <sys/stat.h>
User Input and Example Code echo Hello, World 5
Utility Name awk
Utility Operand file_name
Utility Option -
Utility Option with Option-Argument -w width

Notes:

1. Conversion specifications, specifier characters, and modifier characters are used
primarily in date-related functions and utilities and the fprintf and fscanf formatting
functions.

2. Unless otherwise noted, the quotes shall not be used as input or output. When used in a
list item, the quotes are omitted. For literal characters,’\' (or any of the other sequences
suchas”™) isthe same as the C constant'\\V' (or’\”).

3. The style selected for some of the special characters, such as <newline>, matches the
form of the input given to the localedef utility. Generally, the characters selected for this
special treatment are those that are not visually distinct, such as the control characters
<tab> or <newline>.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Introduction

900 4. Names surrounded by braces represent symbolic limits or configuration values which
901 may be declared in appropriate headers by means of the C #define construct.
902 5. Brackets shown in this font, "[" , are part of the syntax and do not indicate optional
903 items. In syntax the |’ symbol is used to separate alternatives, and ellipses ("...") are
904 used to show that additional arguments are optional.
905 Shading is used to identify extensions and options; see Section 1.5.1 (on page 4).
906 Footnotes and notes within the body of the normative text are for information only
907 (informative).
908 Informative sections (such as Rationale, Change History, Application Usage, and so on) are
909 denoted by continuous shading bars in the margins.
910 Ranges of values are indicated with parentheses or brackets as follows:
911 ¢ (a,b) means the range of all values from a to b, including neither a nor b.
912 e [a,b] means the range of all values from a to b, including a and b.
913 ¢ [a,b) means the range of all values from a to b, including a, but not b.
914 ¢ (a,b] means the range of all values from a to b, including b, but not a.
915 Note: A symbolic limit beginning with POSIX is treated differently, depending on context. In a C-
916 language header, the symbol POSIXstring (where string may contain underscores) is represented
917 by the C identifier _POSIXstring, with a leading underscore required to prevent ISO C standard
918 name space pollution.However, in other contexts, such as languages other than C, the leading
919 underscore is not used because this requirement does not exist.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XXxiii

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

920

921
922
923

924
925

926

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Participants

IEEE Std 1003.1-200x was prepared by the Austin Group, sponsored by the Portable
Applications Standards Committee of the IEEE Computer Society, The Open Group, and
ISO/SC22.

Notes to Reviewers

This section with side shading will not appear in the final copy. - Ed.

This section will be completed once the standard is approved.

XXiV Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

927

928
929
930
931

932

933

934

935

936

937

938
939
940

941

942

943
944

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Trademarks

The following information is given for the convenience of users of this standard and does not
constitute endorsement of these products by The Open Group or the IEEE. There may be other
products mentioned in the text that might be covered by trademark protection and readers are
advised to verify them independently.

1003.1™ is a trademark of the Institute of Electrical and Electronic Engineers, Inc.

AIX? is a registered trademark of IBM Corporation.

AT&T® is a registered trademark of AT&T in the U.S.A. and other countries.

BSD™ is a trademark of the University of California, Berkeley, U.S.A.

Hewlett-Packard®, HP®, and HP-UX® are registered trademarks of Hewlett-Packard Company.
IBM® is a registered trademark of International Business Machines Corporation.

Boundaryless Information Flow™ and TOGAF™ are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the “X” device are registered trademarks of
The Open Group in the United States and other countries.

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

®

Sun® and Sun Microsystems® are registered trademarks of Sun Microsystems, Inc.

/usr/group® is a registered trademark of UniForum, the International Network of UNIX System
Users.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XXV

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

945

946
947

948
949

950

951
952

XXVi

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Acknowledgements

The contributions of the following organizations to the development of IEEE Std 1003.1-200x are
gratefully acknowledged:

o AT&T for permission to reproduce portions of its copyrighted System V Interface
Definition (SVID) and material from the UNIX System V Release 2.0 documentation.

« ISO/IECJTC 1/SC 22/WG 14 C Language Committee

This standard was prepared by the Austin Group, a joint working group of the IEEE, The Open
Group, and ISO/IEC JTC 1/5C 22.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

953

954

955

956

957

958
959

960
961
962

963
964
965

966
967
968

969
970
971

972
973
974

975
976

977
978
979

980
981
982

983
984

985
986
987

988
989

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Referenced Documents

Normative References

Normative references for this standard are defined in Section 1.3 (on page 2).

Informative References
The following documents are referenced in this standard:

1984 /usr/group Standard
/usr/group Standards Committee, Santa Clara, CA, UniForum 1984.

Almasi and Gottlieb
George S. Almasi and Allan Gottlieb, Highly Parallel Computing, The Benjamin/Cummings
Publishing Company, Inc., 1989, ISBN: 0-8053-0177-1.

ANSIC
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI X3.226-1994
American National Standard for Information Systems: Standard X3.226-1994, Programming
Language Common LISP.

Brawer
Steven Brawer, — Introduction “to. - Parallel Programming, Academic Press, 1989,
ISBN: 0-12-128470-0.

DeRemer and Pennello Article
DeRemer, Frank and Pennello, Thomas]., Efficient Computation of LALR(1) Look-Ahead Sets,
SigPlan Notices, Volume 15, No. 8, August 1979.

Draft ANSI X3J11.1
IEEE Floating Point draft report.of ANSI X3]J11.1 (NCEG).

FIPS 151-1
Federal Information Procurement Standard (FIPS) 151-1. Portable Operating System
Interface (POSIX)—Part 1: System Application Program Interface (API) [C Language].

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2, Portable Operating System
Interface (POSIX)— Part 1: System Application Program Interface (API) [C Language].

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

IEC 60559: 1989
IEC 60559: 1989, Binary Floating-Point Arithmetic for Microprocessor Systems (previously
designated IEC 559:1989).

IEEE Std 754-1985
IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XXVil

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Referenced Documents

990 IEEE Std 854-1987
991 IEEE Std 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic.
992 IEEE Std 1003.9-1992
993 IEEE Std 1003.9-1992, IEEE Standard for Information Technology — POSIX FORTRAN 77
994 Language Interfaces — Part 1: Binding for System Application Program Interface APL
995 IETF REC 791
996 Internet Protocol, Version 4 (IPv4), September 1981.
997 IETF RFC 819
998 The Domain Naming Convention for Internet User Applications, Z. Su,]. Postel, August
999 1982.
1000 IETF REC 822
1001 Standard for the Format of ARPA Internet Text Messages, D.H. Crocker, August 1982.
1002 IETF RFC 919
1003 Broadcasting Internet Datagrams, . Mogul, October 1984.
1004 IETF RFC 920
1005 Domain Requirements, J. Postel, J. Reynolds, October 1984.
1006 IETF RFC 921
1007 Domain Name System Implementation Schedule, J. Postel, October 1984.
1008 IETF RFC 922
1009 Broadcasting Internet Datagrams in the Presence of Subnets, J. Mogul, October 1984.
1010 IETF RFC 1034
1011 Domain Names — Concepts and Facilities, P. Mockapetris, November 1987.
1012 IETF RFC 1035
1013 Domain Names — Implementation and Specification, P. Mockapetris, November 1987.
1014 IETF RFC 1123
1015 Requirements for Internet Hosts — Application'and Support, R. Braden, October 1989.
1016 IETF RFC 1886
1017 DNS Extensions to Support Internet Protocol, Version 6 (IPv6), C. Huitema, S. Thomson,
1018 December 1995.
1019 IETF RFEC 2045
1020 Multipurpose Internet Mail Extensions (MIME), Part 1: Format of Internet Message Bodies,
1021 N. Freed, N. Borenstein, November 1996.
1022 IETF RFC 2181
1023 Clarifications to the DNS‘Specification, R. Elz, R. Bush, July 1997.
1024 IETF RFC 2373
1025 Internet Protocol, Version 6 (IPv6) Addressing Architecture, S. Deering, R. Hinden, July
1026 1998.
1027 IETF RFEC 2460
1028 Internet Protocol, Version 6 (IPv6), S. Deering, R. Hinden, December 1998.
1029 Internationalisation Guide
1030 Guide, July 1993, Internationalisation Guide, Version 2 (ISBN:1-859120-02-4, G304),
1031 published by The Open Group.
XXVili Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Referenced Documents

1032 ISO C (1990)
1033 ISO/IEC 9899:1990, Programming Languages — C, including Amendment 1:1995 (E), C
1034 Integrity (Multibyte Support Extensions (MSE) for ISO C).
1035 ISO 2375:1985
1036 ISO 2375:1985, Data Processing — Procedure for Registration of Escape Sequences.
1037 ISO 8652:1987
1038 ISO 8652:1987, Programming Languages — Ada (technically identical to ANSI standard
1039 1815A-1983).
1040 ISO/IEC 1539:1990
1041 ISO/IEC 1539:1990, Information Technology — Programming Languages — Fortran
1042 (technically identical to the ANSI X3.9-1978 standard [FORTRAN 77]).
1043 ISO/IEC 4873:1991
1044 ISO/IEC 4873:1991, Information Technology — ISO 8-bit Code for Information Interchange
1045 — Structure and Rules for Implementation.
1046 ISO/IEC 6429:1992
1047 ISO/IEC 6429:1992, Information Technology — Control Functions for Coded Character
1048 Sets.
1049 ISO/IEC 6937:1994
1050 ISO/IEC 6937:1994, Information Technology — Coded Character Set for Text
1051 Communication — Latin Alphabet.
1052 ISO/IEC 8802-3: 1996
1053 ISO/IEC 8802-3:1996, Information Technology — Telecommunications and Information
1054 Exchange Between Systems' — Local and Metropolitan Area. Networks — Specific
1055 Requirements — Part 3: Carrier Sense Multiple Access with Collision Detection
1056 (CSMA /CD) Access Method and Physical Layer Specifications.
1057 ISO/IEC 8859
1058 ISO/IEC 8859, Information Technology — 8-Bit Single-Byte Coded Graphic Character Sets:
1059 Part 1:Latin Alphabet No. 1
1060 Part 2: Latin Alphabet No. 2
1061 Part 3: Latin Alphabet No.'3
1062 Part 4: Latin Alphabet No. 4
1063 Part 5: Latin/Cyrillic Alphabet
1064 Part 6: Latin/Arabic Alphabet
1065 Part 7: Latin/Greek Alphabet
1066 Part 8: Latin/Hebrew Alphabet
1067 Part 9: Latin Alphabet No. 5
1068 Part 10: Latin AlphabetNo. 6
1069 Part 11: Latin/Thai Alphabet
1070 Part 13: Latin Alphabet No. 7
1071 Part 14: Latin Alphabet No. 8
1072 Part 15: Latin Alphabet No. 9
1073 Part 16: Latin Alphabet No. 10
1074 ISO POSIX-1:1996
1075 ISO/IEC 9945-1:1996, Information Technology — Portable Operating System Interface
1076 (POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
1077 ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1078 1003.1¢-1995, and 1003.1i-1995.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XXiX

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Referenced Documents

1079 ISO POSIX-2:1993
1080 ISO/IEC 9945-2:1993, Information Technology — Portable Operating System Interface
1081 (POSIX) — Part 2: Shell and Utilities (identical to ANSI/IEEE Std 1003.2-1992, as amended
1082 by ANSI/IEEE Std 1003.2a-1992).
1083 Issue 1
1084 X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).
1085 Issue 2
1086 X/Open Portability Guide, January 1987:
1087 e Volume 1: XVS Commands and Ultilities (ISBN: 0-444-70174-5)
1088 Volume 2: XVS System Calls and Libraries (ISBN: 0-444-70175-3)
1089 Issue 3
1090 X/Open Specification, 1988, 1989, February 1992:
1091 « Commands and Utilities, Issue 3 (ISBN: 1-872630-36-7, C211); this specification was
1092 formerly X/Open Portability Guide, Issue 3, Volume 1, January 1989, XSI Commands
1093 and Utilities (ISBN: 0-13-685835-X, XO/XPG/89/002)
1094 » System Interfaces and Headers, Issue 3 (ISBN:1-872630-37-5, C212); this specification
1095 was formerly X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System
1096 Interface and Headers (ISBN: 0-13-685843-0, XO/XPG/89/003)
1097 e Curses Interface, Issue 3, contained in Supplementary Definitions, Issue 3
1098 (ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive; this specification was formerly
1099 X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI Supplementary
1100 Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)
1101 « Headers Interface, Issue 3, contained in Supplementary " Definitions, Issue 3
1102 (ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
1103 formerly "X/Open Portability \ Guide Issue '3, Volume 3, January 1989, XSI
1104 Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)
1105 Issue 4
1106 CAE Specification, July 1992, published by The Open Group:
1107 » System Interface Definitions (XBD), Issue 4 (ISBN: 1-872630-46-4, C204)
1108 e Commands and Utilities (XCU), Issue 4 (ISBN: 1-872630-48-0, C203)
1109 » System Interfaces and Headers (XSH), Issue 4 (ISBN: 1-872630-47-2, C202)
1110 Issue 4, Version 2
1111 CAE Specification, August 1994, published by The Open Group:
1112 System Interface Definitions (XBD), Issue 4, Version 2 (ISBN: 1-85912-036-9, C434)
1113 » Commands and Utilities (XCU), Issue 4, Version 2 (ISBN: 1-85912-034-2, C436)
1114 » System Interfaces and Headers (XSH), Issue 4, Version 2 (ISBN: 1-85912-037-7, C435)
1115 Issue 5
1116 Technical Standard, February 1997, published by The Open Group:
1117 System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)
1118 » Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)

XXX Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1119

1120
1121

1122

1123

1124

1125
1126
1127

1128
1129
1130

1131
1132
1133
1134

1135
1136
1137

1138
1139
1140
1141

1142
1143
1144
1145

1146
1147
1148
1149

1150
1151
1152
1153

1154
1155
1156
1157

1158
1159
1160
1161

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Referenced Documents

» System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Issue 6
Technical Standard, April 2004, published by The Open Group:

» Base Definitions (XBD), Issue 6 (ISBN: 1-931624-43-7, C046)
 System Interfaces (XSH), Issue 6 (ISBN: 1-931624-44-5, C047)
 Shell and Utilities (XCU), Issue 6 (ISBN: 1-931624-45-3, C048)

Knuth Article
Knuth, Donald E., On the Translation of Languages from Left to Right, Information and Control,
Volume 8, No. 6, October 1965.

KornShell
Bolsky, Morris I. and Korn, David G., The New KornShell Command and Programming
Language, March 1995, Prentice Hall.

MSE Working Draft
Working draft of ISO/IEC 9899:1990/Add3: Draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

POSIX.0: 1995
IEEE Std 1003.0-1995, IEEE Guide to the POSIX Open System Environment (OSE) (identical
to ISO/IEC TR 14252).

POSIX.1:1988
IEEE Std 1003.1-1988, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1:1990
IEEE Std 1003.1-1990, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX), — Part 1: System Application Program Interface (API) [C
Languagel].

POSIX.1a
P1003.1a, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part. 1: System “Application Program Interface (API) — (C Language)
Amendment.

POSIX.1d: 1999
IEEE Std 1003.1d-1999, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 4: Additional Realtime Extensions [C Language].

POSIX.1g:2000
IEEE Std 1003.1g-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 6: Protocol-Independent Interfaces (PII).

POSIX.1j: 2000
IEEE Std 1003.1j-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 5: Advanced Realtime Extensions [C Language].

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XXXi

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Referenced Documents

1162 POSIX.1g: 2000
1163 IEEE Std 1003.1q-2000, IEEE Standard for Information Technology — Portable Operating
1164 System Interface (POSIX) — Part 1: System Application Program Interface (API) —
1165 Amendment 7: Tracing [C Language].
1166 POSIX.2b
1167 P1003.2b, Standard for Information Technology — Portable Operating System Interface
1168 (POSIX) — Part 2: Shell and Utilities — Amendment.
1169 POSIX.2d:-1994
1170 IEEE Std 1003.2d-1994, IEEE Standard for Information Technology — Portable Operating
1171 System Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: Batch Environment.
1172 POSIX.13:-1998
173 IEEE Std 1003.13:1998, IEEE Standard for Information Technology — Standardized
1174 Application Environment Profile (AEP) — POSIX Realtime Application Support.
1175 Sarwate Article
1176 Sarwate, Dilip V., Computation of Cyclic Redundancy Checks via Table Lookup, Communications
1177 of the ACM, Volume 30, No. 8, August 1988.
1178 Sprunt, Sha, and Lehoczky
1179 Sprunt, B., Sha, L., and Lehoczky, J.P., Aperiodic Task Scheduling for Hard Real-Time Systems,
1180 The Journal of Real-Time Systems, Volume 1, 1989, Pages 27-60.
1181 SVID, Issue 1
1182 American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
1183 1; Morristown, NJ, UNIX Press, 1985.
1184 SVID, Issue 2
1185 American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
1186 2; Morristown, NJ, UNIX Press, 1986.
1187 SVID, Issue 3
1188 American Telephone and Telegraph Company, System V. Interface Definition (SVID), Issue
1189 3; Morristown, NJ, UNIX Press, 1989.
1190 The AWK Programming Language
1191 Aho, Alfred V., Kernighan, Brian W., and Weinberger, Peter J., The AWK Programming
1192 Language, Reading, MA, Addison-Wesley 1988.
1193 UNIX Programmer’s Manual
1194 American Telephone' and Telegraph Company, UNIX Time-Sharing System: UNIX
1195 Programmer’s Manual, 7th Edition, Murray Hill, NJ, Bell Telephone Laboratories, January
1196 1979.
1197 XNS, Issue 4
1198 CAE Specification, August 1994, Networking Services, Issue 4 (ISBN: 1-85912-049-0, C438),
1199 published by The Open Group.
1200 XNS, Issue 5
1201 CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
1202 published by The Open Group.
1203 XNS, Issue 5.2
1204 Technical Standard, January 2000, Networking Services (XNS), Issue 5.2
1205 (ISBN: 1-85912-241-8, C808), published by The Open Group.

XXXil Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1206
1207
1208

1209

1210

1211

1212

1213
1214
1215

1216
1217

1218
1219
1220

1221

1222

1223

1224
1225

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Referenced Documents

X/Open Curses, Issue 4, Version 2
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN:1-85912-171-3,
C610), published by The Open Group.

Yacc
Yacc: Yet Another Compiler Compiler, Stephen C. Johnson, 1978.
Source Documents
Parts of the following documents were used to create the base documents for this standard:

AIX 3.2 Manual
AIX Version 3.2 For RISC System /6000, Technical Reference: Base Operating System and
Extensions, 1990, 1992 (Part No. SC23-2382-00).

OSF/1
OSEF/1 Programmer’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

System V Release 2.0
— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).
— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX® SVR4.2 (1992) (ISBN: 0-13-017658-3).

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. XXXili

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Referenced Documents

XXXIV Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

10
11
12
13

14
15
16

17
18
19
20

21

22

23

24

25

26

27
28
29
30

31

32
33

1.1

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 1

Introduction

Scope

IEEE Std 1003.1-200x defines a standard operating system interface and environment, including
a command interpreter (or “shell”), and common utility programs to support applications
portability at the source code level. It is intended to be used by both applications developers
and system implementors.

IEEE Std 1003.1-200x comprises four major components (each in an associated volume):

1. General terms, concepts, and interfaces common to all volumes of IEEE Std 1003.1-200x,
including utility conventions and C-language header definitions, are included in the Base
Definitions volume of IEEE Std 1003.1-200x.

2. Definitions for system service functions and subroutines, language-specific system
services for the C programming language, function issues, including portability, error
handling, and error recovery, are included in the System Interfaces volume of
IEEE Std 1003.1-200x.

3. Definitions for a standard source code-level interface to command interpretation services
(a “shell”) and common utility. programs for application programs are included in the
Shell and Utilities volume of IEEE Std 1003.1-200x.

4. Extended rationale that did not fit well into the rest of the document structure, containing
historical information concerning the contents of IEEE Std 1003.1-200x and why features
were included or discarded by the standard developers, is included in the Rationale
(Informative) volume of IEEE Std 1003:1-200x.

The following areas are outside of the scope of IEEE Std 1003.1-200x:
+ Graphics interfaces

¢ Database management system interfaces

Record I/0O considerations
¢ Object or binary code portability
 System configuration-and resource availability

IEEE Std 1003.1-200x describes the external characteristics and facilities that are of importance to
applications developers, rather than the internal construction techniques employed to achieve
these capabilities. Special emphasis is placed on those functions and facilities that are needed in
a wide variety of commercial applications.

The facilities provided in IEEE Std 1003.1-200x are drawn from the following base documents:

« IEEE Std 1003.1, 2004 Edition (POSIX-1) (incorporating IEEE Std 1003.1-2001,
IEEE Std 1003.1-2001/Cor 1-2002, and IEEE Std 1003.1-2001/Cor 2-2004)

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

34

35

36

37

38
39

40
41

42
43

44
45

46

47

48
49

50

51

52

53

54

55
56
57
58
59
60

61
62
63

64
65
66

67
68

69

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Scope Introduction

¢ The Open Group Technical Standard, 2006, Extended API Set Part 1
¢ The Open Group Technical Standard, 2006, Extended API Set Part 2
¢ The Open Group Technical Standard, 2006, Extended API Set Part 3
¢ The Open Group Technical Standard, 2006, Extended API Set Part 4

ISO/IEC 9899:1999, Programming Languages — C (including ISO/IEC
9899:1999/Cor.1: 2001(E) and ISO/IEC 9899: 1999/ Cor.2: 2004(E))

Emphasis has been placed on standardizing existing practice for existing users, with changes
and additions limited to correcting deficiencies in the following areas:

» Issues raised by Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1,
and ISO/IEC defect reports against ISO/IEC 9945

o Issues raised in corrigenda for The Open Group Technical Standards and working group
resolutions from The Open Group

« Issues arising from ISO TR 24715: 2006, Conflicts between POSIX and the LSB
¢ Changes to make the text self-consistent with the additional material merged

o Features, marked Legacy or obsolescent in the base documents, have been considered for
withdrawal in the revision

A review and reorganization of the options within the standard

« Alignment with the ISO/IEC 9899: 1999 standard, including Technical Corrigendum 2

Conformance
Conformance requirements for IEEE Std 1003.1-200x are defined in Chapter 2 (on page 13).

Normative References

The following standards contain provisions which, through references in IEEE Std 1003.1-200x,
constitute provisions of IEEE Std 1003.1-200x. At the time of publication, the editions indicated
were valid. All ‘standards are ‘subject to revision, and parties to agreements based on
IEEE Std 1003.1-200x are encouraged to investigate the possibility of applying the most recent
editions of the standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards.

(Reaffirmed 1989) American National Standard for Information Systems: Standard
X3.9-1978, Programming Language FORTRAN.!

ISO/IEC 646:1991
ISO/IEC 646:1991, Information Processing — ISO 7-Bit Coded Character Set for
Information Interchange.’

ANSI| documents can be obtained from the Sales Department, American National Standards Institute, 1430, Btead¥ork, NY

ISO/IEC documents can be obtained from the ISi@afl Rue de Varembé, Case Postale 56, CH-1211, &8ne8witzerland/Suisse

1.2
1.3
ANS X3.9-1978
1.
10018, U.S.A.
2
2

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

70
71

72
73
74

75
76
77

78
79
80

81

82

83
84
85
86

87
88
89
90
91
92

93
94

95
96
97
98
99

100
101
102
103
104

105

106
107
108
109

110

111
112
113

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Introduction Nor mative References

14

1SO 4217:2001
ISO 4217:2001, Codes for the Representation of Currencies and Funds.

ISO 8601: 2000
ISO 8601:2000, Data Elements and Interchange Formats — Information Interchange —
Representation of Dates and Times.

ISO C (1999)
ISO/IEC 9899:1999, Programming Languages — C, including Technical Corrigendum 1 and
Technical Corrigendum 2.

ISO/IEC 10646-1: 2000
ISO/IEC 10646-1:2000, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

Terminology
For the purposes of IEEE Std 1003.1-200x, the following terminology definitions apply:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to
IEEE Std 1003.1-200x. An application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by IEEE Std 1003.1-200x but is selected by
an implementor. The value or behavior may vary among implementations that conform to
IEEE Std 1003:1-200x. An application should not rely on the existence of the value or
behavior. An application that relies on such a value or behavior cannot be assured to be
portable across conforming implementations.

The implementor shall document such-a value or behavior so that it can be used correctly
by an application.

legacy
Describes “a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications ‘should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to
IEEE Std 1003.1-200x. An application should not rely on the existence of the feature or
behavior. An application’that relies on such a feature or behavior cannot be assured to be
portable across conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

shall
For an implementation that conforms to IEEE Std 1003.1-200x, describes a feature or
behavior that is mandatory. An application can rely on the existence of the feature or
behavior.

For an application or user, describes a behavior that is mandatory.

should
For an implementation that conforms to IEEE Std 1003.1-200x, describes a feature or
behavior that is recommended but not mandatory. An application should not rely on the

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 3

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Terminology Introduction
114 existence of the feature or behavior. An application that relies on such a feature or behavior
115 cannot be assured to be portable across conforming implementations.
116 For an application, describes a feature or behavior that is recommended programming
117 practice for optimum portability.
118 undefined
119 Describes the nature of a value or behavior not defined by IEEE Std 1003.1-200x which
120 results from use of an invalid program construct or invalid data input.
121 The value or behavior may vary among implementations that conform to
122 IEEE Std 1003.1-200x. An application should not rely on the existence or validity of the
123 value or behavior. An application that relies on any particular value or behavior cannot be
124 assured to be portable across conforming implementations.
125 unspecified
126 Describes the nature of a value or behavior not specified by IEEE Std 1003.1-200x which
127 results from use of a valid program construct or valid data input.
128 The value or behavior may vary among implementations that conform to
129 IEEE Std 1003.1-200x. An application should not rely on the existence or validity of the
130 value or behavior. An application that relies on any particular value or behavior cannot be
131 assured to be portable across conforming implementations.

132 1.5 Portability

133 Some of the utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x and functions in

134 the System Interfaces volume of IEEE Std 1003.1-200x<describe functionality that might not be

135 fully portable to systems meeting the requirements for POSIX conformance (see the Base

136 Definitions volume of IEEE Std 1003.1-200x, Chapter 2, Conformance).

137 Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in

138 the margin identifies the nature of the option, extension, or warning (see Section 1.5.1 (on page

139 4)). For maximum portability, an application should avoid such functionality.

140 Unless the primary task of a‘utility is to produce textual material on its standard output,

141 application developers should not rely on the format or content of any such material that may be

142 produced. Where the primary task is to provide such material, but the output format is

143 incompletely specified, \the description is marked with the OF margin code and shading.

144 Application developers are warned not to expect that the output of such an interface on one

145 system is any guide to its behavior on another system.

146 151 Codes

147 The codes and their meanings are as follows. See also Section 1.5.2 (on page 11).

148 ADV Advisory Information

149 The functionality described is optional. The functionality described is also an extension to the

150 ISO C standard.

151 Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.

152 Where additional semantics apply to a function, the material is identified by use of the ADV

153 margin legend.

154 BE Batch Environment Services and Utilities

155 The functionality described is optional.

156 Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
4 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

157
158

159
160

161
162
163

164
165
166

167
168
169

170
171
172

173
174
175
176
177
178

179
180

181
182

183
184
185

186
187

188
189
190

191
192
193

194
195
196

197
198
199

200
201

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Introduction Portability

Where additional semantics apply to a utility, the material is identified by use of the BE margin
legend.

CD C-Language Development Utilities
The functionality described is optional.
Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the CD margin
legend.

CPT Process CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CPT
margin legend.

cx Extension to the ISO C standard
The functionality described is an extension to the ISO C standard. Application writers may make
use of an extension as it is supported on all IEEE Std 1003.1-200x-conforming systems.
With each function or header from the ISO C standard, a statement to the effect that “any
conflict is unintentional” is included. That is intended to refer to a direct conflict.
IEEE Std 1003.1-200x acts in part as a profile of the ISO C standard, and it may choose to further
constrain behaviors allowed to vary by the ISOC standard. Such limitations and other
compatible differences are not considered conflicts, even if a CX mark is missing. The markings
are for information only.
Where additional semantics apply to a function or header, the material is identified by use of the
CX margin legend.

FD FORTRAN Development Utilities
The functionality described is optional.
Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FD margin
legend.

FR FORTRAN Runtime Utilities
The functionality described is optional.
Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FR margin
legend.

FSC File Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the FSC
margin legend.

IP6 IPV6
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the IP6

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 5

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Portability Introduction
202 margin legend.
203 MC1 Non-Robust Mutex Priority Protection or Non-Robust Mutex Priority Inheritance or Robust
204 Mutex Priority Protection or Robust Mutex Priority Inheritance
205 The functionality described is optional. The functionality described is also an extension to the
206 ISO C standard.
207 This is a shorthand notation for combinations of multiple option codes.
208 Where applicable, functions are marked with the MC1 margin legend in the SYNOPSIS section.
209 Where additional semantics apply to a function, the material is identified by use of the MC1
210 margin legend.
211 Refer to Section 1.5.2 (on page 11).
212 ML Process Memory Locking
213 The functionality described is optional. The functionality described is also an extension to the
214 ISO C standard.
215 Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
216 Where additional semantics apply to a function, the material is identified by use of the ML
217 margin legend.
218 MLR Range Memory Locking
219 The functionality described is optional. The functionality described is also an extension to the
220 ISO C standard.
221 Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
222 Where additional semantics apply to a function, the material is identified by use of the MLR
223 margin legend.
224 MON Monotonic Clock
225 The functionality described is optional. The functionality described is also an extension to the
226 ISO C standard.
227 Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
228 Where additional semantics apply to a function, the material is identified by use of the MON
229 margin legend.
230 MSG Message Passing
231 The functionality described is optional. The functionality described is also an extension to the
232 ISO C standard.
233 Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
234 Where additional semantics apply to a function, the material is identified by use of the MSG
235 margin legend.
236 MX IEC 60559 Floating-Point
237 The functionality described is optional. The functionality described is also an extension to the
238 ISO C standard.
239 Where applicable, functions are marked with the MX margin legend in the SYNOPSIS section.
240 Where additional semantics apply to a function, the material is identified by use of the MX
241 margin legend.
242 OB Obsolescent
243 The functionality described may be withdrawn in a future version of this volume of
244 IEEE Std 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI
245 Applications shall not use obsolescent features.
246 Where applicable, the material is identified by use of the OB margin legend.

6 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

247
248
249
250

251

252
253
254

255
256
257

258
259

260
261
262

263
264
265

266
267
268

269
270
271

272
273
274

275
276
277

278
279
280

281
282
283

284
285
286

287
288
289

290
291

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Introduction Portability

OF

Output Format Incompletely Specified

The functionality described is an XSI extension. The format of the output produced by the
utility is not fully specified. It is therefore not possible to post-process this output in a consistent
fashion. Typical problems include unknown length of strings and unspecified field delimiters.

Where applicable, the material is identified by use of the OF margin legend.

OH Optional Header
In the SYNOPSIS section of some interfaces in the System Interfaces volume of
IEEE Std 1003.1-200x an included header is marked as in the following example:

OH #include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);
The OH margin legend indicates that the marked header is not required on XSI-conformant
systems.

PIO Prioritized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PIO
margin legend.

Ps Process Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PS
margin legend.

RPI Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the RPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPI
margin legend.

RPP Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the RPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPP
margin legend.

RS Raw Sockets
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the RS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RS
margin legend.

SD Software Development Utilities
The functionality described is optional.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 7

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Portability Introduction
292 Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
293 Where additional semantics apply to a utility, the material is identified by use of the SD margin
294 legend.
295 SHM Shared Memory Objects
296 The functionality described is optional. The functionality described is also an extension to the
297 ISO C standard.
298 Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
299 Where additional semantics apply to a function, the material is identified by use of the SHM
300 margin legend.
301 SIO Synchronized Input and Output
302 The functionality described is optional. The functionality described is also an extension to the
303 ISO C standard.
304 Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
305 Where additional semantics apply to a function, the material is identified by use of the SIO
306 margin legend.
307 SPN Spawn
308 The functionality described is optional. The functionality described is also an extension to the
309 ISO C standard.
310 Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
311 Where additional semantics apply to a function, the material is identified by use of the SPN
312 margin legend.
313 ss Process Sporadic Server
314 The functionality described is optional. The functionality described is also an extension to the
315 ISO C standard.
316 Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
317 Where additional semantics apply to a function, the material is identified by use of the SS
318 margin legend.
319 TCT Thread CPU-Time Clocks
320 The functionality described is optional. The functionality described is also an extension to the
321 ISO C standard.
322 Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
323 Where additional semantics apply to a function, the material is identified by use of the TCT
324 margin legend.
325 TEF Trace Event Filter
326 The functionality described is optional. This functionality is dependent on support for the Trace
327 option. The functionality described is also an extension to the ISO C standard.
328 Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
329 Where additional semantics apply to a function, the material is identified by use of the TEF
330 margin legend.
331 TPI Non-Robust Mutex Priority Inheritance
332 The functionality described is optional. The functionality described is also an extension to the
333 ISO C standard.
334 Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
335 Where additional semantics apply to a function, the material is identified by use of the TPI
336 margin legend.

8 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

337
338
339

340
341
342

343
344
345

346
347
348

349
350
351

352
353
354

355
356
357

358
359
360

361
362
363

364
365
366

367
368
369

370
371
372

373
374
375

376
377
378

379
380
381

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Introduction Portability

TPP

Non-Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPP
margin legend.

TPS Thread Execution Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPS
margin legend.

TRC Trace
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRC
margin legend.

TRI Trace Inherit
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.
Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRI
margin legend.

TRL Trace Log
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.
Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRL
margin legend.

TSA Thread Stack Address Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the TSA margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSA
margin legend.

TSH Thread Process-Shared Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.
Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSH
margin legend.

TSP Thread Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 9

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Portability Introduction
382 Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
383 Where additional semantics apply to a function, the material is identified by use of the TSP
384 margin legend.
385 1SS Thread Stack Size Attribute
386 The functionality described is optional. The functionality described is also an extension to the
387 ISO C standard.
388 Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
389 Where additional semantics apply to a function, the material is identified by use of the TSS
390 margin legend.
391 TYM Typed Memory Objects
392 The functionality described is optional. The functionality described is also an extension to the
393 ISO C standard.
394 Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
395 Where additional semantics apply to a function, the material is identified by use of the TYM
396 margin legend.
397 UP User Portability Utilities
398 The functionality described is optional.
399 Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
400 Where additional semantics apply to a utility, the material is identified by use of the UP margin
401 legend.
402 uuU UUCP Utilities
403 The functionality described is optional. The functionality described is also an extension to the
404 ISO C standard.
405 Where applicable, functions are marked with the UU margin legend in the SYNOPSIS section.
406 Where additional semantics apply to a function, the material is identified by use of the UU
407 margin legend.
408 Xsl X/Open System Interfaces
409 The functionality described is part of the X/Open Systems Interfaces option. Functionality
410 marked XSI is an extension to the ISO C standard. Application writers may confidently make
411 use of such extensions on all systems supporting the X/Open System Interfaces option.
412 If an entire SYNOPSIS section is shaded and marked XSI, all the functionality described in that
413 reference page is an extension. See Section 2.1.4 (on page 17).
414 XSR XSI STREAMS
415 The functionality described is optional. The functionality described is also an extension to the
416 ISO C standard.
417 Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
418 Where additional semantics apply to a function, the material is identified by use of the XSR
419 margin legend.

10 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

420

421

422

423

424

425

426

427
428
429

430

431

432
433
434

435

436

437
438
439
440

441

442
443

444
445
446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Introduction Portability

1.5.2

SHM

SHM TYM

SHMITYM

MC1

X8I

Margin Code Notation

Some of the functionality described in IEEE Std 1003.1-200x depends on support of more than
one option, or independently may depend on several options. The following notation for margin
codes is used to denote the following cases.

A Feature Dependent on One or Two Options

In this case, margin codes have a <space> separator; for example:

This feature requires support for only the Shared Memory Objects option.

This feature requires support for both the Shared Memory Objects option and the Typed
Memory Objects option; that is, an application which uses this feature is portable only between
implementations that provide both options.

A Feature Dependent on Either of the Options Denoted

In this case, margin codes have a’| separator to denote the logical OR; for example:

This feature is dependent on support for either the Shared Memory Objects option or the Typed
Memory Objects option; that is, an application which uses this feature is portable between
implementations that provide any (or all) of the options.

A Feature Dependent on More than Two Options
The following shorthand notations are used:

The MC1 margin code is shorthand for TPP | TPI| RPP | RPI. Features which are shaded with this
margin code require support of either the Non-Robust Mutex Priority Protection option or the
Non-Robust Mutex Priority Inheritance option or the Robust Mutex Priority Protection option or
the Robust Mutex Priority Inheritance option.

Large Sections Dependent on an Option

Where large sections of text are dependent on support for an option, a lead-in text block is
provided and shaded accordingly; for example:

This section describes extensions to support interprocess communication. The functionality
described in this section shall be provided on implementations that support the XSI option (and
the rest of this section is not further shaded).

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 11

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

12

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Introduction

OB

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

447

448

449

450
451

452

453

454
455
456

457
458
459

460
461

462
463
464
465
466
467
468
469

470

471
472
473
474
475
476
477

478
479
480
481
482

483
484
485

2.1

2.1.1

2.1.2

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 2

Conformance

Implementation Conformance

For the purposes of IEEE Std 1003.1-200x, the implementation conformance requirements given
in this section apply.

Requirements
A conforming implementation shall meet all of the following criteria:

1. The system shall support all utilities, functions, and facilities defined within
IEEE Std 1003.1-200x that are required for POSIX conformance (see Section 2.1.3 (on page
14)). These interfaces shall support the functional behavior described herein.

2. The system may support one or more options as described under Section 2.1.5 (on page
18). When an implementation claims that an option is supported, all of its constituent
parts shall be provided.

3. The system may support the X/Open System Interfaces (XSI) option as described in
Section 2.1.4 (on page 17).

4. The system may provide additional utilities, functions, or facilities not required by
IEEE Std 1003.1-200x. Non-standard “extensions" of the utilities, functions, or facilities
specified in. IEEE Std 1003.1-200x should be ‘identified as such in the system
documentation. Non-standard extensions, when used, may change the behavior of
utilities, functions, or facilities defined by IEEE Std 1003.1-200x. The conformance
document shall define an environment in which an application can be run with the
behavior specified by IEEE Std 1003.1-200x. Inno case shall such an environment require
modification of a Strictly Conforming POSIX Application (see Section 2.2.1 (on page 27)).

Documentation

A conformance ‘document with the following information shall be available for an
implementation claiming conformance to IEEE Std 1003.1-200x. The conformance document
shall have the same structure as IEEE Std 1003.1-200x, with the information presented in the
appropriate sections and subsections. Sections and subsections that consist solely of subordinate
section titles, with no otherinformation, are not required. The conformance document shall not
contain information about extended facilities or capabilities outside the scope of
IEEE Std 1003.1-200x.

The conformance document shall contain a statement that indicates the full name, number, and
date of the standard that applies. The conformance document may also list international
software standards that are available for use by a Conforming POSIX Application. Applicable
characteristics where documentation is required by one of these standards, or by standards of
government bodies, may also be included.

The conformance document shall describe the limit values found in the headers <limits.h> and
<unistd.h> (on page 407), stating values, the conditions under which those values may change,
and the limits of such variations, if any.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 13

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

486
487
488
489
490
491

492
493
494

495
496
497

498
499
500
501

502
503

504

505

506

507

508
509
510

511
512
513
514

515
516
517
518

519

520
521
522

523

524

525

526

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

I mplementation Conformance Conformance

2.1.3

2.1.3.1

14

The conformance document shall describe the behavior of the implementation for all
implementation-defined features defined in IEEE Std 1003.1-200x. This requirement shall be met
by listing these features and providing either a specific reference to the system documentation or
providing full syntax and semantics of these features. When the value or behavior in the
implementation is designed to be variable or customized on each instantiation of the system, the
implementation provider shall document the nature and permissible ranges of this variation.

The conformance document may specify the behavior of the implementation for those features
where IEEE Std 1003.1-200x states that implementations may vary or where features are
identified as undefined or unspecified.

The conformance document shall not contain documentation other than that specified in the
preceding paragraphs except where such documentation is specifically allowed or required by
other provisions of IEEE Std 1003.1-200x.

The phrases “shall document” or “shall be documented” in IEEE Std 1003.1-200x mean that
documentation of the feature shall appear in the conformance document, as described
previously, unless there is an explicit reference in the conformance document to show where the
information can be found in the system documentation.

The system documentation should also contain the information found in the conformance
document.

POSIX Conformance

A conforming implementation shall meet the following criteria for POSIX conformance.
POSIX System Interfaces

The following requirements apply to the system interfaces (functions and headers):

e The system shall. support all the mandatory functions and -headers defined in
IEEE Std 1003.1-200x, and shall set the symbolic constant _POSIX_VERSION to the value
200xxxL.

+ Although all implementations conforming to IEEE Std 1003.1-200x support all the features
described below, there may be system-dependent or file system-dependent configuration
procedures that can remove or modify any or.all of these features. Such configurations
should not be made if strict compliance is required.

The following symbolic constants shall be defined with a value other than —1. If a constant
is defined with the value zero, applications should use the sysconf(), pathconf(), or
fpathconf() functions, or the gefconf utility, to determine which features are present on the
system at that time or for the particular pathname in question.

— _POSIX_CHOWN_RESTRICTED

The use of chown() is restricted to a process with appropriate privileges, and to
changing the group ID of a file only to the effective group ID of the process or to one
of its supplementary group IDs.

— _POSIX_NO_TRUNC
Pathname components longer than {NAME_MAX]} generate an error.
¢ The following symbolic constants shall be defined by the implementation as follows:

 Symbolic constants defined with the value 200xxxL:

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Conformance I mplementation Conformance

_POSIX_ASYNCHRONOUS_IO
_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS

 Symbolic constants defined with a value greater than zero:
_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS

» Symbolic constants defined with a value other than —1.

_POSIX_VDISABLE

Note: The symbols above represent historical options that are no longer allowed as options, but
ar

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582
583
584

585
586

587

588

589
590

591
592

593
594

595

596

597

598

599

600

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

I mplementation Conformance Conformance

— _POSIX_THREAD_CPUTIME

— _POSIX_THREAD_ATTR_STACKSIZE
— _POSIX_THREAD_PRIO_INHERIT

— _POSIX_THREAD_PRIO_PROTECT

— _POSIX_THREAD_PRIORITY_SCHEDULING
— _POSIX_THREAD_PROCESS_SHARED
— _POSIX_THREAD_SPORADIC_SERVER
— _POSIX_TRACE

— _POSIX_TRACE_EVENT_FILTER

— _POSIX_TRACE_INHERIT

— _POSIX_TRACE_LOG

— _POSIX_TYPED_MEMORY_OBJECTS
— _XOPEN_CRYPT

— _XOPEN_REALTIME

— _XOPEN_REALTIME_THREADS

— _XOPEN_STREAMS

— _XOPEN_UNIX

If any of the symbolic constants_POSIX_TRACE:EVENT_FILTER, _"POSIX_TRACE_LOG,
or _POSIX. TRACE_INHERIT is defined to have a value other than -1, then the symbolic
constant _ POSIX_TRACE shall also be defined to have a value other than -1.

If the Advisory Information option is supported, there shall be at least one file system that
supports the functionality.

2.1.3.2 POSIX Shell and Utilities

16

The following requirements apply to the shell and utilities:

¢ The system shall provide all the mandatory utilities in the Shell and Utilities volume of
IEEE Std 1003.1-200x with all the functional behavior described therein.

¢ The system shall support the Large File capabilities described in the Shell and Utilities
volume of IEEE Std 1003.1-200x.

¢ The system may support one or more options (see Section 2.1.6 (on page 24)) denoted by
the following symbolic constants. (The literal names below apply to the getconf utility.)

— POSIX2_C_DEV

— POSIX2_CHAR_TERM
— POSIX2_FORT_DEV
— POSIX2_FORT_RUN
— POSIX2_LOCALEDEF
— POSIX2_PBS

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

601

602

603

604

605

606

607

608

609
610
611
612
613

614

615
616
617
618

619
620
621

622
623

624

625

626
627
628
629

630

631
632

633

634

635

636

637
638

639

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Conformance I mplementation Conformance

— POSIX2_PBS_ACCOUNTING
— POSIX2_PBS_LOCATE

— POSIX2_PBS_MESSAGE

— POSIX2_PBS_TRACK

— POSIX2_SW_DEV

— POSIX2_UPE

— XOPEN_UNIX

— XOPEN_UUCP

Additional language bindings and development utility options may be provided in other related
standards or in a future version of IEEE Std 1003.1-200x. In the former case, additional symbolic
constants of the same general form as shown in this subsection should be defined by the related
standard document and made available to " the application without requiring
IEEE Std 1003.1-200x to be updated.

214 XSI Conformance
XSI This section describes the criteria for implementations providing conformance to the X/Open
System Interfaces (XSI) option (see Section 3.441 (on page 91)). The functionality described in
this section shall be provided on implementations that support the XSI option (and the rest of
this section is not further shaded).
IEEE Std 1003.1-200x describes utilities, functions, and facilities offered to application programs
by the X/Open System Interfaces (XSI) option. An XSI-conforming implementation shall meet
the criteria for POSIX conformance and the following requirements listed in this section.
XSI-conforming implementations shall set the symbolic constant _XOPEN_UNIX to a value
other than -1 and shall set the symbolic constant _XOPEN_VERSION to the value 700.
2.1.4.1 XSI System Interfaces
The following requirements apply to the system interfaces when the XSI option is supported:
¢ The system shall support all the functions and headers defined in IEEE Std 1003.1-200x as
part of the XSI option denoted by the XSI marking in the SYNOPSIS section, and any
extensions marked with the XSI option marking (see Section 1.5.1 (on page 4)) within the
text.
¢ The system shall support the msync() function.
¢ The system shall support the following options defined within IEEE Std 1003.1-200x (see
Section 2.1.6 (on page 24)):
— _POSIX_FSYNC
— _POSIX_THREAD_ATTR_STACKADDR
— _POSIX_THREAD_ATTR_STACKSIZE
— _POSIX_THREAD_PROCESS_SHARED
e The system may support the following XSI Option Groups (see Section 2.1.5.2 (on page
20)) defined within IEEE Std 1003.1-200x:
— Encryption
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 17

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

I mplementation Conformance Conformance
640 — Realtime
641 — Advanced Realtime
642 — Realtime Threads
643 — Advanced Realtime Threads
644 — Tracing
645 — XSISTREAMS
646 2.1.4.2 XSI Shell and Utilities Conformance
647 The following requirements apply to the shell and utilities when the XSI option is supported:
648 e The system shall support all the utilities defined in the Shell and Utilities volume of
649 IEEE Std 1003.1-200x as part of the XSI option denoted by the XSI marking in the
650 SYNOPSIS section, and any extensions marked with the XSI option marking (see Section
651 1.5.1 (on page 4)) within the text.
652 ¢ The system shall support the User Portability Utilities option.
653 ¢ The system shall support creation of locales (see Chapter 7 (on page 119)).
654 ¢ The C-language Development utility ¢99 shall be supported.
655 e The XSI Development Utilities option may be supported. It consists of the following
656 software development utilities:
657 admin delta rmdel - val
658 cflow get sact what
659 ctags ~ nm sccs
660 cxref . prs unget
661 2.1.5 Option Groups
662 An Option Group is a group of related functions or options defined within the System Interfaces
663 volume of IEEE Std 1003.1-200x.
664 If an implementation supports an Option Group, then the system shall support the functional
665 behavior described herein.
666 If an implementation does not support an Option Group, then the system need not support the
667 functional behavior described herein.
668 2.1.5.1 Subprofiling Considerations
669 Profiling standards supporting functional requirements less than that required in
670 IEEE Std 1003.1-200x may subset both mandatory and optional functionality required for POSIX
671 Conformance (see Section 2.1.3 (on page 14)) or XSI Conformance (see Section 2.1.4 (on page
672 17)). Such profiles shall organize the subsets into Subprofiling Option Groups.
673 The Rationale (Informative) volume of IEEE Std 1003.1-200x, Appendix E, Subprofiling
674 Considerations (Informative) describes a representative set of such Subprofiling Option Groups
675 for use by profiles applicable to specialized realtime systems. IEEE Std 1003.1-200x does not
676 require that the presence of Subprofiling Option Groups be testable at compile-time (as symbols
677 defined in any header) or at runtime (via sysconf() or getconf).
678 A Subprofiling Option Group may provide basic system functionality that other Subprofiling
679 Option Groups and other options depend upon.® If a profile of IEEE Std 1003.1-200x does not
680 require an implementation to provide a Subprofiling Option Group that provides features
681 utilized by a required Subprofiling Option Group (or option),* the profile shall specify® all of the

18 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

682

683
684

685

686
687

688
689

690

691
692
693

694
695

696

697

698
699

700
701

702
703

704
705

706

707
708

709
710
711
712
713

714
715
716
717

718
719

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Conformance I mplementation Conformance

following;:

¢ Restricted or altered behavior of interfaces defined in IEEE Std 1003.1-200x that may differ
on an implementation of the profile

 Additional behaviors that may produce undefined or unspecified results

+ Additional implementation-defined behavior that implementations shall be required to
document in the profile’s conformance document

if any of the above is a result of the profile not requiring an interface required by
IEEE Std 1003.1-200x.

The following additional rules shall apply to all profiles of IEEE Std 1003.1-200x:

¢ Any application that conforms to that profile shall also conform to IEEE Std 1003.1-200x
(that is, a profile shall not require restricted, altered, or extended behaviors of an
implementation of IEEE Std 1003.1-200x).

e Profiles are permitted to add additional requirements to the limits defined in <limits.h>
and <stdint.h>, subject to the following:

For the limits in <limits.h> and <stdint.h>:
— If the limit is specified as having a fixed value, it shall not be changed by a profile.

— If a limit is specified as having'a minimum or maximum acceptable value, it may be
changed by a profile as follows:

— A profile may increase a minimum: acceptable value, but shall not make a
minimum acceptable value smaller.

— A profile may reduce a maximum acceptable value, but shall not make a
maximum acceptable value larger.

« A profile shall not change a limit specified as having a minimum or maximum value into a
limit specified as having a fixed value.

« A profile shall not create new limits.

¢ Any implementation that conforms to IEEE Std 1003.1-200x (including all options and
extended limits required by the profile) shall also conform to that profile.

As an example, the File System plinfy option group provides underlying support for pathname resolution and file creation which are
needed by aninterface in IEEEStd 1003.1-200%hat parses path agument. If a profile requires support for thevize Input and Output
profiling option group but does not require support for the File System profiling option group, tile proét specify ha pathname
resolution is to behe in that profile, hav the O_CREA flag toopen() is to be landled (and the use of the chara¢ger in the mode
argument ofopen() when a filename argument names a file that does not exist), and specify lots of other details.

As an example, IEEBtd 1003.1-200xequires that implementations claiming to support the Range Memory Locking option also support
the Process Memory Locking option. A plefcould require that the Range Memory Locking option had to be supplied without requiring
that the Process Memory Locking option be supplied as long as the profile speoifigthieg an application writer or system
implementor would hze © know to build an application or implementation conforming to the profile.

Note that the profile could just specify thatyarse of the features not specified by the profile would produce undefined or uiegpecif
results.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 19

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

I mplementation Conformance Conformance
720 2.1.5.2 XSI Option Groups
721 XSl This section describes Option Groups to support the definition of XSI conformance within the
722 System Interfaces volume of IEEE Std 1003.1-200x. The functionality described in this section
723 shall be provided on implementations that support the XSI option and the appropriate Option
724 Group (and the rest of this section is not further shaded).
725 The following Option Groups are defined.
726 Encryption
727 The Encryption Option Group is denoted by the symbolic constant _XOPEN_CRYPT. It includes
728 the following functions:
729 crypt (), encrypt (), setkey ()
730 These functions are marked CRYPT.
731 Due to export restrictions on the decoding algorithm in some countries, implementations may
732 be restricted in making these functions available. All the functions in the Encryption Option
733 Group may therefore return [ENOSYS] or, alternatively, encrypt () shall return [ENOSYS] for the
734 decryption operation.
735 An implementation that claims conformance to this Option Group shall set _XOPEN_CRYPT to
736 a value other than -1.
737 Realtime
738 The Realtime Option Group is denoted by the symbolic constant _XOPEN_REALTIME.
739 This Option Group includes a set of realtime functions drawn from options within
740 IEEE Std 1003.1-200x (see Section 2.1.6 (on page 24)).
741 Where entire functions are included in the Option Group, the NAME section is marked with
742 REALTIME. Where additional semantics have been added to existing pages, the new material is
743 identified by use of the appropriate margin legend for the underlying option defined within
744 IEEE Std 1003.1-200x.
745 An implementation that claims conformance to this Option Group shall set
746 _XOPEN_REALTIME to a value other than -1.
747 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
748 (see Section 2.1.6 (on page 24)):
749 _POSIX_FSYNC
750 _POSIX_MEMLOCK
751 _POSIX_MEMLOCK_RANGE
752 _POSIX_MESSAGE_PASSING
753 _POSIX_PRIORITIZED_IO
754 _POSIX_PRIORITY_SCHEDULING
755 _POSIX_SHARED_MEMORY_OBJECTS
756 _POSIX_SYNCHRONIZED_IO
757 If the symbolic constant _XOPEN_REALTIME is defined to have a value other than -1, then the
758 following symbolic constants shall be defined by the implementation to have the value 200xxxL:

20 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Conformance I mplementation Conformance
759 _POSIX_MEMLOCK
760 _POSIX_MEMLOCK_RANGE
761 _POSIX_MESSAGE_PASSING
762 _POSIX_PRIORITY_SCHEDULING
763 _POSIX_SHARED_MEMORY_OBJECTS
764 _POSIX_SYNCHRONIZED_IO
765 The functionality associated with _ POSIX_FSYNC shall always be supported on XSI-conformant
766 systems.
767 Support of _POSIX_PRIORITIZED_IO on XSI-conformant systems is optional. If this
768 functionality is supported, then _POSIX_PRIORITIZED_IO shall be set to a value other than 1.
769 Otherwise, it shall be undefined.
770 If _POSIX_PRIORITIZED_IO is supported, then asynchronous 1/O operations performed by
771 aio_read (), aio_write(), and lio_listio() shall be submitted at a priority equal to the scheduling
772 priority equal to a base scheduling priority minus aiocbp—>aio_reqprio. 1f Thread Execution
773 Scheduling is not supported, then the base scheduling priority is that of the calling process;
774 otherwise, the base scheduling priority is that of the calling thread. The implementation shall
775 also document for which files I/O prioritization is supported.
776 Advanced Realtime
777 An implementation that claims conformance to this Option Group shall also support the
778 Realtime Option Group.
779 Where entire functions are included in the Option Group, the NAME section is marked with
780 ADVANCED REALTIME. Where additional semantics-have been added to existing pages, the
781 new material is-identified by use of the appropriate margin legend for the underlying option
782 defined within IEEE Std 1003.1-200x.
783 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
784 (seeSection 2.1.6 (on page 24)):
785 _POSIX_ADVISORY_INFO
786 _POSIX_CPUTIME
787 _POSIX:.MONOTONIC_CLOCK
788 _POSIX_SPAWN
789 _POSIX_SPORADIC_SERVER
790 _POSIX_TYPED_MEMORY_OBJECTS
791 If the implementation supports the Advanced Realtime Option Group, then the following
792 symbolic constants shall be defined by the implementation to have the value 200xxxL:
793 _POSIX_ADVISORY INFO
794 _POSIX_CPUTIME
795 _POSIX_MONOTONIC_CLOCK
796 _POSIX_SPAWN
797 _POSIX_SPORADIC_SERVER
798 _POSIX_TYPED_MEMORY_OBJECTS
799 If the symbolic constant _POSIX_SPORADIC_SERVER is defined, then the symbolic constant
800 _POSIX_PRIORITY_SCHEDULING shall also be defined by the implementation to have the
801 value 200xxxL.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 21

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

I mplementation Conformance Conformance
802 Realtime Threads
803 The Realtime Threads Option Group is denoted by the symbolic constant
804 _XOPEN_REALTIME_THREADS.
805 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
806 (see Section 2.1.6 (on page 24)):
807 _POSIX_THREAD_PRIO_INHERIT
808 _POSIX_THREAD_PRIO_PROTECT
809 _POSIX_THREAD_PRIORITY_SCHEDULING
810 Where applicable, whole pages are marked REALTIME THREADS, together with the
811 appropriate option margin legend for the SYNOPSIS section (see Section 1.5.1 (on page 4)).
812 An implementation that claims conformance to this Option Group shall set
813 _XOPEN_REALTIME_THREADS to a value other than —1.
814 If the symbol _XOPEN_REALTIME_THREADS is defined to have a value other than -1, then the
815 following options shall also be defined by the implementation to have the value 200xxxL:
816 _POSIX_THREAD_PRIO_INHERIT
817 _POSIX_THREAD_PRIO_PROTECT
818 _POSIX_THREAD_PRIORITY_SCHEDULING
819 Advanced Realtime Threads
820 An implementation that claims conformance to this. Option Group shall also support the
821 Realtime Threads Option Group.
822 Where entire functions are included in the Option Group, the NAME section is marked with
823 ADVANCED REALTIME THREADS. Where additional semantics have been added to existing
824 pages, the new material is identified by use of the appropriate margin legend for the underlying
825 option defined within IEEE Std 1003.1-200x.
826 This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
827 (see Section 2.1.6 (on page 24)):
828 _POSIX_THREAD_CPUTIME
829 _POSIX_THREAD_SPORADIC_SERVER
830 If the symbolic constant ~POSIX_THREAD_SPORADIC_SERVER is defined to have the value
831 200xxxL, then the symbolic constant _POSIX_THREAD_PRIORITY_SCHEDULING shall also be
832 defined by the implementation to have the value 200xxxL.
833 If the implementation supports the Advanced Realtime Threads Option Group, then the
834 following symbolic constants shall be defined by the implementation to have the value 200xxxL:
835 _POSIX_THREAD_CPUTIME
836 _POSIX_THREAD_SPORADIC_SERVER

22 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

837

838
839

840
841
842
843

844
845

846
847
848
849

850
851

852
853
854
855

856

857
858
859
860

861
862
863

864

865

866

867
868
869
870

871
872

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Conformance I mplementation Conformance

OB XSR

Tracing

This Option Group includes a set of tracing functions drawn from options within
IEEE Std 1003.1-200x (see Section 2.1.6 (on page 24)).

Where entire functions are included in the Option Group, the NAME section is marked with
TRACING. Where additional semantics have been added to existing pages, the new material is
identified by use of the appropriate margin legend for the underlying option defined within
IEEE Std 1003.1-200x.

This Option Group consists of the set of the following options from within IEEE Std 1003.1-200x
(see Section 2.1.6 (on page 24)):

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

If the implementation supports the Tracing Option Group, then the following symbolic
constants shall be defined by the implementation to have the value 200xxxL:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

XSI STREAMS

This section describes the XSI STREAMS Option Group, denoted by the symbolic constant
_XOPEN_STREAMS. The functionality described in this section shall be provided on
implementations that support the XSI STREAMS option (and the rest of this section is not
further shaded).

This Option Group includes functionality related to STREAMS, a uniform mechanism for
implementing networking services and other character-based I/O as described in the System
Interfaces volume of IEEE Std 1003.1-200x, Section 2.6, STREAMS.

It includes the following functions:

fattach(), fdetach (), getmsg (), getpmsg (), ioctl(), isastream (), putmsg (), putpmsg()

and the <stropts.h> header.

Where applicable, whole pages are marked STREAMS, together with the appropriate option
margin legend for the SYNOPSIS section (see Section 1.5.1 (on page 4)). Where additional
semantics have been added to existing pages, the new material is identified by use of the
appropriate margin legend for the underlying option defined within IEEE Std 1003.1-200x.

An implementation that claims conformance to this Option Group shall set _XOPEN_STREAMS
to a value other than -1.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 23

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

873

874
875
876
877

878

879
880
881
882
883
884
885
886
887
888

889

890
891
892
893
894

895

896
897
898
899
900
901
902
903
904
905
906

907
908
909
910
911

912

913

914

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

I mplementation Conformance Conformance

2.1.6

2.1.6.1

24

Options

The symbolic constants defined in <unistd.h>, Constants for Options and Option Groups reflect
implementation options for IEEE Std 1003.1-200x. These symbols can be used by the application
to determine which of three categories of support for optional facilities are provided by the
implementation.

1. Option not supported for compilation.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value -1, or by leaving it undefined) that the option is not supported for compilation
and, at the time of compilation, is not supported for runtime use. In this case, the headers,
data types, function interfaces, and utilities required only for the option need not be
present. A later runtime check using the fpathconf(), pathconf(), or sysconf functions
defined in the System Interfaces volume of IEEE Std 1003.1-200x or the getconf utility
defined in the Shell and Utilities volume of IEEE Std 1003.1-200x can in some
circumstances indicate that the option is supported at runtime. (For example, an old
application binary might be run on a newer implementation to which support for the
option has been added.)

2. Option always supported.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with a value greater than zero) that the option is supported both for compilation and for
use at runtime. In this case, all headers, data types, function interfaces, and utilities
required only for the option shall be available and shall operate as specified. Runtime
checks with fpathconf(), pathconf(), or sysconf shall indicate that the option is supported.

3. Option might or might not be supported at runtime.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value zero) that the option is supported for compilation and might or might not be
supported at runtime. In this case, the fpathconf(), pathconf(), or sysconf() functions
defined in the System Interfaces volume of IEEE Std 1003.1-200x or the getconf utility
defined in the Shell and Utilities volume of IEEE Std 1003.1-200x can be used to retrieve
the value of each symbol on each specific implementation to determine whether the
option is supported at runtime. All headers, data types, and function interfaces required
to compile and execute applications which-use the option at runtime (after checking at
runtime that the option is supported) shall be provided, but if the option is not supported
at runtime they need not operate as specified. Utilities or other facilities required only for
the option, but not needed to compile and execute such applications, need not be present.

If an option is not supported for compilation, an application that attempts to use anything
associated only with the option is considered to be requiring an extension. Unless explicitly
specified otherwise, the behavior of functions associated with an option that is not supported at
runtime is unspecified, and an application that uses such functions without first checking
fpathconf(), pathconf('), or sysconf is considered to be requiring an extension.

Margin codes are defined for each option (see Section 1.5.1 (on page 4)).
System Interfaces

Refer to <unistd.h>, Constants for Options and Option Groups for the list of options.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

915

916
917

918

919
920

921
922
923
924

925
926
927

928
929
930

931
932
933

934

935
936
937

938
939

940
941
942

943
944

945
946

947

948
949

950
951

952

953
954
955

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Conformance I mplementation Conformance

2.1.6.2

CD

FD

FR

Shell and Utilities

Each of these symbols shall be considered valid names by the implementation. Refer to
<unistd.h>, Constants for Options and Option Groups (on page 407).

The literal names shown below apply only to the getconf utility.

POSIX2_C_DEV
The system supports the C-Language Development Ultilities option.

The utilities in the C-Language Development Utilities option are used for the development
of C-language applications, including compilation or translation of C source code and
complex program generators for simple lexical tasks and processing of context-free
grammars.

The utilities listed below may be provided by a conforming system; however, any system
claiming conformance to the C-Language Development Utilities option shall provide all of
the utilities listed.

c99
lex
yacc

POSIX2_CHAR_TERM
The system supports the Terminal Characteristics option. This value need not be present on
a system not supporting the User Portability Utilities option.

Where applicable, the dependency is noted within the description of the utility.

This option applies only to systems supporting the User Portability Utilities option. If
supported, then the system supports at least one terminal type capable of all operations
described in IEEE Std 1003.1-200x; see Section 10.2 (on page 182).

POSIX2_FORT_DEV
The system supports the FORTRAN Development Utilities option.

The fort77 FORTRAN compiler is the only utility in the FORTRAN Development Utilities
option. This is used for the development of FORTRAN language applications, including
compilation or translation of FORTRAN source code.

The fort77 utility may be provided by a conforming system; however, any system claiming
conformance to the FORTRAN Development Utilities option shall provide the fort77 utility.

POSIX2_FORT_RUN
The system supports the FORTRAN Runtime Utilities option.

The asa utility is the only utility in the FORTRAN Runtime Utilities option.

The asa utility may be provided by a conforming system; however, any system claiming
conformance to the FORTRAN Runtime Utilities option shall provide the asa utility.

POSIX2_LOCALEDEF
The system supports the Locale Creation Utilities option.

If supported, the system supports the creation of locales as described in the localedef utility.

The localedef utility may be provided by a conforming system; however, any system
claiming conformance to the Locale Creation Utilities option shall provide the localedef
utility.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 25

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

956
957
958

959
960
961

962
963

964
965

966
967

968
969

970
971

972
973

974
975
976
977

978
979
980

981
982
983
984

985
986

987
988
989
990
991

992

993
994
995

996
997
998

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

I mplementation Conformance Conformance

OB BE

SD

up

XSI

26

POSIX2_PBS
The system supports the Batch Environment Services and Ultilities option (see the Shell and
Utilities volume of IEEE Std 1003.1-200x, Chapter 3, Batch Environment Services).

Note: The Batch Environment Services and Utilities option is a combination of mandatory and
optional batch services and utilities. The POSIX_PBS symbolic constant implies the system
supports all the mandatory batch services and utilities.

POSIX2_PBS_ACCOUNTING
The system supports the Batch Accounting option.

POSIX2_PBS_CHECKPOINT
The system supports the Batch Checkpoint/Restart option.

POSIX2_PBS_LOCATE
The system supports the Locate Batch Job Request option.

POSIX2_PBS_MESSAGE
The system supports the Batch Job Message Request option.

POSIX2_PBS_TRACK
The system supports the Track Batch Job Request option.

POSIX2_SW_DEV
The system supports the Software Development Utilities option.

The utilities in the Software Development Utilities option are used for the development of
applications, including compilation or translation of source code, the creation and
maintenance of library archives, and the maintenance of groups of inter-dependent
programs.

The utilities listed below may be provided by the conforming system; however, any system
claiming conformance to the Software Development Utilities option shall provide all of the
utilities listed here.

ar
make
nm

strip

POSIX2_UPE
The system supports the User Portability Utilities option.

The utilities in the User Portability Utilities option shall be implemented on all systems that
claim conformance to this option, except for the vi utility which is noted as having features
that cannot be implemented on all terminal types; if the POSIX2_CHAR_TERM option is
supported, the system shall support all such features on at least one terminal type; see
Section 10.2 (on page 182).

The list of utilities in the User Portability Utilities option is as follows:

bg fg talk

ex jobs wi

fc more
XOPEN_UNIX

The system supports the X/Open System Interfaces (XSI) option (see Section 2.1.4 (on page
17)).

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

999
1000

1001

1002
1003
1004

1005

1006
1007

1008
1009
1010
1011

1012

1013
1014

1015
1016
1017

1018

1019
1020
1021

1022

1023
1024

1025
1026
1027
1028

1029
1030
1031

1032
1033

1034
1035

Conformance

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
I mplementation Conformance

uu XOPEN_UUCP
The system supports the UUCP Utilities option.

The list of utilities in the UUCP Utilities option is as follows:

uucp
uustat
uux

2.2 Application Conformance

For the purposes of IEEE Std 1003.1-200x, the application conformance requirements given in
this section apply.

All applications claiming conformance to IEEE Std 1003.1-200x shall use only language-
dependent services for the C programming language described in Section 2.3 (on page 29), shall
use only the utilities and facilities defined in the Shell and Utilities volume of
IEEE Std 1003.1-200x, and shall fall within one of the following categories.

22.1 Strictly Conforming POSIX Application

A Strictly Conforming POSIX Application is an application that requires only the facilities
described in IEEE Std 1003.1-200x. Such an application:

1.

Shall accept any implementation behavior that results from actions it takes in areas
described in IEEE Std 1003.1-200x as implementation-defined or unspecified, or where
IEEE Std 1003.1-200x indicates that implementations may vary

Shall not perform any actions that are described as producing undefined results

For symbolic constants, shall accept any value in the range permitted by
IEEE Std 1003.1-200x, but shall not rely on any value in the range being greater than the
minimums listed or being less than the maximums listed in IEEE Std 1003.1-200x

Shall not use facilities designated as obsolescent

Is required to tolerate and permitted to adapt to the presence or absence of optional
facilities whose availability is indicated by Section 2.1.3

For the C programming language, shall not produce any output dependent on any
behavior described in the ISO/IEC 9899:1999 standard as unspecified, undefined, or
implementation-defined, unless the System Interfaces volume of IEEE Std 1003.1-200x
specifies the behavior

For the C programming language, shall not exceed any minimum implementation limit
defined in the ISO/IEC 9899:1999 standard, unless the System Interfaces volume of
IEEE Std 1003.1-200x specifies a higher minimum implementation limit

For the C programming language, shall define ' POSIX_C_SOURCE to be 200xxxL before
any header is included

Within IEEE Std 1003.1-200x, any restrictions placed upon a Conforming POSIX Application
shall restrict a Strictly Conforming POSIX Application.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 27

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Application Conformance Conformance
1036 222 Conforming POSIX Application
1037 2.2.2.1 ISO/IEC Conforming POSIX Application
1038 An ISO/IEC Conforming POSIX Application is an application that uses only the facilities
1039 described in IEEE Std 1003.1-200x and approved Conforming Language bindings for any ISO or
1040 IEC standard. Such an application shall include a statement of conformance that documents all
1041 options and limit dependencies, and all other ISO or IEC standards used.
1042 2.2.2.2 <National Body> Conforming POSIX Application
1043 A <National Body> Conforming POSIX Application differs from an ISO/IEC Conforming
1044 POSIX Application in that it also may use specific standards of a single ISO/IEC member body
1045 referred to here as <National Body>. Such an application shall include a statement of
1046 conformance that documents all options and limit dependencies, and all other <National Body>
1047 standards used.
1048 223 Conforming POSIX Application Using Extensions
1049 A Conforming POSIX Application Using Extensions is<an application that differs from a
1050 Conforming POSIX Application only in that it uses non-standard facilities that are consistent
1051 with IEEE Std 1003.1-200x. Such an application shall fully document its requirements for these
1052 extended facilities, in addition to the documentation required of a Conforming POSIX
1053 Application. A Conforming POSIX Application Using Extensions shall be either an ISO/IEC
1054 Conforming POSIX Application Using Extensions or a <National Body> Conforming POSIX
1055 Application Using Extensions (see Section 2.2.2.1'and Section 2.2.2.2 (on page 28)).
1056 224 Strictly Conforming XSI Application
1057 A Strictly Conforming XSI Application is an application that requires only the facilities
1058 described in IEEE Std 1003.1-200x. Such an application:
1059 1. Shall accept any implementation behavior that results from actions it takes in areas
1060 described in IEEE Std 1003.1-200x as implementation-defined or unspecified, or where
1061 IEEE Std 1003.1-200x indicates that implementations may vary
1062 2. Shall not perform any actions that are described as producing undefined results
1063 3. For symbolic constants, shall accept any value in the range permitted by
1064 IEEE Std 1003.1-200x, but shall not rely on any value in the range being greater than the
1065 minimums listed or being less than the maximums listed in IEEE Std 1003.1-200x
1066 4. Shall not use facilities designated as obsolescent
1067 5. Is required to tolerate’and permitted to adapt to the presence or absence of optional
1068 facilities whose availability is indicated by Section 2.1.4
1069 6. For the C programming language, shall not produce any output dependent on any
1070 behavior described in the ISO C standard as umnspecified, undefined, or implementation-
1071 defined, unless the System Interfaces volume of IEEE Std 1003.1-200x specifies the
1072 behavior
1073 7. For the C programming language, shall not exceed any minimum implementation limit
1074 defined in the ISOC standard, unless the System Interfaces volume of
1075 IEEE Std 1003.1-200x specifies a higher minimum implementation limit
1076 8. For the C programming language, shall define _XOPEN_SOURCE to be 700 before any
1077 header is included

28 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1078
1079

1080

1081
1082
1083
1084
1085

1086

1087
1088

1089

1090
1091

1092
1093
1094
1095
1096
1097
1098
1099

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Conformance Application Conformance

2.2.5

2.3

24

Within IEEE Std 1003.1-200x, any restrictions placed upon a Conforming POSIX Application
shall restrict a Strictly Conforming XSI Application.

Conforming XSI Application Using Extensions

A Conforming XSI Application Using Extensions is an application that differs from a Strictly
Conforming XSI Application only in that it uses non-standard facilities that are consistent with
IEEE Std 1003.1-200x. Such an application shall fully document its requirements for these
extended facilities, in addition to the documentation required of a Strictly Conforming XSI
Application.

Language-Dependent Services for the C Programming Language

Implementors seeking to claim conformance using the ISO C standard shall claim POSIX
conformance as described in Section 2.1.3 (on page 14).

Other Language-Related Specifications

IEEE Std 1003.1-200x is currently specified in terms of the shell command language and ISO C.
Bindings to other programming languages are being developed.

If conformance to IEEE Std 1003.1-200x is claimed for implementation of any programming
language, the implementation of that language shall support the use of external symbols distinct
to at least 31 bytes in length in the source program text. (That is, identifiers that differ at or
before the thirty-first byte shall be distinct.) If a national or international standard governing a
language defines a maximum length that is less than this value, the language-defined maximum
shall be supported. External symbols that differ only by case shall be distinct when the character
set in use distinguishes uppercase and lowercase characters and the language permits (or
requires) uppercase and lowercase characters to be distinct in external symbols.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 29

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

30

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Conformance

OB

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1100

1101

1102

1103
1104
1105

1106

1107

1108

1109
1110

1111

1112

1113

1114

1115
1116
1117

1118

1119

1120

1121

1122
1123

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 3

Definitions

For the purposes of IEEE Std 1003.1-200x, the terms and definitions given in Chapter 3 apply.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

3.1 Abortive Release
An abrupt termination of a network connection that may result in the loss of data.

3.2 Absolute Pathname
A pathname beginning with a single or more than two slashes; see also Section 3.266 (on page
68).
Note: Pathname Resolution is defined in detail in Section 4.12 (on page 97).

3.3 Access Mode
A particular form of access permitted to a file.

34 Additional File Access Control Mechanism
An implementation-defined mechanism that is layered upon the access control mechanisms
defined here, but which do not grant permissions beyond those defined herein, although they
may further restrict them.
Note: File Access Permissions are defined in detail in Section 4.4 (on page 94).

3.5 Address Space
The memory locations that can be referenced by a process or the threads of a process.

3.6 Advisory Information
An interface that advises the implementation on (portable) application behavior so that it can
optimize the system.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 31

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1124

1125
1126

1127

1128

1129
1130
1131
1132
1133

1134

1135
1136
1137
1138

1139

1140
1141

1142

1143

1144

1145
1146

1147

1148

1149
1150
1151
1152

1153

1154

1155

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Affirmative Response Definitions

3.7 Affirmative Response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword yesexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 148).

3.8 Alert

To cause the user’s terminal to give some audible or visual indication that an error or some other
event has occurred. When the standard output is directed to a terminal device, the method for
alerting the terminal user is unspecified. When the standard output is not directed to a terminal
device, the alert is accomplished by writing the <alert> to standard output (unless the utility
description indicates that the use of standard output produces undefined results in this case).

3.9 Alert Character (<alert>)

A character that in the output stream should cause a terminal to alert its user via a visual or
audible notification. It is the character designated by \a' " in the C language. It is unspecified
whether this character is the exact sequence transmitted to an output device by the system to
accomplish the alert function.

3.10 Alias Name

In the shell command language, a word consisting solely of underscores, digits, and alphabetics
from the portable character set and any of the following characters: " ,'%’ ,’,) ,'@’.

Implementations may allow other characters within alias names as an extension.

Note: The Portable Character Set is defined in detail in Section 6.1(on page 109).

3.11 Alignment

A requirement that objects of a particular type be located on storage boundaries with addresses
that are particular multiples of a byte address.

Note: See also the ISO C standard, Section B3.

3.12 Alternate File Access Control Mechanism

An implementation-defined mechanism that is independent of the access control mechanisms
defined herein, and which if enabled on a file may either restrict or extend the permissions of a
given user. IEEE Std 1003.1-200x defines when such mechanisms can be enabled and when they
are disabled.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 94).

3.13 Alternate Signal Stack

Memory associated with a thread, established upon request by the implementation for a thread,

32 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1156
1157

1158

1159
1160
1161

1162

1163
1164
1165
1166

1167

1168

1169

1170

1171

1172

1173

1174
1175
1176
1177

1178
1179

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Alternate Sgnal Sack

separate from the thread signal stack, in which signal handlers responding to signals sent to that
thread may be executed.

3.14 Ancillary Data
Protocol-specific, local system-specific, or optional information. The information can be both
local or end-to-end significant, header information, part of a data portion, protocol-specific, and
implementation or system-specific.

3.15 Angle Brackets
The characters '<’ (left-angle-bracket) and '>" (right-angle-bracket). When used in the phrase
“enclosed in angle brackets”, the symbol '<’ immediately precedes the object to be enclosed,
and > immediately follows it. When describing these characters in the portable character set,
the names <less-than-sign> and <greater-than-sign>are used.

3.16 Application
A computer program that performs some desired function.

3.17 Application Address
Endpoint address of a specific application.

3.18 Application Program Interface (API)
The definition of syntax and semantics for providing computer system services.

3.19 Appropriate Privileges
An implementation-defined means. of associating privileges with a process with regard to the
function calls, function call options, and the commands that need special privileges. There may
be zero or more such means. These means (or lack thereof) are described in the conformance
document.
Note: Function calls are defined in the System Interfaces volume of IEEE Std 1003.1-200x, and

commands are defined in the Shell and Utilities volume of IEEE Std 1003.1-200x.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 33

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Argument Definitions

1180 3.20 Argument

1181 In the shell command language, a parameter passed to a utility as the equivalent of a single
1182 string in the arqu array created by one of the exec functions. An argument is one of the options,
1183 option-arguments, or operands following the command name.

1184 Note: The Utility Argument Syntax is defined in detail in Section 12.1 and the Shell and Utilities
1185 volume of IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution.

1186 In the C language, an expression in a function call expression or a sequence of preprocessing
1187 tokens in a function-like macro invocation.

1188 3.21 Arm (a Timer)

1189 To start a timer measuring the passage of time, enabling notifying a process when the specified
1190 time or time interval has passed.

1191 3.22 Asterisk

1192 The character ™

1193 3.23 Async-Cancel-Safe Function

1194 A function that may be safely invoked by an application while the asynchronous form of
1195 cancellation is enabled. No function is async-cancel-safe unless explicitly described as such.

119 3.24 Asynchronous Events

1197 Events that occur independently of the execution of the application.

1198 3.25 Asynchronous Input and Output

1199 A functionality enhancement to allow an application process to queue data input and output
1200 commands with asynchronous notification of completion.

1201 3.26 Async-Signal-Safe Function

1202 A function that may be invoked, without restriction, from signal-catching functions. No function
1203 is async-signal-safe unless explicitly described as such.
34 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

OB

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Backqguote Definitions

1231 3.35 Backquote

1232 The character ™ , also known as a grave accent.

1233 3.36 Backslash

1234 The character '\’ , also known as a reverse solidus.

1235 3.37 Backspace Character (<backspace>)

1236 A character that, in the output stream, should cause printing (or displaying) to occur one
1237 column position previous to the position about to be printed. If the position about to be printed
1238 is at the beginning of the current line, the behavior is unspecified. It is the character designated
1239 by \b* in the C language. It is unspecified whether this character is the exact sequence
1240 transmitted to an output device by the system to accomplish the backspace function. The
1241 <backspace> defined here is not necessarily the ERASE special character.

1242 Note: Special Characters are defined in detail in Section 11.1.9 (on page 187).

1243 3.38 Barrier

1244 A synchronization object that allows multiple threads to synchronize at a particular point in
1245 their execution.

1246 3.39 Base Character

1247 One of the set of characters defined in the Latin alphabet. In Western European languages other
1248 than English, these characters are commonly used with diacritical marks (accents, cedilla, and so
1249 on) to extend the range of characters in an alphabet.

1250 3.40 Basename

1251 The final, or only, filename in a pathname.

1252 3.41 Basic Regular Expression (BRE)

1253 A regular expression (see Section 3.316 (on page 75)) used by the majority of utilities that select
1254 strings from a set of character strings.
1255 Note: Basic Regular Expressions are described in detail in Section 9.3 (on page 167).

1256 3.42 Batch Access List

1257 A list of user IDs and group IDs of those users and groups authorized to place batch jobs in a
1258 batch queue.
1259 A batch access list is associated with a batch queue. A batch server uses the batch access list of a
1260 batch queue as one of the criteria in deciding to put a batch job in a batch queue.
36 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1261

1262
1263

1264

1265

1266
1267

1268

1269

1270
1271
1272
1273

1274

1275

1276

1277

1278

1279
1280

1281

1282

1283

1284

1285
1286
1287

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Batch Administrator

3.43

Batch Administrator

A user that is authorized to modify all the attributes of queues and jobs and to change the status
of a batch server.

3.44 Batch Client
A computational entity that utilizes batch services by making requests of batch servers.
Batch clients often provide the means by which users access batch services, although a batch
server may act as a batch client by virtue of making requests of another batch server.

3.45 Batch Destination
The batch server in a batch system to which a batch job should be sent for processing.
Acceptance of a batch job at a batch destination is the responsibility of a receiving batch server.
A batch destination may consist of a batch server-specific portion, a network-wide portion, or
both. The batch server-specific portion is referred to as‘the “batch queue”. The network-wide
portion is referred to as a “batch server name”.

3.46 Batch Destination Identifier
A string that identifies a specific batch destination.
A string of characters in the portable character set used to specify a particular batch destination.
Note: The Portable Character Set is defined in detail in Section 6.1 (on page 109).

3.47 Batch Directive
A line from a file that is interpreted by the batch server. The line is usually in the form of a
comment and is an additional means of passing options to the gsub utility.
Note: The gsubutility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

3.48 Batch Job
A set of computational tasks for a computing system.
Batch jobs are managed by batch servers.
Once created, a batch job may be executing or pending execution. A batch job that is executing
has an associated session leader (a process) that initiates and monitors the computational tasks
of the batch job.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 37

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Batch Job Attribute Definitions

1288 3.49 Batch Job Attribute

1289 A named data type whose value affects the processing of a batch job.
1290 The values of the attributes of a batch job affect the processing of that job by the batch server that
1291 manages the batch job.

1292 3.50 Batch Job Identifier

1293 A unique name for a batch job. A name that is unique among all other batch job identifiers in a
1294 batch system and that identifies the batch server to which the batch job was originally
1295 submitted.

129 3.51 Batch Job Name

1297 A label that is an attribute of a batch job. The batch job name is not necessarily unique.

1298 3.52 Batch Job Owner

1299 The username@hostname of the user submitting the batch job, where username is a user name (see
1300 also Section 3.428 (on page 90)) and hostname is a network host name.

1301 3.53 Batch Job Priority

1302 A value specified by the user that may be used by an implementation to determine the order in
1303 which batch jobs are ‘selected to be executed. Job priority has a numeric value in the range
1304 -1024t0 1.023.

1305 Note: The batch job priority is not the execution priority (nice value) of the batch job.

1306 3.54 Batch Job State

1307 An attribute of a batch job which determines the types of requests that the batch server that
1308 manages the batch job can accept for the batch job. Valid states include QUEUED, RUNNING,
1309 HELD, WAITING, EXITING, and TRANSITING.

1310 3.55 Batch Name Service

1311 A service that assigns batch names that are unique within the batch name space, and that can
1312 translate a unique batch name into the location of the named batch entity.

1313 3.56 Batch Name Space

1314 The environment within which a batch name is known to be unique.

38 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1315

1316

1317

1318

1319

1320

1321

1322
1323

1324

1325

1326
1327
1328

1329

1330

1331
1332

1333
1334

1335

1336
1337

1338

1339

1340
1341

1342

1343
1344

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Batch Node

3.57

3.58

3.59

3.60

3.61

3.62

3.63

Batch Node

A host containing part or all of a batch system.

A batch node is a host meeting at least one of the following conditions:
» Capable of executing a batch client
» Contains a routing batch queue

» Contains an execution batch queue

Batch Operator

A user that is authorized to modify some, but not all, of the attributes of jobs and queues, and
may change the status of the batch server.

Batch Queue

A manageable object that represents a set-of batch jobs and is managed by a single batch server.

Note: A set of batch jobs is called a batch queue largely for historical reasons. Jobs are selected from
the batch queue for execution based on-attributes such as priority, resource requirements, and
hold conditions.

See also the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 3.1.2, Batch Queues.

Batch Queue Attribute

A named data type whose value affects the processing of all batch jobs that are members of the
batch queue.

A batch queue has attributes that affect the processing of batch jobs that are members of the
batch queue.

Batch Queue Position

The place, relative to other jobs in the batch queue, occupied by a particular job in a batch queue.
This is defined in part by submission time and priority; see also Section 3.62 (on page 39).

Batch Queue Priority
The maximum job priority allowed for any batch job in a given batch queue.

The batch queue priority is set and may be changed by users with appropriate privilege. The
priority is bounded in an implementation-defined manner.

Batch Rerunability

An attribute of a batch job indicating that it may be rerun after an abnormal termination from
the beginning without affecting the validity of the results.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 39

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Batch Restart Definitions

1345 3.64 Batch Restart

1346 The action of resuming the processing of a batch job from the point of the last checkpoint.
1347 Typically, this is done if the batch job has been interrupted because of a system failure.

1348 3.65 Batch Server

1349 A computational entity that provides batch services.

1350 3.66 Batch Server Name

1351 A string of characters in the portable character set used to specify a particular server in a
1352 network.
1353 Note: The Portable Character Set is defined in detail in'Section 6.1 (on page 109).

1354 3.67 Batch Service

1355 Computational and organizational services performed by a batch system on behalf of batch jobs.
1356 Batch services are of two types: requested and deferred.

1357 Note: Batch Services are listed in the Shell and Utilities volume of IEEE Std 1003.1-200x, Table 3-5,
1358 Batch Services Summary.

1359 3.68 Batch Service Request

1360 A solicitation of services from a batch client to a batch server.

1361 A batch service request may entail the exchange of any number of messages between the batch
1362 client and the batch server.

1363 When naming specific types of service requests, the term “request” is qualified by the type of
1364 request, as in Queue Batch Job Request-and Delete Batch Job Request.

1365 3.69 Batch Submission

1366 The process by which a batch client requests that a batch server create a batch job via a Queue Job
1367 Request to perform a specified computational task.

1368 3.70 Batch System

1369 A collection of one or more batch servers.

40 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1370

1371

1372
1373

1374

1375

1376

1377

1378

1379
1380

1381

1382
1383

1384

1385
1386

1387

1388
1389

1390

1391
1392

1393

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Batch Target User

3.71

3.72

3.73

3.74

3.75

3.76

3.77

3.78

Batch Target User
The name of a user on the batch destination batch server.

The target user is the user name under whose account the batch job is to execute on the
destination batch server.

Batch User

A user who is authorized to make use of batch services.

Bind

The process of assigning a network address to an endpoint.

Blank Character (<blank>)

One of the characters that belong to the blank character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale, a <blank> is either a <tab> or a <space>.

Blank Line

A line consisting solely of zero or more <blank>s terminated by a <newline>; see also Section
3.145 (on page 51).

Blocked Process (or Thread)

A process (or thread) that is waiting for some condition (other than the availability of a
processor) to be satisfied before it can continue execution.

Blocking

A property of an open file description that causes function calls associated with it to wait for the
requested action to be performed before returning.

Block-Mode Terminal

A terminal device operating in a mode incapable of the character-at-a-time input and output
operations described by some of the standard utilities.

Note: Output Devices and Terminal Types are defined in detail in Section 10.2 (on page 182).

Base Definitions, Issue % Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 41

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Block Special File Definitions

3.79 Block Special File

A file that refers to a device. A block special file is normally distinguished from a character
special file by providing access to the device in a manner such that the hardware characteristics
of the device are not visible.

3.80 Braces

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1427

1428
1429
1430

1431

1432

1433
1434
1435
1436
1437

1438

1439

1440
1441
1442
1443

1444
1445

1446

1447

1448

1449
1450
1451

1452

1453

1454

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Byte Input/Output Functions

3.85

Byte Input/Output Functions

The functions that perform byte-oriented input from streams or byte-oriented output to streams:

fgetc(), fgets (), fprintf(), fputc(), fputs(), fread (), fscanf(), fwrite(), getc(), getchar(), gets(), perror(),
printf(), putc(), putchar (), puts(), scanf(), ungetc(), vfprintf(), and vprintf().

Note: Functions are defined in detail in the System Interfaces volume of IEEE Std 1003.1-200x.

3.86 Carriage-Return Character (<carriage-return>)

A character that in the output stream indicates that printing should start at the beginning of the

same physical line in which the <carriage-return> occurred. It is the character designated by

' in the C language. It is unspecified whether this character is the exact sequence

transmitted to an output device by the system to accomplish the movement to the beginning of

the line.
3.87 Character

A sequence of one or more bytes representing a single graphic symbol or control code.

Note: This term corresponds to the ISOC standard term multi-byte character, where a single-byte
character is a special case of a multi-byte character. Unlike the usage in the ISO C standard,
character here has no‘necessary relationship with storage space, and byte is used when storage
space is discussed.

See the definition of the portable character set in Section 6.1 for a further explanation of the
graphical representations of (abstract) characters, as opposed to character encodings.
3.88 Character Array
An array of elements of type char.
3.89 Character Class

A named set of characters sharing an attribute associated with the name of the class. The classes

and the characters that they contain are dependent on the value of the LC_CTYPE category in

the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 122).

3.90 Character Set
A finite set of different characters used for the representation, organization, or control of data.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 43

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1455

1456

1457

1458

1459

1460

1461
1462

1463
1464

1465

1466

1467

1468
1469

1470
1471

1472

1473
1474

1475

1476
1477

1478

1479
1480

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Character Special File Definitions

3.91

3.92

3.93

3.94

3.95

3.96

3.97

3.98

44

Character Special File
A file that refers to a device. One specific type of character special file is a terminal device file.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 183).

Character String

A contiguous sequence of characters terminated by and including the first null byte.

Child Process

A new process created (by fork(), posix_spawn (), or posix_spawnp()) by a given process. A child
process remains the child of the creating process as long as both processes continue to exist.

Note: The fork(), posix_spawn(), and posix_spawnp() functions are defined in detail in the System
Interfaces volume of IEEE Std 1003.1-200x.

Circumflex

The character ™™

Clock

A software or hardware object that can be used to measure the apparent or actual passage of
time.

The current value of the time measured by a clock can be queried and, possibly, set to a value
within the legal range of the clock.

Clock Jump

The difference between two successive distinct values of a clock, as observed from the
application via one of the “get time” operations.

Clock Tick

An interval of time; an implementation-defined number of these occur each second. Clock ticks
are one of the units that may be used to express a value found in type clock_t.

Coded Character Set

A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1481

1482
1483
1484
1485
1486
1487

1488

1489

1490
1491
1492
1493

1494

1495
1496
1497

1498

1499
1500
1501
1502
1503

1504
1505
1506
1507
1508

1509

1510

1511

1512
1513
1514
1515
1516

1517
1518

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Codeset

3.99

3.100

3.101

3.102

3.103

Codeset

The result of applying rules that map a numeric code value to each element of a character set.
An element of a character set may be related to more than one numeric code value but the
reverse is not true. However, for state-dependent encodings the relationship between numeric
code values and elements of a character set may be further controlled by state information. The
character set may contain fewer elements than the total number of possible numeric code values;
that is, some code values may be unassigned.

Note: Character Encoding is defined in detail in Section 6.2 (on page 112).

Collating Element

The smallest entity used to determine the logical ordering of character or wide-character strings;
see also Section 3.102 (on page 45). A collating element consists of either a single character, or
two or more characters collating as a single entity. The value of the LC_COLLATE category in the
current locale determines the current set of collating elements.

Collation

The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

Collation Sequence

The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The collation sequence is used for sorting and is determined from
the collating weights assigned to each collating element. In the absence of weights, the collation
sequence is the order in which collating elements are specified between order_start and
order_end keywords in the LC_COLLATE category.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
the limit {COLL_WEIGHTS_MAX]}. On each level, elements may be given the same weight (at
the primary level, called an equivalence class; see also Section 3.151 (on page 52)) or be omitted
from the sequence. Strings that collate equally using the first assigned weight (primary ordering)
are then compared using the next assigned weight (secondary ordering), and so on.

Note: {COLL_WEIGHTS_MAX]} is defined in detail in <limits.h>.

Column Position
A unit of horizontal measure related to characters in a line.

It is assumed that each character in a character set has an intrinsic column width independent of
any output device. Each printable character in the portable character set has a column width of
one. The standard utilities, when used as described in IEEE Std 1003.1-200x, assume that all
characters have integral column widths. The column width of a character is not necessarily
related to the internal representation of the character (numbers of bits or bytes).

The column position of a character in a line is defined as one plus the sum of the column widths
of the preceding characters in the line. Column positions are numbered starting from 1.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 45

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Command Definitions

1519 3.104 Command

1520 A directive to the shell to perform a particular task.

1521 Note: Shell Commands are defined in detail in the Shell and Ultilities volume of IEEE Std 1003.1-200x,
1522 Section 2.9, Shell Commands.

1523 3.105 Command Language Interpreter

1524 An interface that interprets sequences of text input as commands. It may operate on an input
1525 stream or it may interactively prompt and read commands from a terminal. It is possible for
1526 applications to invoke utilities through a number of interfaces, which are collectively considered
1527 to act as command interpreters. The most obvious of these are the sh utility and the system()
1528 function, although popen () and the various forms of exec may also be considered to behave as
1529 interpreters.

1530 Note: The sh utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

1531 The system (), popen(), and exec functions are defined in detail in the System Interfaces volume
1532 of IEEE Std 1003.1-200x.

1533 3.106 Composite Graphic Symbol

1534 A graphic symbol consisting of a.combination of two or more other graphic symbols in a single
1535 character position, such as a diacritical mark and a base character.

1536 3.107 Condition Variable

1537 A synchronization object which allows'a thread to suspend execution, repeatedly, until some
1538 associated predicate becomes true. A thread whose execution is suspended on a condition
1539 variable is said to be blocked on the condition variable.

1540 3.108 Connected Socket

1541 A connection-mode socket for which a connection has been established, or a connectionless-
1542 mode socket for which a peer address has been set. See also Section 3.109, Section 3.110, Section
1543 3.111, and Section 3.349 (on page 79).

1544 3.109 Connection

1545 An association established between two or more endpoints for the transfer of data

1546 3.110 Connection Mode

1547 The transfer of data in the context of a connection; see also Section 3.111 (on page 47).

46 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1548

1549
1550

1551

1552
1553

1554

1555
1556

1557

1558

1559
1560

1561

1562
1563
1564

1565

1566
1567
1568
1569

1570

1571

1572

1573

1574

1575

1576
1577

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Connectionless Mode

3.111

Connectionless Mode

The transfer of data other than in the context of a connection; see also Section 3.110 and Section
3.124 (on page 48).

3.112 Control Character
A character, other than a graphic character, that affects the recording, processing, transmission,
or interpretation of text.
3.113 Control Operator
In the shell command language, a token that performs a control function. It is one of the
following symbols:
& & () ; - newline |]
The end-of-input indicator used internally by the shell is also considered a control operator.
Note: Token Recognition is defined in detail in the Shell'and Utilities volume of IEEE Std 1003.1-200x,
Section 2.3, Token Recognition.
3.114 Controlling Process
The session leader that established the connection to_the controlling terminal. If the terminal
subsequently ceases to be a controlling terminal for this session, the session leader ceases to be
the controlling process.
3.115 Controlling Terminal
A terminal that is associated with a session. Each session may have at most one controlling
terminal associated with it, and a controlling terminal is associated with exactly one session.
Certain input sequences from the controlling terminal cause signals to be sent to all processes in
the foreground process group associated with the controlling terminal.
Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 183).
3.116 Conversion Descriptor
A per-process unique value used to identify an open codeset conversion.
3.117 Core File
A file of unspecified format that may be generated when a process terminates abnormally.
3.118 CPU Time (Execution Time)
The time spent executing a process or thread, including the time spent executing system services
on behalf of that process or thread. If the Threads option is supported, then the value of the
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 47

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1578
1579
1580
1581

1582

1583

1584

1585

1586

1587
1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

CPU Time (Execution Time) Definitions

3.119

3.120

3.121

3.122

3.123

3.124

3.125

3.126

3.127

48

CPU-time clock for a process is implementation-defined. With this definition the sum of all the
execution times of all the threads in a process might not equal the process execution time, even
in a single-threaded process, because implementations may differ in how they account for time
during context switches or for other reasons.

CPU-Time Clock

A clock that measures the execution time of a particular process or thread.

CPU-Time Timer
A timer attached to a CPU-time clock.

Current Job

In the context of job control, the job that will be used as the default for the fg or bg utilities. There
is at most one current job; see also Section'3.203 (on page59).

Current Working Directory
See Working Directory in Section 3.438 (on page 91).

Cursor Position

The line and column position on the screen denoted by the terminal’s cursor.

Datagram

A unit of data transferred from one endpoint to another in connectionless mode service.

Data Segment

Memory associated with a process, that can contain dynamically allocated data.

Deferred Batch Service

A service that is performed as a result of events that are asynchronous with respect to requests.

Note: Once a batch job has been created, it is subject to deferred services.

Device

A computer peripheral or an object that appears to the application as such.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1602

1603

1604

1605
1606

1607

1608
1609

1610

1611
1612

1613

1614
1615

1616

1617
1618

1619

1620
1621

1622

1623

1624

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Device D

3.128

3.129

3.130

3.131

3.132

3.133

3.134

3.135

Device ID

A non-negative integer used to identify a device.

Directory

A file that contains directory entries. No two directory entries in the same directory have the
same name.

Directory Entry (or Link)

An object that associates a filename with a file. Several directory entries can associate names
with the same file.

Directory Stream

A sequence of all the directory entries in a particular directory. An open directory stream may be
implemented using a file descriptor.

Disarm (a Timer)

To stop a timer from measuring the passage of time, disabling any future process notifications
(until the timer is-armed again).

Display

To output to the user’s terminal. If the output is not directed to a terminal, the results are
undefined.

Display Line

A line of text on a physical device or an emulation thereof. Such a line will have a maximum
number of characters which can be presented.

Note: This may also be written as “line on the display”.

Dollar Sign
The character '$’

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 49

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Dot Definitions

1625 3.136 Dot

1626 In the context of naming files, the filename consisting of a single dot character (".").

1627 Note: In the context of shell special built-in utilities, see dot in the Shell and Utilities volume of
1628 IEEE Std 1003.1-200x, Section 2.14, Special Built-In Utilities.

1629 Pathname Resolution is defined in detail in Section 4.12 (on page 97).

1630 3.137 Dot-Dot

1631 The filename consisting solely of two dot characters ("..").

1632 Note: Pathname Resolution is defined in detail in Section 4.12 (on page 97).

1633 3.138 Double-Quote

1634 The character ™ , also known as quotation-mark.

1635 Note: The “double” adjective in this term refers to the two strokes in the character glyph.
1636 IEEE Std 1003.1-200x never uses the term “double-quote” to refer to two apostrophes or
1637 quotation marks.

1638 3.139 Downshifting

1639 The conversion of an uppercase character that has a single-character lowercase representation
1640 into this lowercase representation.

1641 3.140 Driver

1642 A module that controls data transferred to and received from devices.

1643 Note: Drivers are traditionally written to be a part of the system implementation, although they are
1644 frequently written separately from the writing of the implementation. A driver may contain
1645 processor-specific code, and therefore be non-portable.

1646 3.141 Effective Group ID

1647 An attribute of a process that is used in determining various permissions, including file access
1648 permissions; see also Section 3.188 (on page 57).

1649 3.142 Effective User ID

1650 An attribute of a process that is used in determining various permissions, including file access
1651 permissions; see also Section 3.427 (on page 89).
50 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1652

1653
1654
1655

1656

1657
1658
1659

1660

1661

1662

1663

1664

1665

1666

1667

1668
1669

1670

1671
1672

1673

1674

1675
1676

1677

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Eight-Bit Transparency

3.143

3.144

3.145

3.146

3.147

3.148

3.149

3.150

Eight-Bit Transparency

The ability of a software component to process 8-bit characters without modifying or utilizing
any part of the character in a way that is inconsistent with the rules of the current coded
character set.

Empty Directory

A directory that contains, at most, directory entries for dot and dot-dot, and has exactly one link
to it, in dot-dot. No other links to the directory may exist. It is unspecified whether an
implementation can ever consider the root directory to be empty.

Empty Line

A line consisting of only a <newline>; see also Section 3.75 (on page 41).

Empty String (or Null String)
A string whose first byte is a null byte.

Empty Wide-Character String

A wide-character string whose first element is a null wide-character code.

Encoding Rule
The rules used to convert between wide-character codes and multi-byte character codes.

Note: Stream Orientation and Encoding Rules are defined in detail in the System Interfaces volume of
IEEE Std 1003.1-200x, Section 2.5.2, Stream Orientation and Encoding Rules.

Entire Regular Expression

The concatenated set of one or more basic regular expressions or extended regular expressions
that make up the pattern specified for string selection.

Note: Regular Expressions-are defined in detail in Chapter 9 (on page 165).

Epoch

The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal Time
(UTCQC).

Note: See also Seconds Since the Epoch defined in Section 4.15 (on page 98).

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 51

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Equivalence Class Definitions

1678 3.151 Equivalence Class

1679 A set of collating elements with the same primary collation weight.

1680 Elements in an equivalence class are typically elements that naturally group together, such as all
1681 accented letters based on the same base letter.

1682 The collation order of elements within an equivalence class is determined by the weights
1683 assigned on any subsequent levels after the primary weight.

1684 3.152 Era

1685 A locale-specific method for counting and displaying years.

1686 Note: The LC_TIME category is defined in detail in Section 7.3.5 (on page 142).

1687 3.153 Event Management

1688 The mechanism that enables applications to register for and be made aware of external events
1689 such as data becoming available for reading.

1690 3.154 Executable File

1691 A regular file acceptable as a new process image file by the equivalent of the exec family of
1692 functions, and thus usable as one form of a utility. The standard utilities described as compilers
1693 can produce executable files, but other unspecified methods of producing executable files may
1694 also be provided. The internal format of an executable file is unspecified, but a conforming
1695 application cannot assume an executable file is a text file.

1696 3.155 Execute

1697 To perform command search and execution actions, as defined in the Shell and Utilities volume
1698 of IEEE Std 1003.1-200x; see also Section 3.200 (on page 59).
1699 Note: Command Search and Execution is defined in detail in the Shell and Utilities volume of
1700 IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution.
1701 3.156 Execution Time
1702 See CPU Time in Section 3.118 (on page 47).
1703 3.157 Execution Time Monitoring
1704 A set of execution time monitoring primitives that allow online measuring of thread and process
1705 execution times.
52 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1706

1707

1708
1709

1710

1711
1712

1713

1714

1715
1716
1717

1718

1719

1720

1721

1722
1723

1724

1725
1726
1727

1728
1729

1730
1731

1732
1733

1734
1735

1736
1737

1738

1739

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Expand

3.158

3.159

3.160

3.161

3.162

3.163

Expand
In the shell command language, when not qualified, the act of applying word expansions.

Note: Word Expansions are defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x,
Section 2.6, Word Expansions.

Extended Regular Expression (ERE)

A regular expression (see also Section 3.316 (on page 75)) that is an alternative to the Basic
Regular Expression using a more extensive syntax, occasionally used by some utilities.

Note: Extended Regular Expressions are described in detail in Section 9.4 (on page 171).

Extended Security Controls

Implementation-defined security controls allowed by the file access permission and appropriate
privilege (see also Section 3.19 (on page 33)) mechanisms, through which an implementation can
support different security policies from those described in IEEE Std 1003.1-200x.

Note: See also Extended Security Controls defined in Section 4.3 (on page 93).

File Access Permissions are defined in detail in Section 4.4 (on page 94).

Feature Test Macro
A macro used to determine whether a particular set of features is included from a header.

Note: See also the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.2, The Compilation
Environment.

Field

In the shell command language, a unit of text that is the result of parameter expansion,
arithmetic expansion, command substitution, or field splitting. During command processing, the
resulting fields are used as the command name and its arguments.

Note: Parameter. Expansion is defined in detail in the Shell and Utilities volume of
IEEE Std 1003.1-200x, Section 2.6.2, Parameter Expansion.

Arithmetic Expansion is defined in detail in the Shell and Utilities volume of
IEEE Std 1003.1-200x;, Section 2.6.4, Arithmetic Expansion.

Command Substitution is defined in detail in the Shell and Utilities volume of
IEEE Std 1003.1-200x, Section 2.6.3, Command Substitution.

Field Splitting is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x,
Section 2.6.5, Field Splitting.

For further information on command processing, see the Shell and Utilities volume of
IEEE Std 1003.1-200x, Section 2.9.1, Simple Commands.

FIFO Special File (or FIFO)

A type of file with the property that data written to such a file is read on a first-in-first-out basis.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 53

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

FIFO Special File (or FIFO) Definitions
1740 Note: Other characteristics of FIFOs are described in the System Interfaces volume of
1741 IEEE Std 1003.1-200x, Iseek (), open (), read(), and write().

1742 3.164 File

1743 An object that can be written to, or read from, or both. A file has certain attributes, including
1744 access permissions and type. File types include regular file, character special file, block special
1745 file, FIFO special file, symbolic link, socket, and directory. Other types of files may be supported
1746 by the implementation.

1747 3.165 File Description
1748 See Open File Description in Section 3.253 (on page 66).

1749 3.166 File Descriptor

1750 A per-process unique, non-negative integer used to identify an open file for the purpose of file
1751 access. The value of a file descriptor is from zero to {OPEN.MAX}. A process can have no more
1752 than {OPEN_MAX] file descriptors open simultaneously. File descriptors may also be used to
1753 implement message catalog descriptors and directory streams; see also Section 3.253 (on page
1754 66).

1755 Note: {OPEN_MAX]} is defined in detail in <limits.h>.

1756 3.167 File Group Class

1757 The property of a file indicating access permissions for a process related to the group
1758 identification of a process. A process is in the file group class of a file if the process is not in the
1759 file owner class and if the effective group ID or one of the supplementary group IDs of the
1760 process matches the group ID_associated with the file. Other members of the class may be
1761 implementation-defined.

1762 3.168 File Mode

1763 An object containing the file mode bits and file type of a file.

1764 Note: File mode bits and file types are defined in detail in <sys/stat.h>.

1765 3.169 File Mode Bits

1766 A file’s file permission bits: set-user-ID-on-execution bit (S_ISUID), set-group-ID-on-execution
1767 bit (5_ISGID), and, on directories, the restricted deletion flag bit (S_ISVTX).
1768 Note: File Mode Bits are defined in detail in <sys/stat.h>.
1769 3.170 Filename
1770 A name consisting of 1 to {NAME_MAX] bytes used to name a file. The characters composing
54 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Filename

3.171

3.172

3.173

3.174

the name may be selected from the set of all character values excluding the slash character and
the null byte. The filenames dot and dot-dot have special meaning. A filename is sometimes
referred to as a “pathname component”.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 97).

File Offset

The byte position in the file where the next I/O operation begins. Each open file description
associated with a regular file, block special file, or directory has a file offset. A character special
file that does not refer to a terminal device may have a file offset. There is no file offset specified
for a pipe or FIFO.

File Other Class

The property of a file indicating access permissions for a process related to the user and group
identification of a process. A process is in the file other class of a file if the process is not in the
file owner class or file group class.

File Owner Class

The property of a file indicating access permissions for a process related to the user
identification of a process. A process.is in the file owner class of a file if the effective user ID of
the process matches the user ID of the file.

File

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Filter Definitions

1802 3.178 Filter

1803 A command whose operation consists of reading data from standard input or a list of input files
1804 and writing data to standard output. Typically, its function is to perform some transformation
1805 on the data stream.

1806 3.179 First Open (of a File)

1807 When a process opens a file that is not currently an open file within any process.

1808 3.180 Flow Control

1809 The mechanism employed by a communications provider that constrains a sending entity to
1810 wait until the receiving entities can safely receive additional data without loss.

1811 3.181 Foreground Job

1812 See Foreground Process Group in Section 3.183 (on page 56).

1813 3.182 Foreground Process

1814 A process that is a member of a foreground process group.

1815 3.183 Foreground Process Group (or Foreground Job)

1816 A process group whose member processes have certain privileges, denied to processes in
1817 background process groups, when accessing their controlling terminal. Each session that has
1818 established a connection with a controlling terminal has at most one process group of the session
1819 as the foreground process group of that controlling terminal.

1820 Note: The General Terminal Interface is defined in'detail in Chapter 11.

1821 3.184 Foreground Process Group ID

1822 The process group ID of the foreground process group.

56 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1823

1824
1825
1826
1827
1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840
1841
1842
1843

1844

1845
1846
1847

1848

1849
1850

1851

1852
1853
1854

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Form-Feed Character (<form-feed>)

3.185

Form-Feed Character (<form-feed>)

A character that in the output stream indicates that printing should start on the next page of an
output device. It is the character designated by \f' in the C language. If the <form-feed> is not
the first character of an output line, the result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output device by the system to accomplish the
movement to the next page.

3.186 Graphic Character
A member of the graph character class of the current locale.
Note: The graph character class is defined in detail in Section 7.3.1 (on page 122).
3.187 Group Database
A system database that contains at least the following information for each group ID:
e Group name
» Numerical group ID
o List of users allowed in the group
The list of users allowed in the group is used by the newgrp utility.
Note: The newgrp utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.
3.188 Group ID
A non-negative integer, which can be contained in an object of type gid_t, that is used to identify
a group of system users. Each system user is a member of at least one group. When the identity
of a group<is associated with a process, a group ID value is referred to as a real group ID, an
effective group ID, one of the supplementary group IDs; or a saved set-group-ID.
3.189 Group Name
A string that is used to identify a group; see also Section 3.187 (on page 57). To be portable
across conforming systems, the value is composed of characters from the portable filename
character set. The hyphen should not be used as the first character of a portable group name.
3.190 Hard Limit
A system resource limitation that may be reset to a lesser or greater limit by a privileged process.
A non-privileged process is restricted to only lowering its hard limit.
3.191 Hard Link
The relationship between two directory entries that represent the same file; see also Section 3.130
(on page 49). The result of an execution of the In utility (without the —s option) or the link()
function. This term is contrasted against symbolic link; see also Section 3.373 (on page 82).
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 57

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Home Directory Definitions

1855 3.192 Home Directory
1856 The directory specified by the HOME environment variable.

1857 3.193 Host Byte Order

1858 The arrangement of bytes in any integer type when using a specific machine architecture.

1859 Note: Two common methods of byte ordering are big-endian and little-endian. Big-endian is a format
1860 for storage of binary data in which the most significant byte is placed first, with the rest in
1861 descending order. Little-endian is a format for storage or transmission of binary data in which
1862 the least significant byte is placed first, with the rest in ascending order. See also Section 4.9 (on
1863 page 95).

1864 3.194 Incomplete Line

1865 A sequence of one or more non-<newline>s at the end of the file.

1866 3.195 Inf

1867 A value representing +infinity or a value representing —infinity that can be stored in a floating
1868 type. Not all systems support the Inf values.

1869 3.196 Instrumented Application

1870 An application that contains at least one call to the trace point function posix_trace_event(). Each
1871 process-of an instrumented application has a mapping of trace event names to trace event type
1872 identifiers. This mapping is'used by the trace stream that is created for that process.

1873 3.197 Interactive Shell

1874 A processing mode of the shell that is suitable for direct user interaction.
1875 3.198 Internationalization
1876 The provision within a computer program of the capability of making itself adaptable to the
1877 requirements of different native languages, local customs, and coded character sets.
1878 3.199 Interprocess Communication
1879 A functionality enhancement to add a high-performance, deterministic interprocess
1880 communication facility for local communication.
58 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1881

1882
1883

1884
1885

1886

1887
1888

1889

1890

1891
1892
1893

1894
1895

1896

1897

1898
1899

1900
1901
1902
1903
1904
1905

1906

1907

1908

1909

1910

1911

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions I nvoke

3.200

3.201

3.202

3.203

3.204

3.205

3.206

Invoke

To perform command search and execution actions, except that searching for shell functions and
special built-in utilities is suppressed; see also Section 3.155 (on page 52).

Note: Command Search and Execution is defined in detail in the Shell and Utilities volume of
IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution.

Job

A set of processes, comprising a shell pipeline, and any processes descended from it, that are all
in the same process group.

Note: See also the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.9.2, Pipelines.

Job Control

A facility that allows users selectively to stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal I/O driver and a command interpreter.

Job Control Job ID

A handle that is used to refer to a job. The job control job ID can be any of the forms shown in
the following table:

Table 3-1 Job Control Job ID Formats

Job Control
Job ID Meaning

%% Current job.

Yo+ Current job.

Yo— Previous job.

Yon Job number 7.

Yostring Job whose command begins with string.
%?string Job whose command contains string.

Last Close (of a File)

When a process closes a file, resulting in the file not being an open file within any process.

Line

A sequence of zero or more non-<newline>s plus a terminating <newline>.

Linger

A period of time before terminating a connection, to allow outstanding data to be transferred.

Base Definitions, Issue % Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 59

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Link Definitions

1912 3.207 Link
1913 See Directory Entry in Section 3.130 (on page 49).

1914 3.208 Link Count

1915 The number of directory entries that refer to a particular file.

1916 3.209 Local Customs

1917 The conventions of a geographical area or territory for such things as date, time, and currency
1918 formats.

1919 3.210 Local Interprocess Communication (Local IPC)

1920 The transfer of data between processes in the same system.

1921 3.211 Locale

1922 The definition of the subset of a user’s environment that depends on language and cultural
1923 conventions.

1924 Note: Locales are defined in detail in Chapter 7 (on page 119).

1925 3.212 Localization

1926 The process of establishing information within a computer system specific to the operation of
1927 particular native languages, local customs, and coded character sets.

1928 3.213 Login

1929 The unspecified activity by which a user gains access to the system. Each login is associated
1930 with exactly one login name.

1931 3.214 Login Name

1932 A user name that is associated with a login.

1933 3.215 Map

1934 To create an association between a page-aligned range of the address space of a process and
1935 some memory object, such that a reference to an address in that range of the address space
1936 results in a reference to the associated memory object. The mapped memory object is not
1937 necessarily memory-resident.
60 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1938

1939
1940
1941

1942

1943

1944
1945
1946

1947

1948

1949

1950

1951

1952

1953

1954

1955
1956

1957
1958

1959

1960
1961

1962

1963
1964
1965

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Marked Message

3.216

3.217

3.218

3.219

3.220

3.221

Marked Message

A STREAMSs message on which a certain flag is set. Marking a message gives the application
protocol-specific information. An application can use ioctl() to determine whether a given
message is marked.

Note: The ioctl() function is defined in detail in the System Interfaces volume of IEEE Std 1003.1-200x.

Matched

A state applying to a sequence of zero or more characters when the characters in the sequence
correspond to a sequence of characters defined by a basic regular expression or extended regular
expression pattern.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 165).

Memory Mapped Files

A facility to allow applications to access files as part of the address space.

Memory Object

One of:
« A file (see Section 3.164 (on page 54))
A shared memory object (see Section 3.341 (on page 78))
+ A typed memory object (see Section 3.420 (on page 88))

When used in conjunction with mmap(), a memory object appears in the address space of the
calling process.

Note: The mmap() function is defined ‘in' detail in the System Interfaces volume of
IEEE Std 1003.1-200x.

Memory-Resident

The process of managing the implementation in such a way as to provide an upper bound on
memory access times.

Message

In the context of programmatic message passing, information that can be transferred between
processes or threads by being added to and removed from a message queue. A message consists
of a fixed-size message buffer.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 61

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Message Catalog Definitions

1966 3.222 Message Catalog

1967 In the context of providing natural language messages to the user, a file or storage area
1968 containing program messages, command prompts, and responses to prompts for a particular
1969 native language, territory, and codeset.

1970 3.223 Message Catalog Descriptor

1971 In the context of providing natural language messages to the user, a per-process unique value
1972 used to identify an open message catalog. A message catalog descriptor may be implemented
1973 using a file descriptor.

1974 3.224 Message Queue

1975 In the context of programmatic message passing, an object to which messages can be added and
1976 removed. Messages may be removed in the order in which they were added or in priority order.

1977 3.225 Mode

1978 A collection of attributes that specifies a file's type and its access permissions.

1979 Note: File Access Permissions are defined in detail'in Section 4.4 (on page 94).

1980 3.226 Monotonic Clock

1981 A clock whose value ‘cannot be set via clock.settime() and which cannot have negative clock
1982 jumps.

1983 3.227 Mount Point

1984 Either the system root directory or a directory for-which the st_dev field of structure stat differs
1985 from that of its parent directory.
1986 Note: The stat structure is defined in detail in <sys/stat.h>.

1987 3.228 Multi-Character Collating Element

1988 A sequence of two or more characters that collate as an entity. For example, in some coded
1989 character sets, an accented character is represented by a non-spacing accent, followed by the
1990 letter. Other examples are the Spanish elements ch and II.

1991 3.229 Mutex

1992 A synchronization object used to allow multiple threads to serialize their access to shared data.
1993 The name derives from the capability it provides; namely, mutual-exclusion. The thread that has
1994 locked a mutex becomes its owner and remains the owner until that same thread unlocks the
1995 mutex.
62 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

1996

1997
1998

1999

2000

2001
2002
2003

2004

2005
2006

2007

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Name

3.230

3.231

3.232

3.233

3.234

3.235

3.236

Name

In the shell command language, a word consisting solely of underscores, digits, and alphabetics
from the portable character set. The first character of a name is not a digit.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 109).

Named STREAM

A STREAMS-based file descriptor that is attached to a name in the file system name space. All
subsequent operations on the named STREAM act on the STREAM that was associated with the
file descriptor until the name is disassociated from the STREAM.

NaN (Not a Number)

A set of values that may be stored in a floating type but that are neither Inf nor valid floating-
point numbers. Not all systems support NaN values.

Native Language

A computer user’s spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian, or Swedish.

Negative Response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword noexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section7.3.6 (on page 148).

Network
A collection of interconnected hosts.

Note: The term “network’ in IEEE Std 1003.1-200x is used to refer to the network of hosts. The term
“batch system’ is used to refer to the network of batch servers.

Network Address

A network-visible identifier used to designate specific endpoints in a network. Specific
endpoints on host systems have addresses, and host systems may also have addresses.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 63

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Network Byte Order Definitions

2021 3.237 Network Byte Order

2022 The way of representing any integer type such that, when transmitted over a network via a
2023 network endpoint, the int type is transmitted as an appropriate number of octets with the most
2024 significant octet first, followed by any other octets in descending order of significance.

2025 Note: This order is more commonly known as big-endian ordering. See also Section 4.9 (on page 95).
2026 3.238 Newline Character (<newline>)

2027 A character that in the output stream indicates that printing should start at the beginning of the
2028 next line. It is the character designated by \n" in the C language. It is unspecified whether this
2029 character is the exact sequence transmitted to an output device by the system to accomplish the
2030 movement to the next line.

2031 3.239 Nice Value

2032 A number used as advice to the system to alter process scheduling. Numerically smaller values
2033 give a process additional preference when scheduling a process to run. Numerically larger
2034 values reduce the preference and make a process less likely to run. Typically, a process with a
2035 smaller nice value runs to completion more quickly than an equivalent process with a higher
2036 nice value. The symbol {NZERO} specifies the default nice value of the system.

2087 3.240 Non-Blocking

2038 A property of an open file description that causes function calls involving it to return without
2039 delay when it is detected that the requested action associated with the function call cannot be
2040 completed without unknown delay.

2041 Note: The exact semantics are dependent on the type of file associated with the open file description.
2042 For data reads from devices such as ttyscand FIFOs, this property causes the read to return
2043 immediately when no ‘data was available. Similarly, for writes, it causes the call to return
2044 immediately when the thread would otherwise be delayed in the write operation; for example,
2045 because no space was available. For networking, it causes functions not to await protocol events
2046 (for example, ‘acknowledgements) ‘to occur. See also the System Interfaces volume of
2047 IEEE Std 1003.1-200x, Section 2.10.7,.Socket I/O Mode.

2048 3.241 Non-Spacing Characters

2049 A character, such as a character representing a diacritical mark in the ISO/IEC 6937:2001
2050 standard coded character set, which is used in combination with other characters to form
2051 composite graphic symbols.

2052 3.242 NUL

2053 A character with all bits set to zero.

64 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2054

2055

2056

2057
2058
2059

2060

2061

2062

2063

2064

2065

2066

2067
2068
2069
2070

2071

2072

2073

2074
2075

2076

2077

2078

2079

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Null Byte

3.243

3.244

3.245

3.246

3.247

3.248

3.249

3.250

3.251

3.252

Null Byte
A byte with all bits set to zero.

Null Pointer

The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0. The
C language guarantees that this value does not match that of any legitimate pointer, so it is used
by many functions that return pointers to indicate an error.

Null String
See Empty String in Section 3.146 (on page 51).

Null Wide-Character Code

A wide-character code with all bits set to zero.

Number Sign

The character '# , also knownas hash sign.

Object File

A regular file containing the output of a compiler, formatted as input to a linkage editor for
linking with other object files into an executable form. The methods of linking are unspecified
and may involve the dynamic linking of objects at runtime. The internal format of an object file
is unspecified, but a conforming application cannot assume an object file is a text file.

Octet

Unit of data representation that consists of eight contiguous bits.

Offset Maximum

An attribute of an open file description representing the largest value that can be used as a file
offset.

Opaque Address

An address such that the entity making use of it requires no details about its contents or format.

Open File

A file that is currently associated with a file descriptor.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 65

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2080

2081
2082
2083
2084

2085

2086
2087

2088

2089

2090

2091

2092
2093

2094

2095

2096
2097

2098

2099

2100

2101
2102

2103

2104
2105

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Open File Description Definitions

3.253

3.254

3.255

3.256

3.257

3.258

3.259

66

Open File Description

A record of how a process or group of processes is accessing a file. Each file descriptor refers to
exactly one open file description, but an open file description can be referred to by more than
one file descriptor. The file offset, file status, and file access modes are attributes of an open file
description.

Operand

An argument to a command that is generally used as an object supplying information to a utility
necessary to complete its processing. Operands generally follow the options in a command line.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 197).

Operator

In the shell command language, either a control operator or a redirection operator.

Option

An argument to a command that is generally used to specify changes in the utility’s default
behavior.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 197).

Option-Argument

A parameter that follows certain options. In some cases an option-argument is included within
the same argument string as the option—in most cases it is the next argument.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 197).

Orientation
A stream has one of three orientations: unoriented, byte-oriented, or wide-oriented.

Note: For further information, see the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.5.2,
Stream Orientation and Encoding Rules.

Orphaned Process Group

A process group in which the parent of every member is either itself a member of the group or is
not a member of the group’s session.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2106

2107

2108
2109
2110

2111

2112
2113
2114

2115

2116
2117
2118

2119
2120

2121
2122
2123

2124

2125
2126

2127
2128

2129

2130

2131

2132

2133
2134
2135

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Page

3.260

Page
The granularity of process memory mapping or locking.

Physical memory and memory objects can be mapped into the address space of a process on
page boundaries and in integral multiples of pages. Process address space can be locked into
memory (made memory-resident) on page boundaries and in integral multiples of pages.

3.261 Page Size
The size, in bytes, of the system unit of memory allocation, protection, and mapping. On
systems that have segment rather than page-based memory architectures, the term “page”
means a segment.

3.262 Parameter
In the shell command language, an entity that stores values. There are three types of parameters:
variables (named parameters), positional parameters, and special parameters. Parameter
expansion is accomplished by introducing a parameter with the '$’ character.
Note: See also the Shell and Ultilities volume of IEEE Std 1003.1-200x, Section 2.5, Parameters and

Variables.

In the C language, an object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier following the macro name in a function-like
macro definition.

3.263 Parent Directory
When discussing a given directory, the directory that both contains a directory entry for the
given directory and is represented by the pathname dot-dot in the given directory.
When discussing other types of files, a directory containing a directory entry for the file under
discussion.
This concept does not apply to dot and dot-dot.

3.264 Parent Process
The process which created (or'inherited) the process under discussion.

3.265 Parent Process ID
An attribute of a new process identifying the parent of the process. The parent process ID of a
process is the process ID of its creator, for the lifetime of the creator. After the creator’s lifetime
has ended, the parent process ID is the process ID of an implementation-defined system process.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 67

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Pathname Definitions

3.266 Pathname

A character string that is used to identify a file. In the context of IEEE Std 1003.1-200x, a
pathname consists of, at most, {PATH_MAX] bytes, including the terminating null byte. It has an
optional beginning slash, followed by zero or more filenames separated by slashes. A pathname
may optionally contain one or more trailing slashes. Multiple successive slashes are considered
to be the same as one slash.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 97).

3.267 Pathname Component

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2168

2169
2170
2171

2172

2173

2174
2175

2176

2177
2178

2179

2180
2181

2182

2183

2184
2185
2186

2187

2188

2189
2190

2191
2192

2193

2194

2195
2196

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Pipe

3.273

3.274

3.275

3.276

3.277

3.278

Pipe
An object accessed by one of the pair of file descriptors created by the pipe() function. Once

created, the file descriptors can be used to manipulate it, and it behaves identically to a FIFO
special file when accessed in this way. It has no name in the file hierarchy.

Note: The pipe() function is defined in detail in the System Interfaces volume of IEEE Std 1003.1-200x.

Polling

A scheduling scheme whereby the local process periodically checks until the pre-specified
events (for example, read, write) have occurred.

Portable Character Set

The collection of characters that are required to be present in all locales supported by
conforming systems.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 109).

This term is contrasted against the smaller portable filename character set; see also Section 3.276
(on page 69).

Portable Filename Character Set
The set of characters from which portable filenames are constructed.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklimnopgrstuvwxyz
0123456789, _ -

The last three characters are the period, underscore, and hyphen characters, respectively.

Positional Parameter

In the shell command language, a parameter denoted by a single digit or one or more digits in
curly braces.

Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.5.1,
Positional Parameters.

Preallocation
The reservation of resources in a system for a particular use.

Preallocation does not imply that the resources are immediately allocated to that use, but merely
indicates that they are guaranteed to be available in bounded time when needed.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 69

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Preempted Process (or Thread) Definitions

2197 3.279 Preempted Process (or Thread)

2198 A running thread whose execution is suspended due to another thread becoming runnable at a
2199 higher priority.

2200 3.280 Previous Job

2201 In the context of job control, the job that will be used as the default for the fg or bg utilities if the
2202 current job exits. There is at most one previous job; see also Section 3.203 (on page 59).

2203 3.281 Printable Character

2204 One of the characters included in the print character classification of the LC_CTYPE category in
2205 the current locale.
2206 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 122).

2007 3.282 Printable File

2208 A text file consisting only of the characters included in the print and space character
2209 classifications of the LC_CTYPE category and the <backspace>, all in the current locale.
2210 Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 122).

»i1 3.283 Priority

212 A non-negative integer associated with processes or threads whose value is constrained to a
2213 range defined by the applicable scheduling policy. Numerically higher values represent higher
2214 priorities.

215 3.284 Priority Band

2216 The queuing order applied to normal priority STREAMS messages. High priority STREAMS
2217 messages are not grouped by priority bands. The only differentiation made by the STREAMS
2218 mechanism is between zero and non-zero bands, but specific protocol modules may differentiate
2219 between priority bands.

2220 3.285 Priority Inversion

2221 A condition in which a thread that is not voluntarily suspended (waiting for an event or time
2222 delay) is not running while a lower priority thread is running. Such blocking of the higher
2223 priority thread is often caused by contention for a shared resource.

2024 3.286 Priority Scheduling

2225 A performance and determinism improvement facility to allow applications to determine the
2226 order in which threads that are ready to run are granted access to processor resources.
70 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Definitions Priority-Based Scheduling

3.287 Priority-Based Scheduling

Scheduling in which the selection of a running thread is determined by the priorities of the
ru

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Process ID Definitions

255 3.294 Process ID

2256 The unique positive integer identifier representing a process during its lifetime.

2257 Note: See also Process ID Reuse defined in Section 4.13 (on page 98).

2258 3.295 Process Lifetime

2259 The period of time that begins when a process is created and ends when its process ID is
2260 returned to the system. After a process is created by fork(), posix_spawn (), or posix_spawnp(), it is
2261 considered active. At least one thread of control and address space exist until it terminates. It
2262 then enters an inactive state where certain resources may be returned to the system, although
2263 some resources, such as the process ID, are still in use. When another process executes a wait (),
2264 waitid(), or waitpid() function for an inactive process, the remaining resources are returned to
2265 the system. The last resource to be returned to the system is the process ID. At this time, the
2266 lifetime of the process ends.

2267 Note: The fork(), posix_spawn (), posix_spawnp (), wait (), waitid(), and waitpid () functions are defined in
2268 detail in the System Interfaces volume of IEEE Std 1003.1-200x.

2269 3.296 Process Memory Locking

2270 A performance improvement facility to bind application programs into the high-performance
2271 random access memory of a computer system. This avoids potential latencies introduced by the
2272 operating system in storing parts of a program that were not recently referenced on secondary
2273 memory devices.
2074 3.297 Process Termination
2275 There are two kinds of process termination:
2276 1. Normal termination occurs by a return from main(), when requested with the exit(),
2277 _exit(), or _Exit() functions; or when the last thread in the process terminates by
2278 returning from its start function, by calling the pthread_exit() function, or through
2279 cancellation.
2280 2. Abnormal termination occurs. when requested by the abort() function or when some
2281 signals are received.
2282 Note: The _exit(), _Exit(), abort(), and exit() functions are defined in detail in the System Interfaces
2283 volume of IEEE Std 1003.1-200x.
2084 3.298 Process-To-Process Communication
2285 The transfer of data between processes.
2286 3.299 Process Virtual Time
2287 The measurement of time in units elapsed by the system clock while a process is executing.

72 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2288

2289
2290
2291
2292

2293

2294

2295

2296
2297
2298
2299
2300
2301

2302

2303

2304

2305

2306

2307

2308
2309
2310

2311
2312
2313

2314

2315
2316

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Program

3.300

3.301

3.302

3.303

3.304

3.305

3.306

Program

A prepared sequence of instructions to the system to accomplish a defined task. The term
“program” in IEEE Std 1003.1-200x encompasses applications written in the Shell Command
Language, complex utility input languages (for example, awk, lex, sed, and so on), and high-level
languages.

Protocol

A set of semantic and syntactic rules for exchanging information.

Pseudo-Terminal

A facility that provides an interface that is identical to the terminal subsystem. A pseudo-
terminal is composed of two devices: the “master device” and a “slave device”. The slave device
provides processes with an interface that is identical to the terminal interface, although there
need not be hardware behind that interface. Anything written on the master device is presented
to the slave as an input and anything written on the slave device is presented as an input on the
master side.

Radix Character

The character that separates the integer part of a number from the fractional part.

Read-Only File System
A file system that has implementation-defined characteristics restricting modifications.

Note: File Times Update is described in detail in Section 4.8 (on page 95).

Read-Write Lock

Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is read-only more frequently than it is changed.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

Real Group ID

The attribute of a process that, at the time of process creation, identifies the group of the user
who created the process; see also Section 3.188 (on page 57).

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 73

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2317

2318
2319

2320

2321
2322

2323

2324
2325

2326

2327

2328

2329
2330

2331
2332

2333

2334
2335

2336

2337

2338
2339
2340

2341

2342

2343

2344

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Real Time Definitions

3.307

3.308

3.309

3.310

3.311

3.312

3.313

3.314

3.315

74

Real Time

Time measured as total units elapsed by the system clock without regard to which thread is
executing.

Realtime Signal Extension

A determinism improvement facility to enable asynchronous signal notifications to an
application to be queued without impacting compatibility with the existing signal functions.

Real User ID

The attribute of a process that, at the time of process creation, identifies the user who created the
process; see also Section 3.427 (on page 89).

Record

A collection of related data units or words which is treated as a unit.

Redirection

In the shell command language, a method of associating files with the input or output of
commands.

Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.7,
Redirection.

Redirection Operator

In the shell command language, a token that performs a redirection function. It is one of the
following symbols:

< > > << >> <& >& <<- <>

Reentrant Function

A function whose effect, when called by two or more threads, is guaranteed to be as if the
threads each executed the function one after another in an undefined order, even if the actual
execution is interleaved.

Referenced Shared Memory Object

A shared memory object that is open or has one or more mappings defined on it.

Refresh

To ensure that the information on the user’s terminal screen is up-to-date.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2345

2346

2347

2348

2349

2350

2351

2352
2353

2354

2355

2356

2357

2358
2359

2360

2361
2362
2363

2364

2365
2366

2367

2368

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Regular Expression

3.316

3.317

3.318

3.319

3.320

3.321

3.322

3.323

Regular Expression
A pattern that selects specific strings from a set of character strings.

Note: Regular Expressions are described in detail in Chapter 9 (on page 165).

Region
In the context of the address space of a process, a sequence of addresses.

In the context of a file, a sequence of offsets.

Regular File

A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system.

Relative Pathname
A pathname not beginning with a slash.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 97).

Relocatable File

A file holding code or data suitable for linking with other object files to create an executable or a
shared object file.

Relocation

The process of connecting symbolic references with symbolic definitions. For example, when a
program calls “a function, the associated call instruction transfers control to the proper
destination address at execution.

Requested Batch Service

A service that is either rejected or performed prior to a response from the service to the
requester.

(Time) Resolution

The minimum time interval that a clock can measure or whose passage a timer can detect.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 75

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Robust Mutex Definitions

2369 3.324 Robust Mutex

2370 A mutex with the robust attribute set.

2371 Note: The robust attribute is defined in detail by the pthread_mutexattr_getrobust () function.

2372 3.325 Root Directory

2373 A directory, associated with a process, that is used in pathname resolution for pathnames that
2374 begin with a slash.

2375 3.326 Runnable Process (or Thread)

2376 A thread that is capable of being a running thread, but for which no processor is available.

277 3.327 Running Process (or Thread)

2378 A thread currently executing on a processor. On multi-processor systems there may be more
2379 than one such thread in a system at a time.

2380 3.328 Saved Resource Limits

2381 An attribute of a process that provides some flexibility in the handling of unrepresentable
2382 resource limits, as described in the exec family of functions and setrlimit ().

2383 Note: The exec and setrlimit() functions are defined in detail in the System Interfaces volume of
2384 IEEE Std 1003.1-200x.

2385 3.329 Saved Set-Group-ID

2386 An attribute of a process that allows some flexibility in the assignment of the effective group ID
2387 attribute, as described in the exec family of functions and setgid ().

2388 Note: The exec and setgid() functions are” defined in detail in the System Interfaces volume of
2389 IEEE Std 1003.1-200x.

2390 3.330 Saved Set-User-ID

2391 An attribute of a process that allows some flexibility in the assignment of the effective user ID
2392 attribute, as described in the exec family of functions and setuid ().

2393 Note: The exec and setuid() functions are defined in detail in the System Interfaces volume of
2394 IEEE Std 1003.1-200x.

2395 3.331 Scheduling

2396 The application of a policy to select a runnable process or thread to become a running process or
2397 thread, or to alter one or more of the thread lists.
76 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2398

2399

2400

2401
2402

2403
2404
2405

2406

2407
2408

2409

2410

2411
2412

2413

2414
2415

2416

2417

2418

2419
2420

2421

2422

2423
2424
2425
2426

2427
2428

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Scheduling Allocation Domain

3.332

Scheduling Allocation Domain

The set of processors on which an individual thread can be scheduled at any given time.

3.333 Scheduling Contention Scope
A property of a thread that defines the set of threads against which that thread competes for
resources.
For example, in a scheduling decision, threads sharing scheduling contention scope compete for
processor resources. In IEEE Std 1003.1-200x, a thread has scheduling contention scope of either
PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS.

3.334 Scheduling Policy
A set of rules that is used to determine the order of execution of processes or threads to achieve
some goal.
Note: Scheduling Policy is defined in detail in Section 4.14-(on page 98).

3.335 Screen
A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
physical display device or may occupy the entire physical area of the display device.

3.336 Scroll
To move the representation of data vertically or horizontally relative to the terminal screen.
There are two types of scrolling:

1. The cursor moves with the data.
2. The cursor remains stationary while the datamoves.

3.337 Semaphore
A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.
Note: Semaphores are defined in detail in Section 4.16 (on page 99).

3.338 Session
A collection of process groups established for job control purposes. Each process group is a
member of a session. A process is considered to be a member of the session of which its process
group is a member. A newly created process joins the session of its creator. A process can alter
its session membership; see setsid (). There can be multiple process groups in the same session.
Note: The setsid() function is defined in detail in the System Interfaces volume of

IEEE Std 1003.1-200x.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 77

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Session Definitions
2429 3.339 Session Leader
2430 A process that has created a session.
2431 Note: For further information, see the sefsid() function defined in the System Interfaces volume of
2432 IEEE Std 1003.1-200x.
2433 3.340 Session Lifetime
2434 The period between when a session is created and the end of the lifetime of all the process
2435 groups that remain as members of the session.

2436 3.341 Shared Memory Object

2437 An object that represents memory that can be mapped concurrently into the address space of
2438 more than one process.

2439 3.342 Shell

2440 A program that interprets sequences of text input as commands. It may operate on an input
2441 stream or it may interactively prompt and read commands from a terminal.

2442 3.343 Shell, the

2443 The Shell Command Language Interpreter; a specific instance of a shell.
2444 Note: For further information, see the 'sh utility defined in the Shell and Ultilities volume of
2445 IEEE Std 1003.1-200x.

2446 3.344 Shell Script

2447 A file containing shell commands. If the file is made executable, it can be executed by specifying
2448 its name as a simple command. Execution of a shell script causes a shell to execute the
2449 commands within the script. Alternatively; a shell can be requested to execute the commands in
2450 a shell script by specifying the name of the shell script as the operand to the sh utility.

2451 Note: Simple Commands '\ are defined in detail in the Shell and Utilities volume of
2452 IEEE Std 1003.1-200x, Section 2.9.1, Simple Commands.

2453 The sh utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.

2454 3.345 Signal

2455 A mechanism by which a process or thread may be notified of, or affected by, an event occurring
2456 in the system. Examples of such events include hardware exceptions and specific actions by
2457 processes. The term signal is also used to refer to the event itself.
78 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2458

2459
2460

2461

2462

2463

2464

2465

2466
2467

2468

2469
2470
2471
2472

2473

2474
2475

2476

2477
2478

2479
2480

2481
2482

2483

2484
2485

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Sgnal Stack

3.346

Signal Stack

Memory established for a thread, in which signal handlers catching signals sent to that thread
are executed.

3.347 Single-Quote
The character ™ , also known as apostrophe.

3.348 Slash
The character'/’ , also known as solidus.

3.349 Socket
A file of a particular type that is used as a communications endpoint for process-to-process
communication as described in the System Interfaces volume of IEEE Std 1003.1-200x.

3.350 Socket Address
An address associated with a socket or remote endpoint, including an address family identifier
and addressing information specific to that address family. The address may include multiple
parts, such as a network address associated with a host system and an identifier for a specific
endpoint.

3.351 Soft Limit
A resourcelimitation established for each process that the process may set to any value less than
or equal to the hard limit.

3.352 Source Code
When dealing with the Shell Command Language, input to the command language interpreter.
The term “shell script™ is synonymous with this meaning.
When dealing with an ISO/IEC-conforming programming language, source code is input to a
compiler conforming to that ISO/IEC standard.
Source code also refers to the input statements prepared for the following standard utilities: awk,
be, ed, lex, localedef, make, sed, and yacc.
Source code can also refer to a collection of sources meeting any or all of these meanings.
Note: The awk, be, ed, lex, localedef, make, sed, and yacc utilities are defined in detail in the Shell and

Utilities volume of IEEE Std 1003.1-200x.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 79

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Spoace Character (<space>) Definitions

2486 3.353 Space Character (<space>)

2487 The character defined in the portable character set as <space>. The <space> is a member of the
2488 space character class of the current locale, but represents the single character, and not all of the
2489 possible members of the class; see also Section 3.433 (on page 90).

2490 3.354 Spawn

2491 A process creation primitive useful for systems that have difficulty with fork() and as an efficient
2492 replacement for fork()/exec.

2493 3.355 Special Built-In

2494 See Built-In Utility in Section 3.83 (on page 42).

2495 3.356 Special Parameter

2496 In the shell command language, a parameter named by a single character from the following list:
2497 * @ # 2 ! - $ o0

2498 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.5.2,
2499 Special Parameters.

2500 3.357 Spin Lock

2501 A synchronization object used to allow multiple threads to serialize their access to shared data.

2502 3.358 Sporadic Server

2503 A scheduling policy for threads and processes that reserves a certain amount of execution
2504 capacity for processing aperiodic events at a given priority level.

2505 3.359 Standard Error

2506 An output stream usually intended to be used for diagnostic messages.

2507 3.360 Standard Input

2508 An input stream usually intended to be used for primary data input.

2509 3.361 Standard Output

2510 An output stream usually intended to be used for primary data output.

80 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2511

2512

2513

2514
2515
2516
2517
2518

2519
2520

2521
2522

2523

2524
2525
2526
2527

2528
2529

2530

2531
2532

2533

2534
2535

2536

2537
2538
2539

2540

2541

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Sandard Utilities

3.362

3.363

3.364

3.365

3.366

3.367

3.368

Standard Utilities
The utilities described in the Shell and Utilities volume of IEEE Std 1003.1-200x.

Stream

Appearing in lowercase, a stream is a file access object that allows access to an ordered sequence
of characters, as described by the ISO C standard. Such objects can be created by the fdopen (),
fmemopen (), fopen(), open_memstream(), or popen() functions, and are associated with a file
descriptor. A stream provides the additional services of user-selectable buffering and formatted
input and output; see also Section 3.364 (on page 81).

Note: For further information, see the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.5,
Standard I/0O Streams.

The fdopen (), fmemopen(), fopen (), open_memstream(), and popen() functions are defined in detail
in the System Interfaces volume of IEEE Std 1003.1-200x.

STREAM

Appearing in uppercase, STREAM refers to a full-duplex connection between a process and an
open device or pseudo-device. It optionally includes one or more intermediate processing
modules that are interposed between the process end of the STREAM and the device driver (or
pseudo-device driver) end of the STREAM,; see also Section 3.363 (on page 81).

Note: For further information, see the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.6,
STREAMS.

STREAM End

The STREAM end is the driver end of the STREAM and is also known as the downstream end of
the STREAM.

STREAM Head

The STREAM head is the beginning of the STREAM and is at the boundary between the system
and the application process. This is also known as the upstream end of the STREAM.

STREAMS Multiplexor

A driver with multiple STREAMS connected to it. Multiplexing with STREAMS connected
above is referred to as N-to-1, or “upper multiplexing”. Multiplexing with STREAMS connected
below is referred to as 1-to-N or “lower multiplexing”.

String

A contiguous sequence of bytes terminated by and including the first null byte.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 81

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Subshell Definitions

2542 3.369 Subshell

2543 A shell execution environment, distinguished from the main or current shell execution
2544 environment.

2545 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.12,
2546 Shell Execution Environment.

2547 3.370 Successfully Transferred

2548 For a write operation to a regular file, when the system ensures that all data written is readable
2549 on any subsequent open of the file (even one that follows a system or power failure) in the
2550 absence of a failure of the physical storage medium.

2551 For a read operation, when an image of the data on the physical storage medium is available to
2552 the requesting process.

2553 3.371 Supplementary Group ID

2554 An attribute of a process used in determining file access permissions. A process has up to
2555 {NGROUPS_MAX]} supplementary group IDs in addition to the effective group ID. The
2556 supplementary group IDs of a process are set to the supplementary group IDs of the parent
2557 process when the process is created.

2558 3.372 Suspended Job

2559 A job that has received a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal that caused the
2560 process_group to stop. A suspended job is a background job, but a background job is not
2561 necessarily a suspended job.

2562 3.373 Symbolic Link

2563 A type of file with the property that when the file is encountered during pathname resolution, a
2564 string stored by the file is used to modify the pathname resolution. The stored string has a
2565 length of {SYMLINK .MAX] bytes or fewer.

2566 Note: Pathname Resolution is defined in detail in Section 4.12 (on page 97).

2567 3.374 Synchronized Input and Output

2568 A determinism and robustness improvement mechanism to enhance the data input and output
2569 mechanisms, so that an application can ensure that the data being manipulated is physically
2570 present on secondary mass storage devices.

2571 3.375 Synchronized I/O Completion

2572 The state of an I/O operation that has either been successfully transferred or diagnosed as
2573 unsuccessful.

82 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Synchronized 1/0 Data Integrity Completion

3.376

3.377

3.378

3.379

Synchronized 1/0 Data Integrity Completion

For read, when the operation has been completed or diagnosed if unsuccessful. The read is
complete only when an image of the data has been successfully transferred to the requesting
process. If there were any pending write requests affecting the data to be read at the time that
the synchronized read operation was requested, these write requests are successfully transferred
prior to reading the data.

For write, when the operation has been completed or diagnosed if unsuccessful. The write is
complete only when the data specified in the write request is successfully transferred and all file
system information required to retrieve the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time, modification time, status
change time) need not be successfully transferred prior to returning to the calling process.

Synchronized 1/O File Integrity Completion

Identical to a synchronized I/O data integrity completion with the addition that all file
attributes relative to the I/O operation (including access time, modification time, status change
time) are successfully transferred prior to returning to the calling process.

Synchronized I/0O Operation

An I/0 operation performed on a file that provides the application assurance of the integrity of
its data and files.

Synchronous I/O Operation
An I/0O operation that causes the thread r

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
System Boot Definitions

2604 3.382 System Boot

2605 An unspecified sequence of events that may result in the loss of transitory data; that is, data that
2606 is not saved in permanent storage. For example, message queues, shared memory, semaphores,
2607 and processes.

2608 3.383 System Crash

2609 An interval initiated by an unspecified circumstance that causes all processes (possibly other
2610 than special system processes) to be terminated in an undefined manner, after which any
2611 changes to the state and contents of files created or written to by an application prior to the
2612 interval are undefined, except as required elsewhere in IEEE Std 1003.1-200x.

2613 3.384 System Console

2614 A device that receives messages sent by the syslog() function, and the fmtmsg() function when
2615 the MM_CONSOLE flag is set.

2616 Note: The syslog() and fimtmsg() functions are defined in detail in the System Interfaces volume of
2617 IEEE Std 1003.1-200x.

2618 3.385 System Databases

2619 An implementation provides two system databases: the “group database™ (see also Section 3.187
2620 (on page 57)) and the “user database” (see also Section 3.426 (on page 89)).

2621 3.386 System Documentation

2622 All documentation provided with an implementation except for the conformance document.
2623 Electronically distributed documents for an implementation are considered part of the system
2624 documentation.

2625 3.387 System Process

2626 An object other than a process executing an application, that is provided by the system and has a
2627 process ID.

2628 3.388 System Reboot
2629 See System Boot defined in Section 3.382 (on page 84).

2630 3.389 System Trace Event

2631 A trace event that is generated by the implementation, in response either to a system-initiated
2632 action or to an application-requested action, except for a call to posix_trace_event(). When
2633 supported by the implementation, a system-initiated action generates a process-independent
2634 system trace event and an application-requested action generates a process-dependent system

84 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2635
2636
2637

2638

2639
2640

2641

2642
2643
2644
2645
2646

2647

2648

2649

2650

2651
2652
2653

2654

2655
2656
2657
2658
2659
2660

2661

2662
2663
2664
2665
2666
2667

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions System Trace Event

3.390

3.391

3.392

3.393

3.394

3.395

trace event. For a system trace event not defined by IEEE Std 1003.1-200x, the associated trace
event type identifier is derived from the implementation-defined name for this trace event, and
the associated data is of implementation-defined content and length.

System-Wide

Pertaining to events occurring in all processes existing in an implementation at a given point in
time.

Tab Character (<tab>)

A character that in the output stream indicates that printing or displaying should start at the
next horizontal tabulation position on the current line. It is the character designated by '\t' in
the C language. If the current position is at or past the last defined horizontal tabulation
position, the behavior is unspecified. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the tabulation.

Terminal (or Terminal Device)
A character special file that obeys the specifications of the general terminal interface.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 183).

Text Column

A roughly rectangular block of characters capable of being laid out side-by-side next to other
text columns on an output page or terminal screen. The widths of text columns are measured in
column positions.

Text File

A file that contains characters organized into one or more lines. The lines do not contain NUL
characters and none can exceed {LINE-MAX] bytes in length, including the <newline>.
Although IEEE Std 1003.1-200x does not distinguish between text files and binary files (see the
ISO C standard), many utilities only produce predictable or meaningful output when operating
on text files. The standard utilities that have such restrictions always specify “text files” in their
STDIN or INPUT FILES sections.

Thread

A single flow of control within a process. Each thread has its own thread ID, scheduling priority
and policy, errno value, thread-specific key/value bindings, and the required system resources to
support a flow of control. Anything whose address may be determined by a thread, including
but not limited to static variables, storage obtained via malloc(), directly addressable storage
obtained through implementation-defined functions, and automatic variables, are accessible to
all threads in the same process.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 85

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Thread Definitions

2668 Note: The malloc() function is defined in detail in the System Interfaces volume of
2669 IEEE Std 1003.1-200x.

2670 3.396 Thread ID

2671 Each thread in a process is uniquely identified during its lifetime by a value of type pthread_t
2672 called a thread ID.

2673 3.397 Thread List

2674 An ordered set of runnable threads that all have the same ordinal value for their priority.
2675 The ordering of threads on the list is determined by a scheduling policy or policies. The set of
2676 thread lists includes all runnable threads in the system.

2677 3.398 Thread-Safe

2678 A function that may be safely invoked concurrently by multiple threads. Each function defined
2679 in the System Interfaces volume of IEEE Std 1003.1-200x is thread-safe unless explicitly stated
2680 otherwise. Examples are any “pure” function, a function which holds a mutex locked while it is
2681 accessing static storage, or objects shared among threads.

2682 3.399 Thread-Specific Data Key

2683 A process global handle of type pthread. key_t which is used for naming thread-specific data.
2684 Although the same key value may be used by different threads, the values bound to the key by
2685 pthread_setspecific() and accessed by pthread_getspecific() are maintained on a per-thread basis
2686 and persist for the life of the calling thread.

2687 Note: The pthread_getspecific() and pthread_setspecific() functions are defined in detail in the System
2688 Interfaces volume of IEEE Std 1003.1-200x.

2689 3.400 Tilde

2690 The character ™

2691 3.401 Timeouts

2692 A method of limiting the length of time an interface will block; see also Section 3.76 (on page 41).

2693 3.402 Timer

2694 A mechanism that can notify a thread when the time as measured by a particular clock has
2695 reached or passed a specified value, or when a specified amount of time has passed.
86 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2696

2697
2698

2699

2700
2701

2702
2703

2704

2705
2706

2707

2708

2709

2710
2711

2712

2713

2714

2715

2716

2717
2718

2719

2720
2721

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Timer Overrun

3.403

Timer Overrun

A condition that occurs each time a timer, for which there is already an expiration signal queued
to the process, expires.

3.404 Token
In the shell command language, a sequence of characters that the shell considers as a single unit
when reading input. A token is either an operator or a word.
Note: The rules for reading input are defined in detail in the Shell and Ultilities volume of

IEEE Std 1003.1-200x, Section 2.3, Token Recognition.

3.405 Trace Analyzer Process
A process that extracts trace events from a trace stream to retrieve information about the
behavior of an application.

3.406 Trace Controller Process
A process that creates a trace stream for tracing a process.

3.407 Trace Event
A data object that represents an action executed by the system, and that is recorded in a trace
stream.

3.408 Trace Event Type
A data object type that defines a class of trace event.

3.409 Trace Event Type Mapping
A one-to-one mapping between trace event types and trace event names.

3.410 Trace Filter
A filter that allows the trace controller process to specify those trace event types that are to be
ignored; that is, not generated.

3.411 Trace Generation Version
A data object that is an implementation-defined character string, generated by the trace system
and describing the origin and version of the trace system.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 87

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Trace Log Definitions

2722 3.412 Trace Log

2723 The flushed image of a trace stream, if the trace stream is created with a trace log.

2724 3.413 Trace Point

2725 An action that may cause a trace event to be generated.

2726 3.414 Trace Stream

2727 An opaque object that contains trace events plus internal data needed to interpret those trace
2728 events.

2729 3.415 Trace Stream Identifier

2730 A handle to manage tracing operations in a trace stream.

2731 3.416 Trace System

2732 A system that allows both system and user trace events to be generated into a trace stream.
2733 These trace events can be retrieved later.

2734 3.417 Traced Process

2735 A process for which at least one trace stream has been created. A traced process is also called a
2736 target process.

2737 3.418 Tracing Status of a Trace Stream

2738 A status that describes the state of an active trace stream. The tracing status of a trace stream can
2739 be retrieved from the trace stream attributes. An active trace stream can be in one of two states:
2740 running or suspended.

2741 3.419 Typed Memory Name Space

2742 A system-wide name space that contains the names of the typed memory objects present in the
2743 system. It is configurable for a given implementation.

2744 3.420 Typed Memory Object

2745 A combination of a typed memory pool and a typed memory port. The entire contents of the
2746 pool are accessible from the port. The typed memory object is identified through a name that
2747 belongs to the typed memory name space.

88 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2748

2749
2750

2751

2752

2753

2754

2755

2756

2757

2758
2759

2760

2761

2762

2763

2764

2765

2766

2767
2768

2769

2770
2771

2772

2773

2774
2775
2776

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions Typed Memory Pool

3.421

Typed Memory Pool

An extent of memory with the same operational characteristics. Typed memory pools may be
contained within each other.

3.422 Typed Memory Port
A hardware access path to one or more typed memory pools.
3.423 Unbind
Remove the association between a network address and an endpoint.
3.424 Unit Data
See Datagram in Section 3.124 (on page 48).
3.425 Upshifting
The conversion of a lowercase character that has a single-character uppercase representation into
this uppercase representation.
3.426 User Database
A system database that contains at least the following information for each user ID:
+ User name
e Numericaluser ID
* Initial numerical group ID
* Initial working directory
¢ Initial user program
The initial numerical group ID is used by the newgrp utility. Any other circumstances under
which the initial values are operative are implementation-defined.
If the initial user program field is null, an implementation-defined program is used.
If the initial working directory field is null, the interpretation of that field is implementation-
defined.
Note: The newgrp utility is defined in detail in the Shell and Utilities volume of IEEE Std 1003.1-200x.
3.427 User ID
A non-negative integer that is used to identify a system user. When the identity of a user is
associated with a process, a user ID value is referred to as a real user ID, an effective user ID, or
a saved set-user-ID.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 89

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
User Name Definitions

2777 3.428 User Name

2778 A string that is used to identify a user; see also Section 3.426 (on page 89). To be portable across
2779 systems conforming to IEEE Std 1003.1-200x, the value is composed of characters from the
2780 portable filename character set. The hyphen should not be used as the first character of a
2781 portable user name.

2782 3.429 User Trace Event

2783 A trace event that is generated explicitly by the application as a result of a call to
2784 posix_trace_event ().

2785 3.430 Utility

2786 A program, excluding special built-in utilities provided as part of the Shell Command Language,
2787 that can be called by name from a shell to performa specific task, or related set of tasks.

2788 Note: For further information on special built-in utilities, see the Shell and Utilities volume of
2789 IEEE Std 1003.1-200x, Section 2.14, Special Built-In Utilities.

2790 3.431 Variable

2791 In the shell command language, a named parameter.
2792 Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.5,
2793 Parameters and Variables.

2794 3.432 Vertical-Tab Character (<vertical-tab>)

2795 A character that in the output stream indicates that printing should start at the next vertical
2796 tabulation position. It is the character designated by \v' in the C language. If the current
2797 position is at or past the last defined vertical tabulation position, the behavior is unspecified. It is
2798 unspecified whether this character is the exact sequence transmitted to an output device by the
2799 system to accomplish the tabulation.

2800 3.433 White Space

2801 A sequence of one or more characters that belong to the space character class as defined via the
2802 LC_CTYPE category in the current locale.

2803 In the POSIX locale, white space consists of one or more <blank>s (<space>s and <tab>s),
2804 <newline>s, <carriage-return>s, <form-feed>s, and <vertical-tab>s.

2805 3.434 Wide-Character Code (C Language)

2806 An integer value corresponding to a single graphic symbol or control code.
2807 Note: C Language Wide-Character Codes are defined in detail in Section 6.3 (on page 113).
a0 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2808

2809
2810
2811

2812

2813

2814
2815

2816

2817
2818
2819
2820
2821

2822
2823
2824

2825

2826
2827

2828

2829

2830

2831
2832
2833

2834

2835
2836
2837

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Definitions W de-Character Input/Output Functions

3.435

Wide-Character Input/Output Functions

The functions that perform wide-oriented input from streams or wide-oriented output to

streams: fgetwc(), fgetws(), fputwe(), fputws(), fwprintf(), fwscanf(), getwe(), getwchar (), putwe(),
putwchar (), ungetwc (), vfwprintf(), vfwscanf(), vwprintf(), vwscanf(), wprintf(), and wscanf().

Note: These functions are defined in detail in the System Interfaces volume of IEEE Std 1003.1-200x.

3.436 Wide-Character String
A contiguous sequence of wide-character codes terminated by and including the first null wide-
character code.

3.437 Word
In the shell command language, a token other than an operator. In some cases a word is also a
portion of a word token: in the various forms of parameter expansion, such as ${name—word},
and variable assignment, such as name=word, the word is the portion of the token depicted by
word. The concept of a word is no longer applicable following word expansions—only fields
remain.
Note: For further information, see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.6.2,

Parameter Expansion and the Shell and Ultilities volume of IEEE Std 1003.1-200x, Section 2.6,
Word Expansions.

3.438 Working Directory (or Current Working Directory)
A directory, associated with a process, that is used in pathname resolution for pathnames that do
not begin with a slash:

3.439 Worldwide Portability Interface
Functions for handling characters in a codeset-independent manner.

3.440 Write
To output characters to a file, such as standard output or standard error. Unless otherwise stated,
standard output is the default output destination for all uses of the term “write”; see the
distinction between display and write in Section 3.133 (on page 49).

3.441 XSI
The X/Open System Interfaces (XSI) option is the core application programming interface for C
and sh programming for systems conforming to the Single UNIX Specification. This is a
superset of the mandatory requirements for conformance to IEEE Std 1003.1-200x.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 91

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2838

2839
2840

2841

2842

2843
2844

2845

2846
2847

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

XS -Conformant Definitions

3.442

3.443

3.444

92

XSI-Conformant

A system which allows an application to be built using a set of services that are consistent across
all systems that conform to IEEE Std 1003.1-200x and that support the XSI option.

Note: See also Chapter 2 (on page 13).

Zombie Process

A process that has terminated and that is deleted when its exit status has been reported to
another process which is waiting for that process to terminate.

+0

The algebraic sign provides additional information about any variable that has the value zero
when the representation allows the sign to be determined.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2848

2849

2850

2851
2852
2853

2854

2855
2856

2857

2858
2859

2860

2861

2862

2863

2864

2865
2866
2867
2868
2869

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 4

General Concepts

For the purposes of IEEE Std 1003.1-200x, the general concepts given in Chapter 4 apply.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

41 Concurrent Execution
Functions that suspend the execution of the calling thread shall not cause the execution of other
threads to be indefinitely suspended.
4.2 Directory Protection
If a directory is writable and the mode bit S.ISVTX is set on the directory, a process may remove
or rename files within that directory only if one or more of the following is true:
« The effective user ID of the process is the same as that of the owner ID of the file.
« The effective user ID of the process is the same as that of the owner ID of the directory.
 The process has appropriate privileges:.
If the S_ISVTX bit is set on a non-directory file, the behavior is unspecified.
4.3 Extended Security Controls
An implementation . may provide implementation-defined extended security controls (see
Section 3.160 (on ' page 53)). These permit an implementation to provide security mechanisms to
implement different security policies than those described in IEEE Std 1003.1-200x. These
mechanisms shall. not ‘alter or override the defined semantics of any of the interfaces in
IEEE Std 1003.1-200x.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 93

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

File Access Permissions General Concepts
2870 4.4 File Access Permissions
2871 The standard file access control mechanism uses the file permission bits, as described below.
2872 Implementations may provide additional or alternate file access control mechanisms, or both. An
2873 additional access control mechanism shall only further restrict the access permissions defined by
2874 the file permission bits. An alternate file access control mechanism shall:
2875 » Specify file permission bits for the file owner class, file group class, and file other class of
2876 that file, corresponding to the access permissions.
2877 Be enabled only by explicit user action, on a per-file basis by the file owner or a user with
2878 the appropriate privilege.
2879 Be disabled for a file after the file permission bits are changed for that file with chmod ().
2880 The disabling of the alternate mechanism need not disable any additional mechanisms
2881 supported by an implementation.
2882 Whenever a process requests file access permission for read, write, or execute/search, if no
2883 additional mechanism denies access, access shall be determined as follows:
2884 « If a process has the appropriate privilege:
2885 — If read, write, or directory search permission is requested, access shall be granted.
2886 — If execute permission is requested, access shall be granted if execute permission is
2887 granted to at least one user by the file permission bits or by an alternate access
2888 control mechanism; otherwise, access shall be denied.
2889 e Otherwise:
2890 — The file permission bits of a file contain read, write, and execute/search permissions
2891 for the file owner class, file group class, and file other class.
2892 — Access shall be granted if an alternate access control mechanism is not enabled and
2893 the requested access permission bit is set for the class (file owner class, file group
2894 class, or file other class) to which the process belongs, or if an alternate access control
2895 mechanism is enabled and it allows the requested access; otherwise, access shall be
2896 denied.
2897 This standard does not provide a way to open-a directory for searching. It is unspecified
2898 whether directory search permission is granted based on the file access modes of the directory’s
2899 file descriptor or on the mode of the directory at the time the directory is searched.

2900 4.5 File Hierarchy

2901 Files in the system are organized in a hierarchical structure in which all of the non-terminal
2902 nodes are directories and all of the terminal nodes are any other type of file. Since multiple
2903 directory entries may refer to the same file, the hierarchy is properly described as a “directed
2904 graph”.
94 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2905

2906
2907

2908

2909
2910

2911
2912

2913

2914
2915
2916
2917
2918

2919
2920
2921
2922
2923
2924
2925

2926
2927
2928
2929
2930
2931
2932

2933

2934
2935
2936
2937
2938

2939
2940
2941

2942

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Concepts Filenames

4.6

4.7

4.8

4.9

Filenames

Uppercase and lowercase letters shall retain their unique identities between conforming
implementations.

Filename Portability

For a filename to be portable across implementations conforming to IEEE Std 1003.1-200x, it
shall consist only of the portable filename character set as defined in Section 3.276 (on page 69).

Portable filenames shall not have the hyphen character as the first character since this may cause
problems when filenames are passed as command line arguments.

File Times Update

Each file has three distinct associated time values: st_atime, st_mtime, and st_ctime. The st_atime
field is associated with the times that the file data is accessed; st_mtime is associated with the
times that the file data is modified; and st_ctime is associated with the times that the file status is
changed. These values are returned. in the file characteristics structure, as described in
<sys/stat.h>.

Each function or utility in IEEE Std 1003.1-200x that reads or writes data or changes file status
indicates which of the appropriate time-related fields shall be “marked for update”. If an
implementation of such a function or utility marks for update a time-related field not specified
by IEEE Std 1003.1-200x, this shall be documented, except that any changes caused by pathname
resolution need not be documented. For the other functions or utilities in IEEE Std 1003.1-200x
(those that are not explicitly required to read or write file data or change file status, but that in
some implementations happen to do so), the effect is unspecified.

An implementation may update fields that are marked for update immediately, or it may update
such fields periodically."At an update point in time, any marked fields shall be set to the current
time and the update marks shall be cleared. All fields that are marked for update shall be
updated when the file ceases to-be open by any process or before a stat(), fstat(), Istat(), fsync(),
utime(), or utimes() is successfully performed on the file. Other times at which updates are done
are unspecified. Marks for update, and updates themselves, are not done for files on read-only
file systems; see Section 3.304 (on page 73).

Host and Network Byte Orders

When data is transmitted over the network, it is sent as a sequence of octets (8-bit unsigned
values). If an entity (such as an address or a port number) can be larger than 8 bits, it needs to be
stored in several octets. The convention is that all such values are stored with 8 bits in each octet,
and with the first (lowest-addressed) octet holding the most-significant bits. This is called
“network byte order”.

Network byte order may not be convenient for processing actual values. For this, it is more
sensible for values to be stored as ordinary integers. This is known as “host byte order”. In host
byte order:

» The most significant bit might not be stored in the first byte in address order.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 95

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Host and Network Byte Orders General Concepts
2943 « Bits might not be allocated to bytes in any obvious order at all.
2944 8-bit values stored in uint8_t objects do not require conversion to or from host byte order, as
2945 they have the same representation. 16 and 32-bit values can be converted using the hfonl(),
2946 htons(), ntohl(), and ntohs() functions. When reading data that is to be converted to host byte
2947 order, it should either be received directly into a uint16_t or uint32_t object or should be copied
2948 from an array of bytes using memcpy() or similar. Passing the data through other types could
2949 cause the byte order to be changed. Similar considerations apply when sending data.
2950 410 Measurement of Execution Time
2951 The mechanism used to measure execution time shall be implementation-defined. The
2952 implementation shall also define to whom the CPU time that is consumed by interrupt handlers
2953 and system services on behalf of the operating system will be charged. See Section 3.118 (on
2954 page 47).

2955 411 Memory Synchronization

2956 Applications shall ensure that access tocany memory location by more than one thread of control
2957 (threads or processes) is restricted such that no thread of control can read or modify a memory
2958 location while another thread of control may be modifying it. Such access is restricted using
2959 functions that synchronize thread execution and also synchronize memory with respect to other
2960 threads. The following functions synchronize memory with respect to other threads:
2961 fork() pthread_mutex_trylock() pthread_rwlock_unlock()
2962 pthread_barrier_wait () pthread. mutex_unlock () pthread_rwlock_wrlock()
2963 pthread_cond_broadcast () pthread_spin_lock() sem_post ()
2964 pthread_cond_signal () pthread_spin_trylock() sem_timeduwait ()
2965 pthread_cond_timedwait () pthread_spin_unlock () sem_trywait ()
2966 pthread_cond_wait () pthread_rwlock. rdlock () sem_wait ()
2967 pthread_create() pthread_rwlock_timedrdlock() semctl()
2968 pthread_join () pthread_rwlock_timedwrlock() semop()
2969 pthread_mutex_lock () pthread_rwlock_tryrdlock() wait ()
2970 pthread_mutex. timedlock() pthread_rwlock_trywrlock() waitpid ()
2971 The pthread_once() function shall synchronize memory for the first call in each thread for a given
2972 pthread_once_t object.
2973 The pthread_mutex_lock() function need not synchronize memory if the mutex type if
2974 PTHREAD_MUTEX_RECURSIVE and the calling thread already owns the mutex. The
2975 pthread_mutex_unlock() function need not synchronize memory if the mutex type is
2976 PTHREAD_MUTEX_RECURSIVE and the mutex has a lock count greater than one.
2977 Unless explicitly stated otherwise, if one of the above functions returns an error, it is unspecified
2978 whether the invocation causes memory to be synchronized.
2979 Applications may allow more than one thread of control to read a memory location
2980 simultaneously.

96 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

2981

2982
2983

2984
2985
2986
2987
2988
2989
2990
2991

2992
2993
2994

2995
2996
2997

2998
2999
3000

3001

3002

3003
3004

3005
3006
3007
3008
3009
3010

3011
3012
3013
3014

3015
3016
3017

3018
3019
3020
3021

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Concepts Pathname Resolution

4.12

Pathname Resolution

Pathname resolution is performed for a process to resolve a pathname to a particular file in a file
hierarchy. There may be multiple pathnames that resolve to the same file.

Each filename in the pathname is located in the directory specified by its predecessor (for
example, in the pathname fragment a/b, file b is located in directory a). Pathname resolution
shall fail if this cannot be accomplished. If the pathname begins with a slash, the predecessor of
the first filename in the pathname shall be taken to be the root directory of the process (such
pathnames are referred to as “absolute pathnames”). If the pathname does not begin with a
slash, the predecessor of the first filename of the pathname shall be taken to be either the current
working directory of the process or for certain interfaces the directory identified by a file
descriptor passed to the interface (such pathnames are referred to as “relative pathnames”).

The interpretation of a pathname component is dependent on the value of {NAME_MAX} and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any pathname
component is longer than {NAME_MAX}, the implementation shall consider this an error.

A pathname that contains at least one non-slash character and that ends with one or more
trailing slashes shall be resolved as if a single dot character (.") were appended to the
pathname.

If a symbolic link is encountered during pathname resolution, the behavior shall depend on
whether the pathname component is at the end of the pathname and on the function being
performed. If all of the following are true, then pathname resolution is complete:

1. This is the last pathname component of the pathname.
2. The pathname has no trailing slash.

3. The function is required to act on the symbolic link itself, or certain arguments direct that
the function act on the symbolic link itself.

In all other cases, the system shall prefix the remaining pathname, if any, with the contents of the
symbolic link. If the combined length exceeds {PATH_MAX}, and the implementation considers
this to be an error, errno shall be set to [ENAMETOOLONG] and an error indication shall be
returned. Otherwise, the resolved pathname shall be the resolution of the pathname just created.
If the resulting pathname does not begin with a slash, the predecessor of the first filename of the
pathname is taken to be the directory containing the symbolic link.

If the system detects a loop in the pathname resolution process, it shall set errno to [ELOOP] and
return an error indication. The same may happen if during the resolution process more symbolic
links were followed than the implementation allows. This implementation-defined limit shall
not be smaller than {SYMLOOP_MAX]}.

The special filename dot shall refer to the directory specified by its predecessor. The special
filename dot-dot shall refer to the parent directory of its predecessor directory. As a special case,
in the root directory, dot-dot may refer to the root directory itself.

A pathname consisting of a single slash shall resolve to the root directory of the process. A null
pathname shall not be successfully resolved. A pathname that begins with two successive
slashes may be interpreted in an implementation-defined manner, although more than two
leading slashes shall be treated as a single slash.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 97

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Process ID Reuse General Concepts

3022 4.13 Process ID Reuse

3023 A process group ID shall not be reused by the system until the process group lifetime ends.

3024 A process ID shall not be reused by the system until the process lifetime ends. In addition, if
3025 there exists a process group whose process group ID is equal to that process ID, the process ID
3026 shall not be reused by the system until the process group lifetime ends. A process that is not a
3027 system process shall not have a process ID of 1.

3028 414 Scheduling Policy

3029 A scheduling policy affects process or thread ordering:

3030 e When a process or thread is a running thread and it becomes a blocked thread

3031 e When a process or thread is a running thread and it becomes a preempted thread

3032 e When a process or thread is a blocked thread and it becomes a runnable thread

3033 e When a running thread calls a function that can change the priority or scheduling policy of
3034 a process or thread

3035 ¢ In other scheduling policy-defined circumstances

3036 Conforming implementations shall define the manner in which each of the scheduling policies
3037 may modify the priorities or otherwise affect the ordering of processes or threads at each of the
3038 occurrences listed above. Additionally, conforming implementations shall define in what other
3039 circumstances and in what manner each scheduling policy may modify the priorities or affect
3040 the ordering of processes or threads.

3041 4.15 Seconds Since the Epoch

3042 A value that approximates the number of seconds that have elapsed since the Epoch. A

3043 Coordinated Universal Time name (specified interms of seconds (tm_sec), minutes (tm_min),

3044 hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900

3045 (tm_year)) is related to a time represented as seconds since the Epoch, according to the

3046 expression below.

3047 If the year is <1970 or the value is negative, the relationship is undefined. If the year is 21970 and

3048 the value is non-negative, the value is related to a Coordinated Universal Time name according

3049 to the C-language expression, where tm_sec, tm_min, tm_hour, tm_yday, and tm_year are all

3050 integer types:

3051 tmsec + tmnin*60+ _t'm hour*3600 + tm yday*86400 +

3052 (t m year —70)*31536000 + ((t m year —-69)/4)*86400 -

3053 ((t m year-1)/100)*86400 + ((t m_year +299)/400)*86400

3054 The relationship between the actual time of day and the current value for seconds since the

3055 Epoch is unspecified.

3056 How any changes to the value of seconds since the Epoch are made to align to a desired

3057 relationship with the current actual time is implementation-defined. As represented in seconds

3058 since the Epoch, each and every day shall be accounted for by exactly 86400 seconds.

3059 Note: The last three terms of the expression add in a day for each year that follows a leap year starting

3060 with the first leap year since the Epoch. The first term adds a day every 4 years starting in 1973,

3061 the second subtracts a day back out every 100 years starting in 2001, and the third adds a day
98 Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Concepts Seconds Since the Epoch

4.16

4.17

4.18

back in every 400 years starting in 2001. The divisions in the formula are integer divisions; that
is, the remainder is discarded leaving only the integer quotient.

Semaphore

A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.

For the semaphores associated with the Semaphores option, a semaphore is represented as a
shareable resource that has a non-negative integer value. When the value is zero, there is a
(possibly empty) set of threads awaiting the availability of the semaphore.

For the semaphores associated with the X/Open System Interfaces (XSI) option, a semaphore is
a positive integer (0 through 32767). The semget () function can be called to create a set or array of
semaphores. A semaphore set can contain one or more semaphores up to an implementation-
defined value.

Semaphore Lock Operation

An operation that is applied to a semaphore. If, prior<to the operation, the value of the
semaphore is zero, the semaphore lock operation shall cause the calling thread to be blocked and
added to the set of threads awaiting the semaphore; otherwise, the value shall be decremented.

Semaphore Unlock Operation

An operation that is applied to a semaphore. If, prior to the operation, there are any threads in
the set of threads awaiting the semaphore, then some thread from that set shall be removed from
the set and becomes unblocked; otherwise, the semaphore value shall be incremented.

Thread-Safety
Refer to the System Interfaces volume of IEEE Std 1003.1-200x, Section 2.9, Threads.

Tracing

The trace system allows a traced process to have a selection of events created for it. Traces

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Tracing General Concepts
3101 A generated trace event shall be recorded in a trace stream, and optionally also in a trace log if a
3102 trace log is associated with the trace stream, except that:
3103 For a trace stream, if no resources are available for the event, the event is lost.
3104 e For a trace log, if no resources are available for the event, or a flush operation does not
3105 succeed, the event is lost.
3106 A trace event recorded in an active trace stream may be retrieved by an application having the
3107 appropriate privileges.
3108 A trace event recorded in a trace log may be retrieved by an application having the appropriate
3109 privileges after opening the trace log as a pre-recorded trace stream, with the function
3110 posix_trace_open ().
3111 When a trace event is reported it is possible to retrieve the following;:
3112 * A trace event type identifier
3113 o A timestamp
3114 ¢ The process ID of the traced process, if the trace event is process-dependent
3115 ¢ Any optional trace event data including its length
3116 o If the Threads option is supported, the thread ID, if the trace event is process-dependent
3117 ¢ The program address at which the trace point was invoked
3118 Trace events may be mapped from trace event types to trace event names. One such mapping
3119 shall be associated with each trace stream. An active trace stream is associated with a traced
3120 process, and also with its children if the Trace Inherit option is supported and also the
3121 inheritance policy is set to _POSIX_TRACE_INHERIT. Therefore each traced process has a
3122 mapping of the trace event names to trace event type identifiers that have been defined for that
3123 process.
3124 Traces can be recorded into either trace streams or trace logs.
3125 The implementation and format of a trace stream are unspecified. A trace stream need not be
3126 and generally is not persistent. A trace stream may be either active or pre-recorded:
3127 e An active trace stream is a trace stream that has been created and has not yet been shut
3128 down. It can be of one of the two following classes:
3129 1. An active trace stream without a trace log that was created with the
3130 posix_trace_create () function
3131 2. If the Trace Log option is supported, an active trace stream with a trace log that was
3132 created with the posix_trace_create_withlog () function
3133 A pre-recorded trace stream is a trace stream that was opened from a trace log object using
3134 the posix_trace_open () function.
3135 An active trace stream can loop. This behavior means that when the resources allocated by the
3136 trace system for the trace stream are exhausted, the trace system reuses the resources associated
3137 with the oldest recorded trace events to record new trace events.
3138 If the Trace Log option is supported, an active trace stream with a trace log can be flushed. This
3139 operation causes the trace system to write trace events from the trace stream to the associated
3140 trace log, following the defined policies or using an explicit function call. After this operation,
3141 the trace system may reuse the resources associated with the flushed trace events.
3142 An active trace stream with or without a trace log can be cleared. This operation shall cause all

100 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Concepts Tracing
3143 the resources associated with this trace stream to be reinitialized. The trace stream shall behave
3144 as if it was returning from its creation, except that the mapping of trace event type identifiers to
3145 trace event names shall not be cleared. If a trace log was associated with this trace stream, the
3146 trace log shall also be reinitialized.
3147 A trace log shall be recorded when the posix_trace_shutdown () operation is invoked or during
3148 tracing, depending on the tracing strategy which is defined by a log policy. After the trace
3149 stream has been shut down, the trace information can be retrieved from the associated trace log
3150 using the same interface used to retrieve information from an active trace stream.
3151 For a traced process, if the Trace Inherit option is supported and the trace stream’s inheritance
3152 attribute is _POSIX_TRACE_INHERIT, the initial targeted traced process shall be traced together
3153 with all of its future children. The posix_pid member of each trace event in a trace stream shall be
3154 the process ID of the traced process.
3155 Each trace point may be an implementation-defined action such as a context switch, or an
3156 application-programmed action such as a call to a specific operating system service (for
3157 example, fork()) or a call to posix_trace_event ().
3158 Trace points may be filtered. The operation of the filter is to filter out (ignore) selected trace
3159 events. By default, no trace events are filtered.
3160 The results of the tracing operations can be analyzed and monitored by a trace controller process
3161 or a trace analyzer process.
3162 Only the trace controller process has control of the trace stream it has created. The control of the
3163 operation of a trace stream is done using its corresponding trace stream identifier. The trace
3164 controller process is able to:
3165 « Initialize the attributes of a trace stream
3166 e Create the trace stream
3167 o Start and stop tracing
3168 + Know the mapping of the traced process
3169 « If theTrace Event Filter option is supported, filter the type of trace events to be recorded
3170 e Shut the trace stream down
3171 A traced process may also be a trace controller process. Only the trace controller process can
3172 control its trace stream(s). A trace stream created by a trace controller process shall be shut down
3173 if its controller process terminates or executes another file.
3174 A trace controller process may also be a trace analyzer process. Trace analysis can be done
3175 concurrently with the traced) process or can be done off-line, in the same or in a different
3176 platform.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 101

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Treatment of Error Conditions for Mathematical Functions General Concepts
3177 419 Treatment of Error Conditions for Mathematical Functions
3178 For all the functions in the <math.h> header, an application wishing to check for error situations
3179 should set errno to 0 and call feclearexcept(FE_ALL_EXCEPT) before calling the function. On
3180 return, if errno is non-zero or fetestexcept(FE_LINVALID | FE_DIVBYZERO | FE_OVERFLOW |
3181 FE_UNDERFLOW) is non-zero, an error has occurred.
3182 The following error conditions are defined for all functions in the <math.h> header.
3183 4.19.1 Domain Error
3184 A “domain error” shall occur if an input argument is outside the domain over which the
3185 mathematical function is defined. The description of each function lists any required domain
3186 errors; an implementation may define additional domain errors, provided that such errors are
3187 consistent with the mathematical definition of the function.
3188 On a domain error, the function shall return an implementation-defined value; if the integer
3189 expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [EDOM]; if
3190 the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the “invalid”
3191 floating-point exception shall be raised.
3192 4.19.2 Pole Error
3193 A “pole error” occurs if the mathematical result-of the function is an exact infinity (for example,
3194 log(0.0)).
3195 On a pole error, the function shall return the value of the macro HUGE_VAL, HUGE_VALEF, or
3196 HUGE_VALL according to the return type, with the same sign as the correct value of the
3197 function; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall
3198 be set to [ERANGE]; if the integer expression (math_errhandling & MATH_ERREXCEPT) is non-
3199 zero, the “divide-by-zero” floating-point exception shall be raised.
3200 4.19.3 Range Error
3201 A “range error” shall occur \if the finite mathematical result of the function cannot be
3202 represented in an object of the specified type, due to extreme magnitude.
3203 4.19.3.1 Result Overflows
3204 A floating result overflows if the magnitude of the mathematical result is finite but so large that
3205 the mathematical result cannot be represented without extraordinary roundoff error in an object
3206 of the specified type. If a floating result overflows and default rounding is in effect, then the
3207 function shall return the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL
3208 according to the return type, with the same sign as the correct value of the function; if the integer
3209 expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [ERANGE]; if
3210 the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the “overflow”
3211 floating-point exception shall be raised.
3212 4.19.3.2 Result Underflows
3213 The result underflows if the magnitude of the mathematical result is so small that the
3214 mathematical result cannot be represented, without extraordinary roundoff error, in an object of
3215 the specified type. If the result underflows, the function shall return an implementation-defined
3216 value whose magnitude is no greater than the smallest normalized positive number in the
3217 specified type; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
3218 whether errno is set to [ERANGE] is implementation-defined; if the integer expression
3219 (math_errhandling & MATH_ERREXCEPT) is non-zero, whether the “underflow” floating-point
3220 exception is raised is implementation-defined.

102 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Concepts Treatment of NaN Arguments for the Mathematical Functions

4.20

4.21

4.22

Treatment of NaN Arguments for the Mathematical Functions

For functions called with a NaN argument, no errors shall occur and a NaN shall be returned,
except where stated otherwise.

If a function with one or more NaN arguments returns a NaN result, the result should be the
same as one of the NaN arguments (after possible type conversion), except perhaps for the sign.

On implementations that support the IEC 60559:1989 standard floating point, functions with
signaling NaN argument(s) shall be treated as if the function were called with an argument that
is a required domain error and shall return a quiet NaN result, except where stated otherwise.

Note: The function might never see the signaling NaN, since it might trigger when the arguments are
evaluated during the function call.

On implementations that support the IEC 60559:1989 standard floating point, for those
functions that do not have a documented domain error, the following shall apply:

These functions shall fail if:
Domain Error Any argument is a signaling NaN.

Either, the integer expression (math_errhandling & MATH_ERRNO) is non-zero and errno
shall be set to [EDOM], or the integer " expression (math_errhandling &
MATH_ERREXCEPT) is non-zero and the invalid floating-point exception shall be raised.

Utility
A utility program shall be either an executable file, such as might be produced by a compiler or
linker system from computer source code, or a file of shell source code, directly interpreted by

the shell. The program may have been produced by the user, provided by the system
implementor, or acquired from an independent distributor.

The system may implement certain utilities as shell functions (see the Shell and Utilities volume
of TEEE Std 1003.1-200x, Section 2.9.5, Function Definition Command) or built-in utilities, but
only an application that is aware of the command search order described in the Shell and
Utilities volume of IEEE Std 1003.1-200x, Section 2.9.1.1, Command Search and Execution or of
performance characteristics can discern differences between the behavior of such a function or
built-in utility and that of an executable file.

Vgrl{%?g!ﬁy soﬁg;a%g%%f% /Rc241.9 f-ion Definitil..3 s9.r

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3259
3260

3261
3262

3263

3264

3265
3266
3267

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Variable Assignment General Concepts

104

Note: Additional delimiters are described in the Shell and Utilities volume of IEEE Std 1003.1-200x,
Section 2.3, Token Recognition.

When a variable assignment is done, the variable shall be created if it did not already exist. If
value is not specified, the variable shall be given a null value.

Note: An alternative form of variable assignment:
synbol =val ue

(where symbol is a valid word delimited by an equals-sign, but not a valid name) produces
unspecified results. The form symbol=value is used by the KornShell name[expression]=value
syntax.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3268

3269

3270
3271
3272
3273
3274
3275
3276

3277

3278

3279

3280
3281

3282

3283

3284

3285

3286

3287

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 5

File Format Notation

The STDIN, STDOUT, STDERR, INPUT FILES, and OUTPUT FILES sections of the utility
descriptions use a syntax to describe the data organization within the files, when that
organization is not otherwise obvious. The syntax is similar to that used by the System Interfaces
volume of IEEE Std 1003.1-200x printf() function, as described in this chapter. When used in
STDIN or INPUT FILES sections of the utility descriptions, this syntax describes the format that
could have been used to write the text to be read, not a format that could be used by the System
Interfaces volume of IEEE Std 1003.1-200x scanf() function to read the input file.

The description of an individual record is as follows:
"<format>", [<argl> < arg2>,..,< ar gn>]
The format is a character string that contains three types of objects defined below:

1. Characters that are not “escape sequences” or “conversion specifications”, as described
below, shall be copied to the output.

2. Escape Sequences represent non-graphic characters.

3. Conversion Specifications specify the output format of each argument; see below.
The following characters have the following special meaning in the format string:
" (An empty character position.) Represents one or more <blank>s.

A Represents exactly one <space>.

Table 5-1 lists escape sequences and associated actions on display devices capable of the action.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 105

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
File Format Notation

3288 Table 5-1 Escape Sequences and Associated Actions

3289 Escape Represents

3290 Sequence| Character Terminal Action

3291 A\ backslash Print the character '\’

3292 \a’ alert Attempt to alert the user through audible or visible notification.

3293 \b’ backspace Move the printing position to one column before the current

3294 position, unless the current position is the start of a line.

3295 Af form-feed Move the printing position to the initial printing position of the

3296 next logical page.

3297 \n’ newline Move the printing position to the start of the next line.

3298 \r’ carriage-return | Move the printing position to the start of the current line.

3299 At tab Move the printing position to the next tab position on the current

3300 line. If there are no more tab positions remaining on the line, the

3301 behavior is undefined.

3302 A\ vertical-tab Move the printing position to the start of the next vertical tab

3303 position. If there are no more vertical tab positions left on the

3304 page, the behavior is undefined.

3305 Each conversion specification is introduced by the percent-sign character ("%’). After the

3306 character '%’ , the following shall appear in sequence:

3307 flags Zero or more flags, in any order, that modify the meaning of the conversion

3308 specification.

3309 field width ~ An optional string of decimal digits to specify a minimum field width. For an

3310 output field, if the converted value has fewer bytes than the field width, it shall be

3311 padded on the left (or right, if the left-adjustment flag (" =), described below, has

3312 been given) to the field width.

3313 precision Gives the minimum number of digits to appear for the d, 0, i , u, X, or X conversion

3314 specifiers (the field is padded with leading zeros), the number of digits to appear

3315 after the radix character for the e and f conversion specifiers, the maximum

3316 number of significant digits for the g conversion specifier; or the maximum

3317 number of bytes to be written from a string in the s conversion specifier. The

3318 precision shall take the form of a period (.") followed by a decimal digit string; a

3319 null digit string is treated as zero.

3320 conversion specifier characters

3321 A conversion specifier character (see below) that indicates the type of conversion

3322 to be applied.

3323 The flag characters and their meanings are:

3324 - The result of the conversion shall be left-justified within the field.

3325 + The result of a signed conversion shall always begin with a sign (' + or’ -).

3326 <space> If the first character of a signed conversion is not a sign, a <space> shall be

3327 prefixed to the result. This means that if the <space> and ’ + flags both appear,

3328 the <space> flag shall be ignored.

3329 # The value shall be converted to an alternative form. For ¢, d, i, u, and s

3330 conversion specifiers, the behavior is undefined. For the 0 conversion specifier, it

3331 shall increase the precision to force the first digit of the result to be a zero. For x or

3332 X conversion specifiers, a non-zero result has 0x or 0X prefixed to it, respectively.
106 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3333
3334
3335

3336
3337
3338
3339
3340
3341

3342
3343
3344

3345

3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358

3359
3360
3361
3362
3363
3364

3365
3366
3367
3368
3369
3370
3371
3372
3373
3374

3375
3376
3377
3378
3379
3380

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
File Format Notation

For e, E, f, g, and G conversion specifiers, the result shall always contain a radix
character, even if no digits follow the radix character. For g and G conversion
specifiers, trailing zeros shall not be removed from the result as they usually are.

0 Ford,i,o,u, x, X e, E f, g, and Gconversion specifiers, leading zeros (following
any indication of sign or base) shall be used to pad to the field width; no space
padding is performed. If the '0’ and ’ - flags both appear, the ‘0’ flag shall be
ignored. For d, i , 0, u, X, and X conversion specifiers, if a precision is specified, the
'0" flag shall be ignored. For other conversion specifiers, the behavior is
undefined.

Each conversion specifier character shall result in fetching zero or more arguments. The results
are undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments shall be ignored.

The conversion specifiers and their meanings are:

d,i ,o,ux,X The integer argument shall be written as signed decimal (d or i), unsigned octal
(0), unsigned decimal (u), or unsigned hexadecimal notation (X and X). The d and
i specifiers shall convert to signed decimal in the style "[-] dddd". The X
conversion specifier shall use the numbers and letters "0123456789abcdef’ and
the X conversion specifier shall- use the numbers and Iletters
"0123456789ABCDEF" . The precision component of the argument shall specify
the minimum number of digits to appear. If the value being converted can be
represented in fewer digits than the specified minimum, it shall be expanded with
leading zeros. The default precision shall be 1. The result of converting a zero
value with a precision of 0 shall be no characters. If both the field width and
precision are omitted, the implementation may precede, follow, or precede and
follow numeric arguments of types d, i , and u with <blank>s; arguments of type 0
(octal) may be preceded with leading zeros.

f The floating-point number argument shall be written in decimal notation in the
style [-]ddd.ddd, where the number of digits after the radix character (shown here
as a decimal point) shall be equal to the precision specification. The LC_NUMERIC
locale category shall determine the radix character to use in this format. If the
precision is omitted from the argument, six digits shall be written after the radix
character; if the precision is explicitly 0, no radix character shall appear.

eE The floating-point number argument shall be written in the style [-]d.dddexdd (the
symbol "¢ indicates either a plus or minus sign), where there is one digit before
the radix character (shown here as a decimal point) and the number of digits after
it is equal to the precision. The LC_NUMERIC locale category shall determine the
radix character to use in this format. When the precision is missing, six digits shall
be written after the radix character; if the precision is 0, no radix character shall
appear. The E conversion specifier shall produce a number with E instead of e
introducing the exponent. The exponent shall always contain at least two digits.
However, if the value to be written requires an exponent greater than two digits,
additional exponent digits shall be written as necessary.

9,G The floating-point number argument shall be written in style f or e (or in style F
or E in the case of a G conversion specifier), with the precision specifying the
number of significant digits. The style used depends on the value converted: style
e (or E) shall be used only if the exponent resulting from the conversion is less
than -4 or greater than or equal to the precision. Trailing zeros are removed from
the result. A radix character shall appear only if it is followed by a digit.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 107

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3381
3382

3383
3384
3385
3386
3387

3388

3389
3390
3391
3392

3393

3394
3395

3396

3397

3398

3399

3400

108

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
File Format Notation

c The integer argument shall be converted to an unsigned char and the resulting
byte shall be written.

s The argument shall be taken to be a string and bytes from the string shall be
written until the end of the string or the number of bytes indicated by the precision
specification of the argument is reached. If the precision is omitted from the
argument, it shall be taken to be infinite, so all bytes up to the end of the string
shall be written.

% Write a "%’ character; no argument is converted.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. The term “field width” should not be confused with the term “precision”
used in the description of %s

Examples

To represent the output of a program that prints a date and time in the form Sunday, July 3,
10:02, where weekday and month are strings:

"%s, A%A%d,A%d:%.2d\n" < weekday>, < nont h>;< day>, < hour>,< m n>
To show ’ 77 written to 5 decimal places:

"pi A=A%.5f\n",< val ue of

To show an input file format consisting of five colon-separated fields:

"%5s:%0S:%5:%s:%s\n", < argl> < -arg2> < arg3> < arg4>, < .arg5>

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6.1

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 6

Character Set

Portable Character Set

Conforming implementations shall support one or more coded character sets. Each supported
locale shall include the portable character set, which is the set of symbolic names for characters in
Table 6-1 (on page 109). This is used to describe characters within the text of
IEEE Std 1003.1-200x. The first eight entries in Table 6-1 are defined in the ISO/IEC 6429:1992
standard and the rest of the characters are defined in the ISO/IEC 10646-1: 2000 standard.

Table 6-1 Portable Character Set

Symbolic Name Glyph ucCs ‘ Description ‘
<NUL> <U0000> NULL (NUL)
<alert> <U0007>" BELL (BEL)
<backspace> <U0008> BACKSPACE (BS)
<tab> <U0009> CHARACTER TABULATION (HT)
<carriage-return> <U000D>" CARRIAGE RETURN (CR)
<newline> <UO00A> LINE FEED (LF)
<vertical-tab> <U000B> LINE TABULATION (VT)
<form-feed> <U000C> FORM FEED (FF)
<space> <U0020> SPACE
<exclamation-mark> ! <y0021> . EXCLAMATION MARK
<quotation-mark> N <U00022> " QUOTATION MARK
<number-sign> # <U0023> "NUMBER SIGN
<dollar-sign> $ <U0024> DOLLAR SIGN
<percent-sign> % <U0025> PERCENT SIGN
<ampersand> & <U0026> AMPERSAND
<apostrophe> ' <U0027> APOSTROPHE
<left-parenthesis> (<U0028> LEFT PA

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Portable Character Set Character Set
3441 Symbolic Name Glyph UCSs Description
3442 <three> 3 <U0033> DIGIT THREE
3443 <four> 4 <U0034> | DIGIT FOUR
3444 <five> 5 <U0035> DIGIT FIVE
3445 <six> 6 <U0036> DIGIT SIX
3446 <seven> 7 <U0037> DIGIT SEVEN
3447 <eight> 8 <U0038> DIGIT EIGHT
3448 <nine> 9 <U0039> DIGIT NINE
3449 <colon> : <U003A> | COLON
3450 <semicolon> : <U003B> | SEMICOLON
3451 <less-than-sign> < <U003C> | LESS-THAN SIGN
3452 <equals-sign> = <U003D> | EQUALS SIGN
3453 <greater-than-sign> > <UO03E> | GREATER-THAN SIGN
3454 <question-mark> ? <UO003F> | QUESTION MARK
3455 <commercial-at> @ <U0040> COMMERCIAL AT
3456 <A> A <U0041> LATIN CAPITAL LETTER A
3457 B <U0042> LATIN CAPITAL LETTER B
3458 <C> C <U0043> LATIN CAPITAL LETTER C
3459 <D> D <U0044> LATIN CAPITAL LETTER D
3460 <E> E <U0045> LATIN CAPITAL LETTER E
3461 <F> F <U0046> LATIN CAPITAL LETTER F
3462 <G> G <U0047> LATIN CAPITAL LETTER G
3463 <H> H <U0048> LATIN CAPITAL LETTER H
3464 <I> | <U0049> LATIN CAPITAL LETTER I
3465 <J> J <U004A> | LATIN CAPITAL LETTER]
3466 <K> K <U004B>. | <LATIN CAPITAL LETTER K
3467 <L> L <U004C> | LATIN CAPITAL LETTER L
3468 <M> M <U004D> | LATIN CAPITAL LETTER M
3469 <N> N <UO04E> | LATIN CAPITAL LETTER N
3470 <O> 0] <U004F> | LATIN CAPITAL LETTER O
3471 <P> P <U0050> LATIN-CAPITAL LETTER P
3472 <Q> Q <U0051> LATIN CAPITAL LETTER Q
3473 <R> R <U0052> LATIN CAPITAL LETTER R
3474 <S> S <U0053> LATIN CAPITAL LETTER S
3475 <T> T <U0054> LATIN CAPITAL LETTER T
3476 <U> U <U0055> LATIN CAPITAL LETTER U
3477 <V> \% <U0056> LATIN CAPITAL LETTER V
3478 <W> W <U0057> LATIN CAPITAL LETTER W
3479 <X> X <U0058> LATIN CAPITAL LETTER X
3480 <Y> Y <U0059> LATIN CAPITAL LETTER Y
3481 <Z> 4 <U005A> | LATIN CAPITAL LETTER Z
3482 <left-square-bracket> [<U005B> | LEFT SQUARE BRACKET
3483 <backslash> \ <U005C> | REVERSE SOLIDUS
3484 <reverse-solidus> \ <U005C> | REVERSE SOLIDUS
3485 <right-square-bracket>] <U005D> | RIGHT SQUARE BRACKET
3486 <circumflex-accent> - <UO05E> | CIRCUMFLEX ACCENT
3487 <circumflex> - <UO05E> | CIRCUMFLEX ACCENT
3488 <low-line> _ <UO05F> | LOW LINE
3489 <underscore> _ <UO05F> | LOW LINE
3490 <grave-accent> ‘ <U0060> | GRAVE ACCENT
3491 <a> a <U0061> LATIN SMALL LETTER A
3492 b <U0062> LATIN SMALL LETTER B
110 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Character Set Portable Character Set
3493 Symbolic Name Glyph UucCs Description
3494 <c> c <U0063> LATIN SMALL LETTER C
3495 <d> d <U0064> LATIN SMALL LETTER D
3496 <e> e <U0065> LATIN SMALL LETTER E
3497 <f> f <U0066> LATIN SMALL LETTER F
3498 <g> g <U0067> LATIN SMALL LETTER G
3499 <h> h <U0068> LATIN SMALL LETTER H
3500 <i> i <U0069> LATIN SMALL LETTER
3501 <> j <U006A> | LATIN SMALL LETTER]
3502 <k> k <U006B> | LATIN SMALL LETTER K
3503 <I> | <U006C> | LATIN SMALL LETTER L
3504 <m> m <U006D> | LATIN SMALL LETTER M
3505 <n> n <UO006E> | LATIN SMALL LETTER N
3506 <o> o} <UO006F> | LATIN SMALL LETTER O
3507 <p> p <U0070> LATIN SMALL LETTER P
3508 <q> q <U0071> LATIN SMALL LETTER Q
3509 <r> r <U0072> LATIN SMALL LETTER R
3510 <s> S <U0073> LATIN SMALL LETTER S
3511 <t> t <U0074> LATIN SMALL LETTER T
3512 <u> u <U0075> LATIN SMALL LETTER U
3513 <> v <U0076> LATIN SMALL LETTER V
3514 <w> w <U0077> LATIN SMALL LETTER W
3515 <> X <U0078> LATIN SMALL LETTER X
3516 <y> y <U0079> LATIN SMALL LETTER Y
3517 <z> z <U007A> | LATIN SMALL LETTER Z
3518 <left-brace> { <U007B>. | .LEFT CURLY BRACKET
3519 <left-curly-bracket> { <U007B> | LEFT CURLY BRACKET
3520 <vertical-line> | <U007C> | VERTICAL LINE
3521 <right-brace> } <U007D> | RIGHT CURLY BRACKET
3522 <right-curly-bracket> } <U007D> | RIGHT CURLY BRACKET
3523 <tilde> - <UO007E> | TILDE
3524 IEEE Std 1003.1-200x uses character names other than the above, but only in an informative way;
3525 for example, in examples to illustrate the use of characters beyond the portable character set
3526 with the facilities of IEEE Std 1003.1-200x.
3527 Table 6-1 defines the characters in the portable character set and the corresponding symbolic
3528 character names used to identify each character in a character set description file. The table
3529 contains more than one 'symbolic character name for characters whose traditional name differs
3530 from the chosen name. Characters defined in Table 6-2 may also be used in character set
3531 description files.
3532 IEEE Std 1003.1-200x places only the following requirements on the encoded values of the
3533 characters in the portable character set:
3534 o If the encoded values associated with each member of the portable character set are not
3535 invariant across all locales supported by the implementation, if an application accesses any
3536 pair of locales where the character encodings differ, or accesses data from an application
3537 running in a locale which has different encodings from the application’s current locale, the
3538 results are unspecified.
3539 » The encoded values associated with the digits 0 to 9 shall be such that the value of each
3540 character after 0 shall be one greater than the value of the previous character.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 111

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Portable Character Set Character Set
3541 o A null character, NUL, which has all bits set to zero, shall be in the set of characters.
3542 ¢ The encoded values associated with the members of the portable character set are each
3543 represented in a single byte. Moreover, if the value is stored in an object of C-language
3544 type char, it is guaranteed to be positive (except the NUL, which is always zero).
3545 Conforming implementations shall support certain character and character set attributes, as
3546 defined in Section 7.2 (on page 120).

3547 6.2 Character Encoding

3548 The POSIX locale contains the characters in Table 6-1 (on page 109), which have the properties
3549 listed in Section 7.3.1 (on page 122). In other locales, the presence, meaning, and representation
3550 of any additional characters are locale-specific.
3551 In locales other than the POSIX locale, a character may have a state-dependent encoding. There
3552 are two types of these encodings:
3553 « A single-shift encoding (where each character not in the initial shift state is preceded by a
3554 shift code) can be defined if each shift-code and character sequence is considered a multi-
3555 byte character. This is done using the concatenated-constant format in a character set
3556 description file, as described in Section 6.4 (on page 113). If the implementation supports a
3557 character encoding of this type, all of the standard utilities in the Shell and Utilities volume
3558 of IEEE Std 1003.1-200x shall support it..Use of a single-shift encoding with any of the
3559 functions in the System Interfaces volume of TEEE Std 1003.1-200x that do not specifically
3560 mention the effects of state-dependent encoding is implementation-defined.
3561 ¢ A locking-shift encoding (where the state of the character is determined by a shift code
3562 that may affect more than the single character following it) cannot be defined with the
3563 current character set description file format. Use of a locking-shift encoding with any of
3564 the standard utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x or with any
3565 of the functions in the System Interfaces volume of IEEE Std 1003.1-200x that do not
3566 specifically mention the effects of state-dependent encoding is implementation-defined.
3567 While in the initial shift state, all characters in the portable character set shall retain their usual
3568 interpretation and shall not alter the shift state. The interpretation for subsequent bytes in the
3569 sequence shall be a'function of the current shift state. A byte with all bits zero shall be
3570 interpreted as the null character independent of shift state. Such a byte shall not occur as part of
3571 any other character.
3572 The maximum allowable number of bytes in a character in the current locale shall be indicated
3573 by {MB_CUR_MAX]}, defined in the <stdlib.h> header and by the <mb_cur_max> value in a
3574 character set description file; see Section 6.4 (on page 113). The implementation’s maximum
3575 number of bytes in a character shall be defined by the C-language macro {MB_LEN_MAX}.

112 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3576

3577
3578
3579
3580
3581

3582
3583
3584
3585
3586
3587
3588
3589
3590
3591

3592

3593
3594
3595
3596

3597
3598
3599
3600

3601
3602
3603
3604
3605
3606

3607
3608
3609
3610
3611
3612
3613
3614

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Character Set C Language Wide-Character Codes

6.3

6.4

C Language Wide-Character Codes

In the shell, the standard utilities are written so that the encodings of characters are described by
the locale’s LC_CTYPE definition (see Section 7.3.1 (on page 122)) and there is no differentiation
between characters consisting of single octets (8-bit bytes) or multiple bytes. However, in the C
language, a differentiation is made. To ease the handling of variable length characters, the C
language has introduced the concept of wide-character codes.

All wide-character codes in a given process consist of an equal number of bits. This is in contrast
to characters, which can consist of a variable number of bytes. The byte or byte sequence that
represents a character can also be represented as a wide-character code. Wide-character codes
thus provide a uniform size for manipulating text data. A wide-character code having all bits
zero is the null wide-character code (see Section 3.246 (on page 65)), and terminates wide-
character strings (see Section 3.434 (on page 90)). The wide-character value for each member of
the portable character set shall equal its value when used as the lone character in an integer
character constant. Wide-character codes for other characters are locale and implementation-
defined. State shift bytes shall not have a wide-character code representation. This standard
provides no means of defining a wide-character codeset.

Character Set Description File

Implementations shall provide a character set description file for at least one coded character set
supported by the implementation. These files are referred to elsewhere in IEEE Std 1003.1-200x
as charmap files. It is implementation-defined whether or not users or applications can provide
additional character set description files.

IEEE Std 1003.1-200x does not require that multiple character sets or codesets be supported.
Although multiple charmap files are supported, it is the responsibility of the implementation to
provide the file or files; if only one is provided, only that one is accessible using the localedef
utility’s —f option.

Each' character set description file, except those that use the ISO/IEC 10646-1:2000 standard
position values as the encoding values, shall define characteristics for the coded character set
and the encoding for the characters specified in Table 6-1 (on page 109), and may define
encoding for additional characters supported by the implementation. Other information about
the coded character set may also be in the file. Coded character set character values shall be
defined using symbolic character names followed by character encoding values.

Each symbolic name specified in Table 6-1 shall be included in the file and shall be mapped to a
unique coding value, except as noted below. The glyphs'{ ,} " ,>- '/ ,\V [, ,and

have more than one symbolic name; all symbolic names for each such glyph shall be
included, each with identical encoding. If some or all of the control characters identified in Table
6-2 are supported by the implementation, the symbolic names and their corresponding encoding
values shall be included in the file. Some of the encodings associated with the symbolic names in
Table 6-2 may be the same as characters found in Table 6-1 (on page 109); both names shall be

provided for each encoding.

Base Definitions, Issue % Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 113

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Character Set Description File Character Set
3615 Table 6-2 Control Character Set
3616 <ACK> <DC2> <ENQ> <FS> <IS4> <SOH>
3617 <BEL> <DC3> <EOT> <GS> <LF> <STX>
3618 <BS> <DC4> <ESC> <HT> <NAK> <SUB>
3619 <CAN> <ETB> <IS1> <RS> <SYN>
3620 <CR> <DLE> <ETX> <IS2> <SI> <US>
3621 <DC1> <FF> <IS3> <SO> <VT>
3622 The following declarations can precede the character definitions. Each shall consist of the
3623 symbol shown in the following list, starting in column 1, including the surrounding brackets,
3624 followed by one or more <blank>s, followed by the value to be assigned to the symbol.
3625 <code_set_name> The name of the coded character set for which the character set
3626 description file is defined. The characters of the name shall be taken from
3627 the set of characters with visible glyphs defined in Table 6-1 (on page
3628 109).
3629 <mb_cur_max> The maximum number of bytes in a multi-byte character. This shall
3630 default to 1.
3631 <mb_cur_min> An unsigned positive integer value that defines the minimum number of
3632 XSl bytes in-a character for the encoded character set. On XSI-conformant
3633 systems, <mb_cur_min> shall always be 1.
3634 <escape_char> The character used to indicate that the characters following shall be
3635 interpreted in a special way, as defined later in this section. This shall
3636 default to backslash ('), which is the character used in all the following
3637 text and examples, unless otherwise noted.
3638 <comment_char> The character that, when placed in column 1 of a charmap line, is used to
3639 indicate that the line shall be ignored. The default character shall be the
3640 number sign (#).
3641 The character set mapping definitions shall be all the lines immediately following an identifier
3642 line containing the string "CHARMAP" starting in column 1, and preceding a trailer line
3643 containing the string "END CHARMAP"starting in column 1. Empty lines and lines containing a
3644 <comment_char> in the first column shall be ignored. Each non-comment line of the character
3645 set mapping definition (that is, between the "CHARMAP"and "END CHARMAP"lines of the file)
3646 shall be in either of two forms:
3647 "%s %s %s\n", < synbol i c- nanme>, < encodi ng>, < coment s>
3648 or:
3649 "%5...%S %s %s\n", < synbol i c- nane>, < synbol i c- name>,
3650 <encodi ng>, < comment s>
3651 In the first format, the line in the character set mapping definition shall define a single symbolic
3652 name and a corresponding encoding. A symbolic name is one or more characters from the set
3653 shown with visible glyphs in Table 6-1 (on page 109), enclosed between angle brackets. A
3654 character following an escape character is interpreted as itself; for example, the sequence
3655 "<\W\>>" represents the symbolic name "\>" enclosed between angle brackets.
3656 In the second format, the line in the character set mapping definition shall define a range of one
3657 or more symbolic names. In this form, the symbolic names shall consist of zero or more non-
3658 numeric characters from the set shown with visible glyphs in Table 6-1 (on page 109), followed

114 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3659
3660
3661
3662
3663
3664
3665

3666
3667
3668
3669
3670
3671
3672

3673
3674

3675
3676
3677

3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690

3691
3692
3693
3694
3695
3696

3697

3698

3699
3700
3701
3702

3703
3704

3705

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Character Set Character Set Description File

by an integer formed by one or more decimal digits. Both integers shall contain the same
number of digits. The characters preceding the integer shall be identical in the two symbolic
names, and the integer formed by the digits in the second symbolic name shall be equal to or
greater than the integer formed by the digits in the first name. This shall be interpreted as a
series of symbolic names formed from the common part and each of the integers between the
first and the second integer, inclusive. As an example, <j0101>...<j0104> is interpreted as the
symbolic names <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

A character set mapping definition line shall exist for all symbolic names specified in Table 6-1
(on page 109), and shall define the coded character value that corresponds to the character
indicated in the table, or the coded character value that corresponds to the control character
symbolic name. If the control characters commonly associated with the symbolic names in Table
6-2 are supported by the implementation, the symbolic name and the corresponding encoding
value shall be included in the file. Additional unique symbolic names may be included. A coded
character value can be represented by more than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more concatenated
decimal, octal, or hexadecimal constants in the following formats:

"%cd%u", < escape_char>,< deci mal byte val ue>
"%Cx%x", < escape_char>, < hexadecimal byte value>
"%Cc%0", < escape_char>, < octal <byte val ue>

Decimal constants shall be represented by two or three decimal digits, preceded by the escape
character and the lowercase letter 'd’ ; for example, "\d05" , "\d97" , or "\d143"
Hexadecimal constants shall be represented by two hexadecimal digits, preceded by the escape

character and the lowercase letter 'X' ; for example, "\x05" , "\x61" , or "W8f" . Octal
constants shall be represented by two or three octal digits, preceded by the escape character; for
example, "\05" -, "\141" , or "\217" . In a portable charmap file, each constant represents an

8-bit byte. When constants are concatenated for multi-byte character values, they shall be of the
same type, and interpreted in sequence from from first to last with the first byte of the multi-
byte character specified by the first byte in-the sequence. The manner in which these constants
are represented in the character stored in the system is implementation-defined. (This notation
was chosen for reasons of portability. There is no requirement that the internal representation in
the computer memory be in this same order.) Omitting bytes from a multi-byte character
definition produces undefined results.

In lines defining ranges of symbolic names, the encoded value shall be the value for the first
symbolic name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic
names defined by the range shall have encoding values in increasing order. Bytes shall be
treated as unsigned octets, and carry shall be propagated between the bytes as necessary to
represent the range. However, because this causes a null byte in the second or subsequent bytes
of a character, such a declaration should not be specified. For example, the line:

<j0101>...<j0104> \d129\d254

is interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d00
<j0104> \d130\d01

The expanded declaration of the symbol <j0103> in the above example is an invalid
specification, because it contains a null byte in the second byte of a character.

The comment is optional.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 115

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Character Set Description File Character Set
3706 This standard provides no means of defining a wide-character codeset.
3707 The following declarations can follow the character set mapping definitions (after the "END
3708 CHARMAP'statement). Each shall consist of the keyword shown in the following list, starting in
3709 column 1, followed by the value(s) to be associated to the keyword, as defined below.
3710 WIDTH A non-negative integer value defining the column width (see Section 3.103 (on
3711 page 45)) for the printable characters in the coded character set specified in Table
3712 6-1 and Table 6-2 (on page 114). Coded character set character values shall be
3713 defined using symbolic character names followed by column width values.
3714 Defining a character with more than one WIDTH produces undefined results. The
3715 END WIDTH keyword shall be used to terminate the WIDTH definitions.
3716 Specifying the width of a non-printable character in a WIDTH declaration
3717 produces undefined results.
3718 WIDTH_DEFAULT
3719 A non-negative integer value defining the default column width for any printable
3720 character not listed by one of the WIDTH keywords. If no WIDTH_DEFAULT
3721 keyword is included in the charmap; the default character width shall be 1.
3722 Example
3723 After the "END CHARMAP 'statement, a syntax for a width definition would be:
3724 WIDTH
3725 <A>1
3726 1
3727 <C>.<z>1
3728
3729 <fool>...<foon> 2
3730
3731 END WIDTH
3732 In this example, the numerical code point values represented by the symbols <A> and are
3733 assigned a width of 1. The code point values <C> to <Z> inclusive (<C>, <D>, <E>, and so on)
3734 are also assigned a width of 1. Using <A>...<Z> would have required fewer lines, but the
3735 alternative was shown to demonstrate flexibility: The keyword WIDTH_DEFAULT could have
3736 been added as appropriate.
3737 6.4.1 State-Dependent Character Encodings
3738 This section addresses the use of state-dependent character encodings (that is, those in which the
3739 encoding of a character is dependent on one or more shift codes that may precede it).
3740 A single-shift encoding (where each character not in the initial shift state is preceded by a shift
3741 code) can be defined in the charmap format if each shift-code/character sequence is considered
3742 a multi-byte character, defined using the concatenated-constant format described in Section 6.4
3743 (on page 113). If the implementation supports a character encoding of this type, all of the
3744 standard utilities shall support it. A locking-shift encoding (where the state of the character is
3745 determined by a shift code that may affect more than the single character following it) could be
3746 defined with an extension to the charmap format described in Section 6.4 (on page 113). If the
3747 implementation supports a character encoding of this type, any of the standard utilities that
3748 describe character (versus byte) or text-file manipulation shall have the following characteristics:

116 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3749
3750
3751

3752
3753
3754

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Character Set Character Set Description File

1. The utility shall process the statefully encoded data as a concatenation of state-
independent characters. The presence of redundant locking shifts shall not affect the
comparison of two statefully encoded strings.

2. A utility that divides, truncates, or extracts substrings from statefully encoded data shall
produce output that contains locking shifts at the beginning or end of the resulting data,
if appropriate, to retain correct state information.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 117

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Character Set

OB

118 Base Definitions, Issue 7- Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3755

3756

3757

3758
3759
3760
3761

3762

3763

3764

3765

3766

3767

3768
3769
3770
3771
3772

3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784

3785
3786
3787
3788

3789
3790

3791

3792
3793

7.1

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 7

Locale

General

A locale is the definition of the subset of a user’s environment that depends on language and
cultural conventions. It is made up from one or more categories. Each category is identified by
its name and controls specific aspects of the behavior of components of the system. Category
names correspond to the following environment variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_MONETARY Monetary formatting.

LC_NUMERIC Numeric, non-monetary formatting.

LC_TIME Date and time formats.

LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

The standard utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x shall base their
behavior on the current locale, as defined in the ENVIRONMENT VARIABLES section for each
utility. The behavior of some of the C-language functions defined in the System Interfaces
volume of IEEE Std 1003.1-200x shall also be modified based on the current locale, as defined by
the last call to setlocale().

Locales other than those supplied by the implementation can be created via the localedef utility,
provided that the _POSIX2_LOCALEDEF symbol is defined on the system. Even if localedef is
not provided, all implementations conforming to the System Interfaces volume of
IEEE Std 1003.1-200x shall provide one or more locales that behave as described in this chapter.
The input to the utility is described in Section 7.3 (on page 120). The value that is used to specify
a locale when using environment variables shall be the string specified as the name operand to
the localedef utility when the locale was created. The strings "C" and "POSIX" are reserved as
identifiers for the POSIX locale (see Section 7.2 (on page 120)). When the value of a locale
environment variable begins with a slash (/'), it shall be interpreted as the pathname of the
locale definition; the type of file (regular, directory, and so on) used to store the locale definition
is implementation-defined. If the value does not begin with a slash, the mechanism used to
locate the locale is implementation-defined.

If different character sets are used by the locale categories, the results achieved by an application
utilizing these categories are undefined. Likewise, if different codesets are used for the data
being processed by interfaces whose behavior is dependent on the current locale, or the codeset
is different from the codeset assumed when the locale was created, the result is also undefined.

Applications can select the desired locale by invoking the setlocale() function (or equivalent)
with the appropriate value. If the function is invoked with an empty string, such as:

setlocale(LC_ALL, "™);

the value of the corresponding environment variable is used. If the environment variable is
unset or is set to the empty string, the implementation shall set the appropriate environment as

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 119

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
General Locale

3794 defined in Chapter 8 (on page 157).

3795 7.2 POSIX Locale

3796 Conforming systems shall provide a POSIX locale, also known as the C locale. The behavior of
3797 standard utilities and functions in the POSIX locale shall be as if the locale was defined via the
3798 localedef utility with input data from the POSIX locale tables in Section 7.3 (on page 120).
3799 The tables in Section 7.3 describe the characteristics and behavior of the POSIX locale for data
3800 consisting entirely of characters from the portable character set and the control character set. For
3801 other characters, the behavior is unspecified. For C-language programs, the POSIX locale shall
3802 be the default locale when the setlocale() function is not called.
3803 The POSIX locale can be specified by assigning to the appropriate environment variables the
3804 values "C" or "POSIX" .
3805 All implementations shall define a locale as the default locale, to be invoked when no
3806 environment variables are set, or set to the empty string. This default locale can be the POSIX
3807 locale or any other implementation-defined locale. Some implementations may provide facilities
3808 for local installation administrators to set the default locale, customizing it for each location.
3809 IEEE Std 1003.1-200x does not require such a facility.
3810 7.3 Locale Definition
3811 The capability to specify additional locales to those provided by an implementation is optional,
3812 denoted by the _POSIX2_LOCALEDEF symbol. If the option is not supported, only
3813 implementation-supplied locales are available. Such locales shall be documented using the
3814 format specified in this section.
3815 Locales can be described with the file format presented in this section. The file format is that
3816 accepted by the localedef utility. For the purposes of this section, the file is referred to as the
3817 “locale definition file”, but no locales shall be affected by this file unless it is processed by
3818 localedef or some similar mechanism. Any requirements in this section imposed upon the utility
3819 shall apply to localedef or to any other similar utility used to install locale information using the
3820 locale definition file format described here.
3821 The locale definition file shall contain one or more locale category source definitions, and shall
3822 not contain more than one definition for the same locale category. If the file contains source
3823 definitions for more than one category, implementation-defined categories, if present, shall
3824 appear after the categories defined by Section 7.1 (on page 119). A category source definition
3825 contains either the definition of a category or a copy directive. For a description of the copy
3826 directive, see localedef. In the event that some of the information for a locale category, as
3827 specified in this volume of IEEE Std 1003.1-200x, is missing from the locale source definition, the
3828 behavior of that category, if it is referenced, is unspecified.
3829 A category source definition shall consist of a category header, a category body, and a category
3830 trailer. A category header shall consist of the character string naming of the category, beginning
3831 with the characters LC_. The category trailer shall consist of the string "END", followed by one
3832 or more <blank>s and the string used in the corresponding category header.
3833 The category body shall consist of one or more lines of text. Each line shall contain an identifier,
3834 optionally followed by one or more operands. Identifiers shall be either keywords, identifying a
3835 particular locale element, or collating elements. In addition to the keywords defined in this
3836 volume of IEEE Std 1003.1-200x, the source can contain implementation-defined keywords. Each
3837 keyword within a locale shall have a unique name (that is, two categories cannot have a
120 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Locale Definition
3838 commonly-named keyword); no keyword shall start with the characters LC_. Identifiers shall be
3839 separated from the operands by one or more <blank>s.
3840 Operands shall be characters, collating elements, or strings of characters. Strings shall be
3841 enclosed in double-quotes. Literal double-quotes within strings shall be preceded by the <escape
3842 character>, described below. When a keyword is followed by more than one operand, the
3843 operands shall be separated by semicolons; <blank>s shall be allowed both before and after a
3844 semicolon.
3845 The first category header in the file can be preceded by a line modifying the comment character.
3846 It shall have the following format, starting in column 1:
3847 "comment_char %c\n", < conment charact er>
3848 The comment character shall default to the number sign (‘#'). Blank lines and lines containing
3849 the <comment character> in the first position shall be ignored.
3850 The first category header in the file can be preceded by a line modifying the escape character to
3851 be used in the file. It shall have the following format, starting in column 1:
3852 "escape_char %c\n", < escape character>
3853 The escape character shall default to backslash, which is the character used in all examples
3854 shown in this volume of IEEE Std 1003.1-200x.
3855 A line can be continued by placing an escape character as the'last character on the line; this
3856 continuation character shall be discarded from the input. Although the implementation need not
3857 accept any one portion of a continued line with a-length exceeding {LINE_MAX] bytes, it shall
3858 place no limits on the accumulated length of the continued line. Comment lines shall not be
3859 continued on a subsequent line using an escaped <newline>.
3860 Individual characters, characters in strings, and collating elements shall be represented using
3861 symbolic names, ‘as defined below. In addition, characters can be represented using the
3862 characters themselves or as octal, hexadecimal, or decimal constants. When non-symbolic
3863 notation isused, the resultant locale definitions are in many cases not portable between systems.
3864 The left angle bracket ('<’) is a reserved symbol, denoting the start of a symbolic name; when
3865 used to represent itself it shall be preceded by the escape character. The following rules apply to
3866 character representation:
3867 1. A character can be represented via a symbolic name, enclosed within angle brackets '<’
3868 and > . The symbolic name, including the angle brackets, shall exactly match a
3869 symbolic name defined in the charmap file specified via the localedef —f option, and it shall
3870 be replaced by a character value determined from the value associated with the symbolic
3871 name in the charmap file. The use of a symbolic name not found in the charmap file shall
3872 constitute an error, unless the category is LC_CTYPE or LC_COLLATE, in which case it
3873 shall constitute a warning condition (see localedef for a description of actions resulting
3874 from errors and warnings). The specification of a symbolic name in a collating-element
3875 or collating-symbol section that duplicates a symbolic name in the charmap file (if
3876 present) shall be an error. Use of the escape character or a right angle bracket within a
3877 symbolic name is invalid unless the character is preceded by the escape character.
3878 For example:
3879 <c>;<c —cedilla> "<M><a><y>"
3880 2. A character in the portable character set can be represented by the character itself, in
3881 which case the value of the character is implementation-defined. (Implementations may
3882 allow other characters to be represented as themselves, but such locale definitions are not
3883 portable.) Within a string, the double-quote character, the escape character, and the right
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 121

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale
3884 angle bracket character shall be escaped (preceded by the escape character) to be
3885 interpreted as the character itself. Outside strings, the characters:
3886 , ; < > escape_char
3887 shall be escaped to be interpreted as the character itself.
3888 For example:
3889 c " May"
3890 3. A character can be represented as an octal constant. An octal constant shall be specified as
3891 the escape character followed by two or three octal digits. Each constant shall represent a
3892 byte value. Multi-byte values can be represented by concatenated constants specified in
3893 byte order with the last constant specifying the least significant byte of the character.
3894 For example:
3895 \143,\347,\143\150 "\115\141\171"
3896 4. A character can be represented as a hexadecimal constant. A hexadecimal constant shall
3897 be specified as the escape character followed by an 'X’ followed by two hexadecimal
3898 digits. Each constant shall represent a byte value. Multi-byte values can be represented by
3899 concatenated constants specified in byte order with the last constant specifying the least
3900 significant byte of the character.
3901 For example:
3902 \x63;\xe7;\x63\x68 "\x4d\x61\x79"
3903 5. A character can be represented as a decimal constant. A decimal constant shall be
3904 specified as the escape character followed by a 'd’ followed by two or three decimal
3905 digits. Each constant represents a byte value. Multi-byte values can be represented by
3906 concatenated constants specified in byte order with the last constant specifying the least
3907 significant byte of the character.
3908 For example:
3909 \d99;\d231;\d99\d104 "\d77\d97\d121"
3910 Implementations may accept single-digit octal, decimal, or hexadecimal constants following the
3911 escape character. Only characters existing in the character set for which the locale definition is
3912 created shall be specified, whether using symbolic names, the characters themselves, or octal,
3913 decimal, or hexadecimal constants. If a charmap file is present, only characters defined in the
3914 charmap can be specified using octal, decimal, or hexadecimal constants. Symbolic names not
3915 present in the charmap file can be specified and shall be ignored, as specified under item 1
3916 above.
3917 7.3.1 LC_CTYPE
3918 The LC_CTYPE category shall define character classification, case conversion, and other
3919 character attributes. In addition, a series of characters can be represented by three adjacent
3920 periods representing an ellipsis symbol ("..."). The ellipsis specification shall be interpreted
3921 as meaning that all values between the values preceding and following it represent valid
3922 characters. The ellipsis specification shall be valid only within a single encoded character set;
3923 that is, within a group of characters of the same size. An ellipsis shall be interpreted as including
3924 in the list all characters with an encoded value higher than the encoded value of the character
3925 preceding the ellipsis and lower than the encoded value of the character following the ellipsis.
3926 For example:
3927 \x30;...;\x39;

122 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

3928

3929
3930
3931
3932
3933
3934
3935

3936
3937
3938
3939
3940
3941

3942
3943

3944

3945

3946

3947
3948
3949
3950

3951

3952

3953

3954
3955
3956

3957

3958
3959

3960
3961
3962

3963

3964

3965

3966

3967
3968
3969
3970

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition

includes in the character class all characters with encoded values between the endpoints.

The following keywords shall be recognized. In the descriptions, the term “automatically
included” means that it shall not be an error either to include or omit any of the referenced
characters; the implementation provides them if missing (even if the entire keyword is missing)
and accepts them silently if present. When the implementation automatically includes a missing
character, it shall have an encoded value dependent on the charmap file in effect (see the
description of the localedef —f option); otherwise, it shall have a value derived from an
implementation-defined character mapping.

The character classes digit, xdigit, lower, upper, and space have a set of automatically included
characters. These only need to be specified if the character values (that is, encoding) differ from
the implementation default values. It is not possible to define a locale without these
automatically included characters unless some implementation extension is used to prevent
their inclusion. Such a definition would not be a proper superset of the C or POSIX locale and,
thus, it might not be possible for conforming applications to work properly.

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

upper Define characters to be classified as uppercase letters.
In the POSIX locale, the 26 uppercase letters shall be included:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The uppercase letters <A> to <Z>, as
defined in Section 6.4 (the portable character set), are automatically included
in this class.

lower Define characters to be classified as lowercase letters.
In the POSIX locale, the 26 lowercase letters shall be included:
abcdefghijklmnopgrstuvwxyz

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The lowercase letters <a> to <z> of the
portable character set are automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, all characters in the classes upper and lower shall be
included.

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. Characters classified as either upper or
lower are automatically included in this class.

digit Define the characters to be classified as numeric digits.
In the POSIX locale, only:
0123456789
shall be included.

In a locale definition file, only the digits <zero>, <one>, <two>, <three>,
<four>, <five>, <six>, <seven>, <eight>, and <nine> shall be specified, and in
contiguous ascending sequence by numerical value. The digits <zero> to
<nine> of the portable character set are automatically included in this class.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 123

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale
3971 alnum Define characters to be classified as letters and numeric digits. Only the
3972 characters specified for the alpha and digit keywords shall be specified.
3973 Characters specified for the keywords alpha and digit are automatically
3974 included in this class.
3975 space Define characters to be classified as white-space characters.
3976 In the POSIX locale, exactly <space>, <form-feed>, <newline>, <carriage-
3977 return>, <tab>, and <vertical-tab> shall be included.
3978 In a locale definition file, no character specified for the keywords upper,
3979 lower, alpha, digit, graph, or xdigit shall be specified. The <space>, <form-
3980 feed>, <newline>, <carriage-return>, <tab>, and <vertical-tab> of the portable
3981 character set, and any characters included in the class blank are automatically
3982 included in this class.
3983 cntrl Define characters to be classified as control characters.
3984 In the POSIX locale, no characters in classes alpha or print shall be included.
3985 In a locale definition file, no character specified for the keywords upper,
3986 lower, alpha, digit, punct, graph, print, or xdigit shall be specified.
3987 punct Define characters to be classified as punctuation characters.
3988 In the POSIX locale, neither the <space> nor any characters in classes alpha,
3989 digit, or cntrl shall be included.
3990 In a locale definition file, no character specified for the keywords upper,
3991 lower, alpha, digit, cntrl, xdigit, or as the <space> shall be specified.
3992 graph Define characters to be classified as printable characters, not including the
3993 <space>.
3994 In the POSIX locale, all characters in classes alpha, digit, and punct shall be
3995 included; no characters in class entrl shall be included.
3996 In a locale definition file, characters specified for the keywords upper, lower,
3997 alpha, digit, xdigit, and punct are automatically included in this class. No
3998 character specified for the keyword cntrl shall be specified.
3999 print Define characters to be classified as printable characters, including the
4000 <space>.
4001 In the POSIX locale, all characters in class graph shall be included; no
4002 characters in class cntrl shall be included.
4003 In a locale definition file, characters specified for the keywords upper, lower,
4004 alpha, digit, xdigit, punct, graph, and the <space> are automatically included
4005 in this class. No character specified for the keyword cntrl shall be specified.
4006 xdigit Define the characters to be classified as hexadecimal digits.
4007 In the POSIX locale, only:
4008 0123456789ABCDEFabcdef
4009 shall be included.
4010 In a locale definition file, only the characters defined for the class digit shall be
4011 specified, in contiguous ascending sequence by numerical value, followed by
4012 one or more sets of six characters representing the hexadecimal digits 10 to 15
4013 inclusive, with each set in ascending order (for example, <A>, , <C>, <D>,

124 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4014
4015
4016

4017

4018

4019
4020

4021
4022
4023
4024
4025
4026
4027
4028
4029

4030
4031
4032

4033
4034
4035

4036
4037
4038

4039

4040

4041

4042

4043

4044
4045
4046
4047
4048
4049
4050
4051
4052

4053

4054

4055

4056

4057

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

blank

charclass

charclass-name

Locale Definition

<E>, <F>, <a>, , <c>, <d>, <e>, <f>). The digits <zero> to <nine>, the
uppercase letters <A> to <F>, and the lowercase letters <a> to <f> of the
portable character set are automatically included in this class.

Define characters to be classified as <blank>s.
In the POSIX locale, only the <space> and <tab> shall be included.

In a locale definition file, the <space> and <tab> are automatically included in
this class.

Define one or more locale-specific character class names as strings separated
by semicolons. Each named character class can then be defined subsequently
in the LC_CTYPE definition. A character class name shall consist of at least
one and at most {CHARCLASS_NAME_MAX} bytes of alphanumeric
characters from the portable filename character set. The first character of a
character class name shall not be a digit. The name shall not match any of the
LC_CTYPE keywords defined in this volume of IEEE Std 1003.1-200x. Future
revisions of IEEE Std 1003.1-200x will not specify any LC_CTYPE keywords
containing uppercase letters.

Define characters to be classified as belonging to the named locale-specific
character class. In the POSIX locale, locale-specific named character classes
need not exist.

If a class name is defined by a charclass keyword, but no characters are
subsequently assigned to it, this'is.not an error; it represents a class without
any characters belonging to it.

The charclass-name can be used as<the property argument to the wctype()
function, in regular expression. and shell pattern-matching bracket
expressions, and by the fr command.

toupper Define the mapping of lowercase letters to uppercase letters.
In the POSIX locale, at a minimum, the 26 lowercase characters:
abcdefghijklmnopgrstuvwxyz
shall be mapped to the corresponding 26 uppercase characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
In ‘a ‘locale definition file, the operand shall consist of character pairs,
separated by semicolons. The characters in each character pair shall be
separated by a comma and the pair enclosed by parentheses. The first
character in each pair is the lowercase letter, the second the corresponding
uppercase letter. Only characters specified for the keywords lower and upper
shall be specified. The lowercase letters <a> to <z>, and their corresponding
uppercase letters <A> to <Z>, of the portable character set are automatically
included in this mapping, but only when the toupper keyword is omitted
from the locale definition.
tolower Define the mapping of uppercase letters to lowercase letters.

In the POSIX locale, at a minimum, the 26 uppercase characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
shall be mapped to the corresponding 26 lowercase characters:
abcdefghijklmnopgrstuvwxyz

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 125

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale
4058 In a locale definition file, the operand shall consist of character pairs,
4059 separated by semicolons. The characters in each character pair shall be
4060 separated by a comma and the pair enclosed by parentheses. The first
4061 character in each pair is the uppercase letter, the second the corresponding
4062 lowercase letter. Only characters specified for the keywords lower and upper
4063 shall be specified. If the tolower keyword is omitted from the locale definition,
4064 the mapping is the reverse mapping of the one specified for toupper.
4065 The following table shows the character class combinations allowed:
4066 Table 7-1 Valid Character Class Combinations
4067 Can Also Belong To
4068 In Class | upper lower alpha digit space cntrl punct graph print xdigit blank
4069 upper — A X X X X A A — X
4070 lower — A X X X X A A — X
4071 alpha — — X X X X A A — X
4072 digit X X X X X X A A A X
4073 space X X X X N * * * X —
4074 cntrl X X X X — X X X X —
4075 punct X X X X - X A A X —
4076 graph — — — =\ & X — A — —
4077 print — — e X — - — —
4078 xdigit — — = — X X X A A X
4079 blank X X X X A — * * * X
4080 Notes:
4081 1. Explanation of codes:
4082 A Automatically included; see text.
4083 — Permitted.
4084 x_ Mutually-exclusive.
4085 *_ See note 2.
4086 2.. The <space>, which is part of the space and blank classes, cannot belong to punct or
4087 graph, but shall automatically belong to the print class. Other space or blank characters
4088 can be classified as any of punct, graph, or print.
4089 7.3.1.1 LC_CTYPE Category in the POSIX Locale
4090 The character classifications for the POSIX locale follow; the code listing depicts the localedef
4091 input, and the table represents the same information, sorted by character.
4092 LC_CTYPE
4093 # The following is the POSIX locale LC_CTYPE.
4094 # "alpha" is by default "upper" and "lower"
4095 # "alnum" is by definition "alpha" and "digit"
4096 # " print" is by default "alnum", "punct”, and the <space>
4097 # " graph" is by default "alnum" and "punct”
4098 #
4099 upper <A>:;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
4100 <N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
4101 #
4102 lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<|>;<m>;\

126 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition

<N>;<0>;<P>;<O>;<r>; <S> <> <U> V> <KW <X <y > <Z7>

#

digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
<seven>;<eight>;<nine>

#

space <tab>;<newline>;<vertical-tab>;<form-feed>;\
<carriage-return>;<space>

#

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
<form-feed>;<carriage-return>;\
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<S0O>;\
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>}\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
<IS1>;

#

punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<right-square-bracket>;\
<circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\
<vertical-line>;<right-curly-bracket>;<tilde>
#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\
<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;<a>;<bh>;<c>;<d>;<e>;<f>
#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(xc>,<C>);(<d>,<D>);(<e>,<E>);\
(<f>,<F>);(<0>,<G>);(<h>,<H>); (<i>,<1>);(<)>,<I>);)\
(<k>,<K>);(<I>,<L>);(<m>,<M>);(<n>,<N>); (<0>,<0>);)\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>))\
(Ru>,<U>)i(<v>,<V>)i(<w>, <W>); (x>, <X>); (<y>, <Y >); (<2>,<Z>)
#
tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\
(<F>,<f3);(<G>,<0>);(<H>,<h>);(<I>,<i>);(<J>,<>))\
(<K>,<k>)i(<L>,<>);(<M>,<m>);(<N>,<n>);(<0>,<0>);)\
(<P>,<p>);(<Q>,<0>);(<R>,<r>);(<S>,<5>);(<T>,<t>))\
(KU>,<u>);(<V=,<v>); (W>,<w>); (< X>,<x>); (<Y >,<y>); (<Z2>,<2>)
END LC_CTYPE

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

127

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale

4145 Symbolic Name Other Case Character Classes

4146 <NUL> cntrl

4147 <SOH> cntrl

4148 <STX> cntrl

4149 <ETX> cntrl

4150 <EOT> cntrl

4151 <ENQ> cntrl

4152 <ACK> cntrl

4153 <alert> cntrl

4154 <backspace> cntrl

4155 <tab> cntrl, space, blank

4156 <newline> cntrl, space

4157 <vertical-tab> cntrl, space

4158 <form-feed> cntrl, space

4159 <carriage-return> cntrl, space

4160 <50> cntrl

4161 <SI> cntrl

4162 <DLE> cntrl

4163 <DC1> cntrl

4164 <DC2> cntrl

4165 <DC3> cntrl

4166 <DC4> cntrl

4167 <NAK> cntrl

4168 <SYN> cntrl

4169 <ETB> cntrl

4170 <CAN> cntrl

4171 cntrl

4172 <SUB> cntrl

4173 <ESC> cntrl

4174 <IS4> cntrl

4175 <IS3> cntrl

4176 <IS2> cntrl

4177 <IS1> cntrl

4178 <space> space, print, blank

4179 <exclamation-mark> punct, print, graph

4180 <quotation-mark> punct, print, graph

4181 <number-sign> punct, print, graph

4182 <dollar-sign> punct, print, graph

4183 <percent-sign> punct, print, graph

4184 <ampersand> punct, print, graph

4185 <apostrophe> punct, print, graph

4186 <left-parenthesis> punct, print, graph

4187 <right-parenthesis> punct, print, graph

4188 <asterisk> punct, print, graph

4189 <plus-sign> punct, print, graph

4190 <comma> punct, print, graph

4191 <hyphen> punct, print, graph

4192 <period> punct, print, graph

4193 <slash> punct, print, graph

4194 <zero> digit, xdigit, print, graph

4195 <one> digit, xdigit, print, graph

4196 <two> digit, xdigit, print, graph
128 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4197

4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition

Symbolic Name Other Case Character Classes
<three> digit, xdigit, print, graph
<four> digit, xdigit, print, graph
<five> digit, xdigit, print, graph
<six> digit, xdigit, print, graph
<seven> digit, xdigit, print, graph
<eight> digit, xdigit, print, graph
<nine> digit, xdigit, print, graph
<colon> punct, print, graph
<semicolon> punct, print, graph
<less-than-sign> punct, print, graph
<equals-sign> punct, print, graph
<greater-than-sign> punct, print, graph
<question-mark> punct, print, graph
<commercial-at> punct, print, graph
<A> <a> upper, xdigit, alpha, print, graph
 upper, xdigit, alpha, print, graph
<C> <c> upper, xdigit, alpha, print, graph
<D> <d> upper, xdigit, alpha, print, graph
<E> <e> upper, xdigit, alpha, print, graph
<F> <f> upper, xdigit, alpha, print, graph
<G> <g> upper, alpha, print, graph
<H> <h> upper, alpha;, print, graph
<I> <i> upper, alpha, print, graph
<J> <j> upper, alpha, print, graph
<K> <k> upper, alpha, print, graph
<L> <> upper, alpha, print, graph
<M> <m> upper, alpha, print, graph
<N> <n> upper, alpha, print, graph
<O> <0> upper, alpha, print, graph
<P> <p> upper, alpha, print, graph
<Q> <q> upper, alpha, print, graph
<R> <r> upper, alpha, print, graph
<S> <s> upper, alpha, print, graph
<T> <t> upper, alpha, print, graph
<U> <u> upper, alpha, print, graph
<V> <v> upper, alpha, print, graph
<W> <w> upper, alpha, print, graph
<X> <> upper, alpha, print, graph
<Y> <y> upper, alpha, print, graph
<Z> <z> upper, alpha, print, graph
<left-square-bracket> punct, print, graph
<backslash> punct, print, graph
<right-square-bracket> punct, print, graph
<circumflex> punct, print, graph
<underscore> punct, print, graph
<grave-accent> punct, print, graph
<a> <A> lower, xdigit, alpha, print, graph
 lower, xdigit, alpha, print, graph
<c> <C> lower, xdigit, alpha, print, graph
<d> <D> lower, xdigit, alpha, print, graph
<e> <E> lower, xdigit, alpha, print, graph

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

129

Locale Definition

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

4249 Symbolic Name Other Case Character Classes

4250 <f> <F> lower, xdigit, alpha, print, graph

4251 <g> <G> lower, alpha, print, graph

4252 <h> <H> lower, alpha, print, graph

4253 <i> <I> lower, alpha, print, graph

4254 <j> <J> lower, alpha, print, graph

4255 <k> <K> lower, alpha, print, graph

4256 <I> <L> lower, alpha, print, graph

4257 <m> <M> lower, alpha, print, graph

4258 <n> <N> lower, alpha, print, graph

4259 <0> <O> lower, alpha, print, graph

4260 <p> <P> lower, alpha, print, graph

4261 <q> <Q> lower, alpha, print, graph

4262 <r> <R> lower, alpha, print, graph

4263 <s> <5> lower, alpha, print, graph

4264 <t> <T> lower, alpha, print, graph

4265 <u> <U> lower, alpha, print, graph

4266 <v> <V> lower, alpha, print, graph

4267 <w> <W> lower, alpha, print, graph

4268 <Xx> <X> lower, alpha, print, graph

4269 <y> <Y> lower, alpha, print, graph

4270 <z> <Z> lower, alpha, print, graph

4271 <left-curly-bracket> punct, print, graph

4272 <vertical-line> punct, print, graph

4273 <right-curly-bracket> punct, print, graph

4274 <tilde> punct, print, graph

4275 cntrl

4276 7.3.2 LC_COLLATE

4277 The.LC_COLLATE category provides a collation sequence definition for numerous utilities in the
4278 Shell ‘and Utilities volume of IEEE Std 1003.1-200x (sort, unig, and so on), regular expression
4279 matching (see Chapter 9 (on page 165)), and the strcoll(), strxfrm(), wescoll(), and wesxfrm()
4280 functions in the System Interfaces volume of IEEE Std 1003.1-200x.

4281 A collation sequence definition shall define the relative order between collating elements
4282 (characters and multi-character collating elements) in the locale. This order is expressed in terms
4283 of collation values; that is, by assigning each element one or more collation values (also known
4284 as collation weights). This does not imply that implementations shall assign such values, but
4285 that ordering of strings using the resultant collation definition in the locale behaves as if such
4286 assignment is done and used in the collation process. At least the following capabilities are
4287 provided:

4288 1. Multi-character collating elements. Specification of multi-character collating elements
4289 (that is, sequences of two or more characters to be collated as an entity).

4290 2. User-defined ordering of collating elements. Each collating element shall be assigned a
4291 collation value defining its order in the character (or basic) collation sequence. This
4292 ordering is used by regular expressions and pattern matching and, unless collation
4293 weights are explicitly specified, also as the collation weight to be used in sorting.

4294 3. Multiple weights and equivalence classes. Collating elements can be assigned one or
4295 more (up to the limit {COLL_WEIGHTS_MAX], as defined in <limits.h>) collating
429 weights for use in sorting. The first weight is hereafter referred to as the primary weight.

130 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4297

4298
4299

4300
4301
4302
4303
4304
4305

4306
4307

4308
4309
4310

4311
4312

4313
4314

4315
4316
4317

4318

4319

4320
4321

4322

4323
4324
4325
4326
4327

4328

4329
4330
4331

4332

4333
4334

4335

4336
4337
4338
4339

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition

4. One-to-many mapping. A single character is mapped into a string of collating elements.

5. Equivalence class definition. Two or more collating elements have the same collation
value (primary weight).

6. Ordering by weights. When two strings are compared to determine their relative order,
the two strings are first broken up into a series of collating elements; the elements in each
successive pair of elements are then compared according to the relative primary weights
for the elements. If equal, and more than one weight has been assigned, then the pairs of
collating elements are re-compared according to the relative subsequent weights, until
either a pair of collating elements compare unequal or the weights are exhausted.

The following keywords shall be recognized in a collation sequence definition. They are
described in detail in the following sections.

copy Specify the name of an existing locale which shall be used as the
definition of this category. If this keyword is specified, no other keyword
shall be specified.

collating-element Define a collating-element symbol representing a multi-character

collating element. This keyword is optional.

collating-symbol Define a collating symbol for use in collation order statements. This
keyword is optional.

order_start Define collation rules. This statement shall be followed by one or more
collation order statements, -assigning character collation values and
collation weights to collating elements.

order_end Specify the end of the collation-order statements.

7.3.2.1 The collating-element Keyword
In addition to the collating elements in the character set, the collating-element keyword can be
used to define multi-character collating elements. The syntax is as follows:
"collating-element %s from \"%s\"\n", < col l ati ng-synbol >, < string>
The <collating-symbol> operand shall be a symbolic name, enclosed between angle brackets ('<’
and >’), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. The string operand is a string of two or
more characters that collates as an entity. A <collating-element> defined via this keyword is only
recognized with the LC_COLLATE category.
For example:
collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <II> from "II"

7.3.2.2 The collating-symbol Keyword
This keyword shall be used to define symbols for use in collation sequence statements; that is,
between the order_start and the order_end keywords. The syntax is as follows:
"collating-symbol %s\n", < col I ati ng- synbol >
The <collating-symbol> shall be a symbolic name, enclosed between angle brackets ('<’ and
'>"), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. A <collating-symbol> defined via this
keyword is only recognized within the LC_COLLATE category.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 131

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale
4340 For example:
4341 collating-symbol <UPPER_CASE>
4342 collating-symbol <HIGH>
4343 The collating-symbol keyword defines a symbolic name that can be associated with a relative
4344 position in the character order sequence. While such a symbolic name does not represent any
4345 collating element, it can be used as a weight.
4346 7.3.2.3 The order_start Keyword
4347 The order_start keyword shall precede collation order entries and also define the number of
4348 weights for this collation sequence definition and other collation rules. The syntax is as follows:
4349 "order_start %s;%s;...;%s\n", < sort-rules> < sort-rules> ..
4350 The operands to the order_start keyword are optional. If present, the operands define rules to be
4351 applied when strings are compared. The number of operands define how many weights each
4352 element is assigned; if no operands are present, one forward operand is assumed. If present, the
4353 first operand defines rules to be applied when comparing strings using the first (primary)
4354 weight; the second when comparing strings using the second weight, and so on. Operands shall
4355 be separated by semicolons (';’). Each operand shall consist of one or more collation
4356 directives, separated by commas (;). If the number of operands exceeds the
4357 {COLL_WEIGHTS_MAX]} limit, the utility shall issue a warning message. The following
4358 directives shall be supported:
4359 forward Specifies that comparison operations for the weight level shall proceed from start
4360 of string towards the end of string.
4361 backward Specifies that comparison operations for the weight level shall proceed from end of
4362 string towards the beginning of string.
4363 position Specifies that comparison operations for the weight level shall consider the relative
4364 position of elements in the strings not subject to IGNORE. The string containing
4365 an element not subject to IGNORE after the fewest collating elements subject to
4366 IGNORE from the start of the compare shall collate first. If both strings contain a
4367 character not subject to IGNORE in the same relative position, the collating values
4368 assigned to the ‘elements shall determine the ordering. In case of equality,
4369 subsequent characters not subject to'IGNORE shall be considered in the same
4370 manner.
4371 The directives forward and backward are mutually-exclusive.
4372 If no operands are specified, a single forward operand shall be assumed.
4373 For example:
4374 order_start forward;backward
4375 7.3.2.4 Collation Order
4376 The order_start keyword shall be followed by collating identifier entries. The syntax for the
4377 collating element entries is as follows:
4378 "%s %s;%0s;...;%s\n", < collating-identifier> < weight> < weight>, ...
4379 Each collating-identifier shall consist of either a character (in any of the forms defined in Section
4380 7.3 (on page 120)), a <collating-element>, a <collating-symbol>, an ellipsis, or the special symbol
4381 UNDEFINED. The order in which collating elements are specified determines the character
4382 order sequence, such that each collating element shall compare less than the elements following
4383 it.

132 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4384
4385
4386

4387
4388

4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400

4401
4402
4403
4404
4405
4406

4407
4408
4409
4410
4411
4412
4413
4414
4415

4416
4417
4418
4419
4420
4421
4422

4423
4424
4425
4426
4427

4428
4429
4430
4431
4432

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition

A <collating-element> shall be used to specify multi-character collating elements, and indicates
that the character sequence specified via the <collating-element> is to be collated as a unit and in
the relative order specified by its place.

A <collating-symbol> can be used to define a position in the relative order for use in weights. No
weights shall be specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters shall collate according to their
encoded character values. It shall be interpreted as indicating that all characters with a coded
character set value higher than the value of the character in the preceding line, and lower than
the coded character set value for the character in the following line, in the current coded
character set, shall be placed in the character collation order between the previous and the
following character in ascending order according to their coded character set values. An initial
ellipsis shall be interpreted as if the preceding line specified the NUL character, and a trailing
ellipsis as if the following line specified the highest coded character set value in the current
coded character set. An ellipsis shall be treated as invalid if the preceding or following lines do
not specify characters in the current coded character set. The use of the ellipsis symbol ties the
definition to a specific coded character set and may preclude the definition from being portable
between implementations.

The symbol UNDEFINED shall be interpreted as including all coded character set values not
specified explicitly or via the ellipsis symbol. Such characters shall be inserted in the character
collation order at the point indicated by the symbol, and in ascending order according to their
coded character set values. If no UNDEFINED symbol is specified, and the current coded
character set contains characters not specified in this section, the utility shall issue a warning
message and place such characters at the end of the character collation order.

The optional operands for each collation-element shall be used to define the primary, secondary,
or subsequent weights for the collating element. The first operand specifies the relative primary
weight, the second the relative secondary weight, and so on. Two or more collation-elements can
be assigned the same weight; they belong to the same “equivalence class” if they have the same
primary weight. Collation shall behave as if, for each weight level, elements subject to IGNORE
are removed, unless the position collation directive is specified for the corresponding level with
the order_start keyword. Then each successive pair of elements shall be compared according to
the relative weights for the elements. If the two strings compare equal, the process shall be
repeated for the next weight level, up to the limit {COLL_WEIGHTS_MAX]}.

Weights shall be expressed as characters (in any of the forms specified in Section 7.3 (on page
120)), <collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A
single character, a <collating-symbol>, or a <collating-element> shall represent the relative position
in the character collating sequence of the character or symbol, rather than the character or
characters themselves. Thus, rather than assigning absolute values to weights, a particular
weight is expressed using the relative order value assigned to a collating element based on its
order in the character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters or
symbolic names. For example, if the <eszet> is given the string "<s><s>" as a weight,
comparisons are performed as if all occurrences of the <eszet> are replaced by "<s><s>"
(assuming that "<s>" has the collating weight "<s>"). If it is necessary to define <eszet> and
"<s><s>" as an equivalence class, then a collating element must be defined for the string "ss"

All characters specified via an ellipsis shall by default be assigned unique weights, equal to the
relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
symbol shall by default be assigned the same primary weight (that is, they belong to the same
equivalence class). An ellipsis symbol as a weight shall be interpreted to mean that each
character in the sequence shall have unique weights, equal to the relative order of their character

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 133

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4433
4434

4435
4436
4437
4438
4439

4440

4441

4442

4443

4444

4445
4446

4447
4448

4449

4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465

4466

4467
4468

4469
4470

4471
4472

4473
4474
4475

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale

134

in the character collation sequence. The use of the ellipsis as a weight shall be treated as an error
if the collating element is neither an ellipsis nor the special symbol UNDEFINED.

The special keyword IGNORE as a weight shall indicate that when strings are compared using
the weights at the level where IGNORE is specified, the collating element shall be ignored; that
is, as if the string did not contain the collating element. In regular expressions and pattern
matching, all characters that are subject to IGNORE in their primary weight form an
equivalence class.

An empty operand shall be interpreted as the collating element itself.

For example, the order statement:

<a> <a>;<a>
is equal to:
<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and shall be
interpreted as the value of each character defined by the ellipsis.

The collation order as defined in this section affects the interpretation of bracket expressions in
regular expressions (see Section 9.3.5 (onpage 168)).

For example:

order_start forward;backward
UNDEFINED IGNORE;IGNORE

<LOW>

<space> <LOW>;<space>
. <LOW>;...

<a> <a>;<a>

<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>

<ch> <ch>;<ch>

<Ch> <ch>;<Ch>

<s> <S>:<S>

<eszet> "<s><s>""<eszet><eszet>"
order_end

This example is interpreted as follows:

1. The UNDEFINED means that all characters not specified in this definition (explicitly or
via the ellipsis) shall be ignored for collation purposes.

2. All characters between <space> and 'a’ shall have the same primary equivalence class
and individual secondary weights based on their ordinal encoded values.

3. All characters based on the uppercase or lowercase character 'a’ belong to the same
primary equivalence class.

4. The multi-character collating element <ch> is represented by the collating symbol <ch>
and belongs to the same primary equivalence class as the multi-character collating
element <Ch>.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4476

4477

4478

4479
4480

4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Locale Definition

7.3.2.5 The order_end Keyword
The collating order entries shall be terminated with an order_end keyword.
7.3.2.6 LC_COLLATE Category in the POSIX Locale

The collation sequence definition of the POSIX locale follows; the code listing depicts the
localedef input.

LC_COLLATE

This is the POSIX locale definition for the LC_COLLATE category.
The order is the same as in the ASCII codeset.
order_start forward
<NUL>

<SOH>

<STX>

<ETX>

<EOT>

<ENQ>

<ACK>

<alert>
<backspace>
<tab>

<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>

<S>

<DLE>

<DC1>

<DC2>

<DC3>

<DC4>

<NAK>

<SYN>

<ETB>

<CAN>

<SuB>

<ESC>

<IS4>

<IS3>

<IS2>

<IS1>

<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 135

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale

4527 <asterisk>

4528 <plus-sign>

4529 <comma>

4530 <hyphen>

4531 <period>

4532 <slash>

4533 <zero>

4534 <one>

4535 <two>

4536 <three>

4537 <four>

4538 <five>

4539 <six>

4540 <seven>

4541 <eight>

4542 <nine>

4543 <colon>

4544 <semicolon>

4545 <less-than-sign>

4546 <equals-sign>

4547 <greater-than-sign>

4548 <question-mark>

4549 <commercial-at>

4550 <A>

4551

4552 <C>

4553 <D>

4554 <E>

4555 <F>

4556 <G>

4557 <H>

4558 <|>

4559 <J>

4560 <K>

4561 <L>

4562 <M>

4563 <N>

4564 <0O>

4565 <P>

4566 <Q>

4567 <R>

4568 <S>

4569 <T>

4570 <U>

4571 <V>

4572 <W>

4573 <X>

4574 <Y>

4575 <Z>

4576 <left-square-bracket>

4577 <backslash>

4578 <right-square-bracket>

4579 <circumflex>
136 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615

4616

4617
4618

4619
4620

4621
4622

4623
4624
4625
4626
4627

4628
4629

Locale

7.3.3

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition

<underscore>
<grave-accent>
<a>

<C>

<d>

<e>

<f>

<g>

<h>

<i>

<j>

<k>

<|>

<m>

<n>

<0>

<p>

<q>

<r>

<S>

<t>

<u>

<\V>

<w>

<X>

<y>

<Z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end

#

END LC_COLLATE

LC_MONETARY

The LC_MONETARY category shall define the rules and symbols that are used to format
monetary numeric information.

This information is available through the localeconv() function and is used by the strfmon()
function.

Some of the information is also available in an alternative form via the nl_langinfo() function
(see CRNCYSTR in <langinfo.h>).

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX] for unspecified integer items and the
empty string ("") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 149). For some keywords, the strings can contain only integers. Keywords

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 137

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale
4630 that are not provided, string values set to the empty string (""), or integer keywords set to -1,
4631 are used to indicate that the value is not available in the locale. The following keywords shall be
4632 recognized:
4633 copy Specify the name of an existing locale which shall be used as the
4634 definition of this category. If this keyword is specified, no other keyword
4635 shall be specified.
4636 Note: This is a localedef utility keyword, unavailable through localeconv ().
4637 int_curr_symbol The international currency symbol. The operand shall be a four-character
4638 string, with the first three characters containing the alphabetic
4639 international currency symbol. The international currency symbol should
4640 be chosen in accordance with those specified in the ISO 4217 standard.
4641 The fourth character shall be the character used to separate the
4642 international currency symbol from the monetary quantity.
4643 currency_symbol The string that shall be used as the local currency symbol.
4644 mon_decimal_point The operand is a string containing the symbol that shall be used as the
4645 decimal delimiter (radix character) in monetary formatted quantities.
4646 mon_thousands_sep The operand is a string containing the symbol that shall be used as a
4647 separator for groups of digits to the left of the decimal delimiter in
4648 formatted monetary quantities.
4649 mon_grouping Define the size of each group of digits in formatted monetary quantities.
4650 The operand is a sequence of integers separated by semicolons. Each
4651 integer specifies the number of digits in each group, with the initial
4652 integer defining the size of the group immediately preceding the decimal
4653 delimiter, and the following integers defining the preceding groups. If the
4654 last integer is not —1, then the size of the previous group (if any) shall be
4655 repeatedly used for the remainder of the digits. If the last integer is -1,
4656 then no further grouping shall be performed.
4657 positive_sign A string that shall be used. to indicate a non-negative-valued formatted
4658 monetary quantity.
4659 negative_sign A string that shall be used to indicate a negative-valued formatted
4660 monetary quantity.
4661 int_frac_digits An integer representing the number of fractional digits (those to the right
4662 of the decimal delimiter) to be written in a formatted monetary quantity
4663 using int_curr_symbol.
4664 frac_digits An integer representing the number of fractional digits (those to the right
4665 of the decimal delimiter) to be written in a formatted monetary quantity
4666 using currency_symbol.
4667 p_cs_precedes An integer set to 1 if the currency_symbol precedes the value for a
4668 monetary quantity with a non-negative value, and set to 0 if the symbol
4669 succeeds the value.
4670 p_sep_by_space Set to a value indicating the separation of the currency_symbol, the sign
4671 string, and the value for a non-negative formatted monetary quantity.
4672 The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space,
4673 and int_n_sep_by_space are interpreted according to the following:

138 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4674

4675
4676
4677

4678
4679

4680
4681
4682

4683
4684

4685
4686
4687
4688

4689

4690

4691

4692

4693

4694
4695

4696
4697
4698

4699
4700
4701

4702
4703
4704

4705
4706
4707

4708
4709

4710
4711

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

n_cs_precedes

n_sep_by_space

p_sign_posn

n_sign_posn

int_p_cs_precedes

int_n_cs_precedes

int_p_sep_by_space

int_n_sep_by_space

int_p_sign_posn

int_n_sign_posn

Locale Definition

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates
them from the value; otherwise, a space separates the currency
symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates
them; otherwise, a space separates the sign string from the value.

An integer set to 1 if the currency_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

Set to a value indicating the separation of the currency_symbol, the sign
string, and the value for a negative formatted monetary quantity.

An integer set to a value indicating the positioning of the positive_sign
for a monetary quantity with a non-negative value. The following integer
values shall be recognized for int n_sign_posn, int_p_sign_posn,
n_sign_posn, and p_sign_posn:

0 Parentheses enclose the quantity and the currency_symbol.

1 The sign string precedes the quantity and the currency_symbol.
2 The sign string succeeds the quantity and the currency_symbol.
3 The sign string precedes the currency_symbol.

4 The sign string succeeds the currency_symbol.

An integer set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity.

An integer set to'l if the int_curr.symbol precedes the value for a
monetary quantity with a non-negative value, and set to 0 if the symbol
succeeds the value.

An integer set to 1 if the int.curr_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a non-negative internationally formatted
monetary quantity.

Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a negative internationally formatted monetary
quantity.

An integer set to a value indicating the positioning of the positive_sign
for a positive monetary quantity formatted with the international format.

An integer set to a value indicating the positioning of the negative_sign
for a negative monetary quantity formatted with the international format.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 139

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

4712

4713
4714
4715

4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742

IEEE P1003.1

Locale Definition

7.3.3.1

140

Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale

LC_MONETARY Category in the POSIX Locale

The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
localedef input, the table representing the same information with the addition of localeconv() and
nl_langinfo() formats. All values are unspecified in the POSIX locale.

LC_MONETARY

This is the POSIX locale definition for
t he LC_MONETARY category.

#

int_curr_symbol
currency_symbol
mon_decimal_point
mon_thousands_sep
mon_grouping
positive_sign
negative_sign

-1

int_frac_digits -1

frac_digits
p_cs_precedes
p_sep_by space
n_cs_precedes
n_sep_by space
p_sign_posn
n_sign_posn
int_p_cs_precedes
int_p_sep_by space
int_n_cs_precedes
int_n_sep_by space
int_p_sign_posn
int_n_sign_posn

#

END LC_MONETARY

-1
-1

-1
-1

-1
-1

-1
-1

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

4743
4744

4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765

4766

4767

4768
4769

4770

4771
4772
4773
4774
4775

4776
4777
4778
4779
4780

4781
4782

4783

4784
4785
4786
4787
4788

Locale

734

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition

langinfo POSIX Locale | localeconv() | localedef
Item Constant Value Value Value
int_curr_symbol — N/A " "
currency_symbol CRNCYSTR N/A " "
mon_decimal_point — N/A " "
mon_thousands_sep — N/A " "
mon_grouping — N/A " -1
positive_sign — N/A " "
negative_sign — N/A " "
int_frac_digits — N/A {CHAR_MAX} -1
frac_digits — N/A {CHAR_MAX} -1
p_cs_precedes CRNCYSTR N/A {CHAR_MAX]} -1
p_sep_by_space — N/A {CHAR_MAX]} -1
n_cs_precedes CRNCYSTR N/A {CHAR_MAX} -1
n_sep_by_space — N/A {CHAR_MAX]} -1
p_sign_posn — N/A {CHAR_MAX]} -1
n_sign_posn — N/A {CHAR_MAX]} -1
int_p_cs_precedes — N/A {CHAR_MAX]} -1
int_p_sep_by_space — N/A {CHAR_MAX]} -1
int_n_cs_precedes — N/A {CHAR_MAX]} -1
int_n_sep_by_space — N/A {CHAR_MAX]} -1
int_p_sign_posn — N/A {CHAR_MAX]} -1
int_n_sign_posn — N/A {CHAR_MAX]} -1

The entry N/ A indicates that the value is not available in the POSIX locale.

LC_NUMERIC

The LC_NUMERIC category shall define the rules and symbols that are used to format non-
monetary numeric information. This information is available through the localeconv () function.

Some of the information is also available in an alternative form via the nl_langinfo() function.

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX] for unspecified integer items and the
empty string (") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 149). For some keywords, the strings can only contain integers. Keywords
that are not provided, string values set to the empty string (*"), or integer keywords set to -1,
shall be used to indicate that the value is not available in the locale. The following keywords
shall be recognized:

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

Note: This is a localedef utility keyword, unavailable through localeconv ().

decimal_point The operand is a string containing the symbol that shall be used as the
decimal delimiter (radix character) in numeric, non-monetary formatted
quantities. This keyword cannot be omitted and cannot be set to the empty
string. In contexts where standards limit the decimal_point to a single byte,
the result of specifying a multi-byte operand shall be unspecified.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 141

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4789
4790
4791
4792
4793

4794
4795
4796
4797
4798
4799
4800
4801

4802

4803
4804
4805

4806
4807
4808
4809
4810
4811
4812
4813
4814

4815
4816
4817
4818
4819

4820

4821

4822
4823
4824
4825

4826

4827

4828
4829

4830
4831
4832
4833

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition

7.3.4.1

7.3.5

7.3.5.1

142

thousands_sep

grouping

Locale

The operand is a string containing the symbol that shall be used as a separator
for groups of digits to the left of the decimal delimiter in numeric, non-
monetary formatted monetary quantities. In contexts where standards limit
the thousands_sep to a single byte, the result of specifying a multi-byte
operand shall be unspecified.

Define the size of each group of digits in formatted non-monetary quantities.
The operand is a sequence of integers separated by semicolons. Each integer
specifies the number of digits in each group, with the initial integer defining
the size of the group immediately preceding the decimal delimiter, and the
following integers defining the preceding groups. If the last integer is not -1,
then the size of the previous group (if any) shall be repeatedly used for the
remainder of the digits. If the last integer is —1, then no further grouping shall
be performed.

LC_NUMERIC Category in the POSIX Locale

The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
depicting the localedef input, the table representing the same information with the addition of
localeconv () values, and nl_langinfo() constants.

LC_NUMERIC

This is the POSIX locale definition for
t he LC_NUMERIC category.

#
decimal_point
thousands_sep

grouping
#

"<period>"

-1

END LC_NUMERIC

langinfo POSIX Locale | localeconv() | localedef
Item Constant Value Value Value
decimal_point | RADIXCHAR .
thousands_sep THOUSEP N/A " "
grouping — N/A " -1

The entry N/ A indicates that the value is not available in the POSIX locale.

LC_TIME

The LC_TIME category shall define the interpretation of the conversion specifications supported
by the date utility and shall ‘affect the behavior of the strftime(), wcsftime(), strptime(), and
nl_langinfo() functions. Since the interfaces for C-language access and locale definition differ
significantly, they are described separately.

LC_TIME Locale Definition

In a locale definition, the following mandatory keywords shall be recognized:

copy

abday

Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

Define the abbreviated weekday names, corresponding to the %aconversion
specification (conversion specification in the strftime(), wcsftime(), and
strptime() functions). The operand shall consist of seven semicolon-separated
strings, each surrounded by double-quotes. The first string shall be the

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4834
4835

4836
4837
4838
4839
4840

4841
4842
4843
4844
4845

4846
4847
4848
4849
4850

4851
4852
4853
4854
4855

4856
4857
4858
4859

4860
4861
4862
4863

4864
4865
4866
4867
4868

4869
4870
4871
4872
4873

4874
4875
4876

4877

4878
4879

Locale

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

day

abmon

mon

d_t fmt

d_fmt

t_fmt

am_pm

t_fmt_ampm

Locale Definition

abbreviated name of the day corresponding to Sunday, the second the
abbreviated name of the day corresponding to Monday, and so on.

Define the full weekday names, corresponding to the %A conversion
specification. The operand shall consist of seven semicolon-separated strings,
each surrounded by double-quotes. The first string is the full name of the day
corresponding to Sunday, the second the full name of the day corresponding
to Monday, and so on.

Define the abbreviated month names, corresponding to the %b conversion
specification. The operand shall consist of twelve semicolon-separated strings,
each surrounded by double-quotes. The first string shall be the abbreviated
name of the first month of the year (January), the second the abbreviated
name of the second month, and so on.

Define the full month names, corresponding to the %B conversion
specification. The operand shall consist of twelve semicolon-separated strings,
each surrounded by double-quotes. The first string shall be the full name of
the first month of the year (January), the second the full name of the second
month, and so on.

Define the appropriate date and time representation, corresponding to the %c
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in the table in Table 5-1 (\V' ,
Bt B | S| 4 B | S S \"AN B

Define the appropriate date. representation, corresponding to the %x
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 106).

Define the appropriate- time representation, corresponding to the %X
conversion specification. The operand shall consist of a string containing any
combination of characters and. conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 106).

Define the appropriate representation of the ante-meridiem and post-meridiem
strings, corresponding to the %p conversion specification. The operand shall
consist of two strings, separated by a semicolon, each surrounded by double-
quotes. The first string shall represent the ante-meridiem designation, the last
string the post-meridiem designation.

Define the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r conversion specification. The operand shall
consist of a string and can contain any combination of characters and
conversion specifications. If the string is empty, the 12-hour format is not
supported in the locale.

era Define how years are counted and displayed for each era in a locale. The
operand shall consist of semicolon-separated strings. Each string shall be an
era description segment with the format:
direction:offset:start_date: end_date: era_nane: era_f or nat
according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 143

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4880
4881
4882

4883
4884
4885
4886
4887

4888
4889

4890
4891
4892

4893
4894
4895
4896

4897
4898

4899
4900

4901
4902

4903
4904

4905
4906

4907
4908
4909
4910
4911
4912
4913
4914

4915

4916
4917
4918

4919
4920

4921
4922

4923
4924

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition

7.3.5.2

144

era_d_fmt

era_t_fmt

era_d t fmt

alt_digits

Locale

Note: The start of an era might not be the earliest point in the era—it may be the
latest. For example, the Christian era BC starts on the day before January 1,
AD 1, and increases with earlier time.

direction Either a’+' ora’ = character. The '+ character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date. The’ —' character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end_date.

offset The number of the year closest to the start_date in the era,
corresponding to the %Eyconversion specification.

start_date A date in the form yyyy /mm/dd, where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.
Years prior to AD 1 shall be represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values " —*" or "+** . The value " —*"
shall indicate that'the ending date is the beginning of time. The
value "+*" shall indicate that the ending date is the end of time.

era_name A string representing the name of the era, corresponding to the
%ECeonversion specification.

era_format A string for formatting the year in the era, corresponding to the
%E Yconversion specification.

Define the format of the date in alternative era notation, corresponding to the
%Exconversion specification.

Define the locale’s appropriate alternative time format, corresponding to the
%EXconversion specification.

Define ‘the locale’s appropriate alternative date and time format,
corresponding to the %Ecconversion specification.

Define alternative symbols for digits, corresponding to the %O modified
conversion specification. The operand shall consist of semicolon-separated
strings, each surrounded by double-quotes. The first string shall be the
alternative symbol corresponding with zero, the second string the symbol
corresponding with one, and so on. Up to 100 alternative symbol strings can
be specified. The %Omodifier shall indicate that the string corresponding to
the value specified via the conversion specification shall be used instead of the
value.

LC_TIME C-Language Access

The following constants used to identify items of langinfo data can be used as arguments to the
nl_langinfo() function to access information in the LC_TIME category. These constants are
defined in the <langinfo.h> header.

ABDAY _x

DAY x

ABMON_x

The abbreviated weekday names (for example, Sun), where x is a number
from1to7.

The full weekday names (for example, Sunday), where x is a number from 1 to
7.

The abbreviated month names (for example, Jan), where x is a number from 1
to 12.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4925
4926

4927

4928

4929

4930

4931

4932
4933

4934
4935
4936

4937

4938
4939
4940

4941
4942
4943
4944
4945

4946

4947
4948
4949

4950
4951
4952
4953

4954

4955
4956

4957

4958
4959

4960
4961

4962
4963
4964
4965
4966

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale

MON_x

D_T_FMT
D_FMT

T_FMT
AM_STR
PM_STR
T_FMT_AMPM

ERA

ERA_D_FMT
ERA_T_FMT

ERA_D_T FMT

ALT_DIGITS

Locale Definition

The full month names (for example, January), where x is a number from 1 to
12.

The appropriate date and time representation.
The appropriate date representation.
The appropriate time representation.
The appropriate ante-meridiem affix.
The appropriate post-meridiem affix.

The appropriate time representation in the 12-hour clock format with
AM_STR and PM_STR.

The era description segments, which describe how years are counted and
displayed for each era in a locale. Each era description segment shall have the
format:

direction:offset:start_date: end_dat e: era_nane: era_f or nat

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras. Era description
segments are separated by semicolons.

direction Either a '+ ora’ -’ character. The '+ character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date.. The ' —' character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end-date.

offset The number of the year closest to the start_date in the era.

start_date’ A date in the form yyyy/mm/dd, where yyyy, mm, and dd are the
year, month; and day numbers respectively of the start of the era.
Years priorto AD 1 shall be represented as negative numbers.

end_date The ending dateof the era, in the same format as the start_date,
or one of the two special values " —*" or "+* . The value " —*"
shall indicate that the ending date is the beginning of time. The
value "+*". shall indicate that the ending date is the end of time.

era_name The era, corresponding to the %ECconversion specification.

era_format. The format of the year in the era, corresponding to the %EY
conversion specification.

The era date format.

The locale’s appropriate alternative time format, corresponding to the %EX
conversion specification.

The locale’s appropriate alternative date and time format, corresponding to
the %Ecconversion specification.

The alternative symbols for digits, corresponding to the %O conversion
specification modifier. The value consists of semicolon-separated symbols. The
first is the alternative symbol corresponding to zero, the second is the symbol
corresponding to one, and so on. Up to 100 alternative symbols may be
specified.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 145

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

4967

4968
4969
4970
4971

4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Locale

7.3.5.3

146

LC_TIME Category in the POSIX Locale

The LC_TIME category definition of the POSIX locale follows; the code listing depicts the
localedef input; the table represents the same information with the addition of localedef keywords,
conversion specifiers used by the date utility and the strftime(), wcesftime(), and strptime()
functions, and nl_langinfo() constants.

LC TIME
This is the POSIX locale definition for
t he LC_TIME category.

#

Abbreviated weekday names (%a)

abday "<S><u><n>""<M><o><n>" "< T><u><e>""<W><e><d>")\
"<T><h><u>";"<F><r><i>""<S><a><t>"

#

Full weekday names (%A)

day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";)\
"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>")\
"<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>")\
"<S><a><t><u><r><d><a><y>"

#

Abbreviated month names (%b)

abmon "<J><a><n>";"<F><e>";"<M><a><r>";\
"<A><p><r>"<M><a><y>"; < I><u><n>")\
"<I><u><I>"I<AS><U><g>" " <S><e><p>"i\
"<O><c><t>""<N><o><v>""<D><e><c>!"

#

Full month names (%B)

mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>")\
"<M><a><r><c><h>";"<A><p><r><i><[>")\
"<M><a><y>";"<I><u><n><e>")\
"<I><u><I>y>" " <A><U><gS<U><S><t>")\
'<S><e><p><t><e><m><e><r>";"<O><c><t><0><e><r>")\
"<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#

Equivalent.of AM/PM (%p) "AM""PM"

am_pm "KASKMS"<P><M>"

#

Appropriate date and time representation (%c)

" %a %b %e %H:%M:%S %Y"

d t fmt "<percent-sign><a><space><percent-sign>\

<space><percent-sign><e><space><percent-sign><H>\
<colon><percent-sign><M><colon><percent-sign><S>\
<space><percent-sign><Y>"

#

Appropriate date representation (%x) "%m/%d/%y"
d_fmt "<percent-sign><m><slash><percent-sign><d>\
<slash><percent-sign><y>"

#

Appropriate time representation (%X) "%H:%M:%S"

t fmt "<percent-sign><H><colon><percent-sign><M>\
<colon><percent-sign><S>"

#

Appropriate 12-hour time representation (%r) "%I:%M:%S %p"

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5019
5020
5021
5022

5023
5024

5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Locale Definition
t fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon>\
<percent-sign><S><space><percent_sign><p>"

#

END LC_TIME

localedef langinfo Conversion POSIX
Keyword Constant Specification Locale Value

d_t_fmt D_T_FMT %cC "%a %b %e %H:%M:%S %Y"
d_fmt D_FMT %X "%m/%d/%y"
t_fmt T_FMT %X "%H:%M:%S"
am_pm AM_STR %p "AM"
am_pm PM_STR %p "PM"
t_fmt ampm | T_FMT_AMPM | %r "%I:%M:%S %p"
day DAY_1 %A "Sunday”
day DAY_2 %A "Monday"
day DAY_3 %A "Tuesday"
day DAY 4 %A "Wednesday"
day DAY _5 %A "Thursday"
day DAY _6 %A "Friday"
day DAY_7 %A "Saturday"”
abday ABDAY_1 %a "Sun"
abday ABDAY 2 %a "Mon"
abday ABDAY_ 3 %a "Tue"
abday ABDAY 4 %a "Wed"
abday ABDAY 5 %a "Thu"
abday ABDAY_6 %a "Fri"
abday ABDAY_7 %a "Sat"
mon MON_1 %B "January"
mon MON_2 %B "February"
mon MON. 3 %B "March"
mon MON_4 %B “April"
mon MON_5 %B "May"
mon MON_6 %B "June"
mon MON_7 %B "July"
mon MON_S8 %B "August”
mon MON_9 %B "September"
mon MON_10 %B "October"
mon MON 11 %B "November"
mon MON_12 %B "December"
abmon ABMON 1 %Db "Jan"
abmon ABMON 2 %Db "Feb"
abmon ABMON_3 %Db "Mar"
abmon ABMON 4 %Db "Apr"
abmon ABMON_5 %Db "May"
abmon ABMON_6 %Db "Jun"
abmon ABMON _7 %Db "Jul"
abmon ABMON_8 %Db "Aug"
abmon ABMON_9 %Db "Sep"
abmon ABMON_10 %Db "Oct"
abmon ABMON 11 %Db "Nov"
abmon ABMON_12 %Db "Dec"
era ERA %EC, %Ey, %EY | N/A

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

147

5070
5071

5072
5073
5074
5075

5076

5077

5078
5079
5080

5081
5082
5083

5084

5085
5086

5087

5088
5089
5090

5091
5092
5093

5094

5095
5096
5097

5098
5099
5100
5101
5102
5103
5104
5105
5106

5107

5108
5109

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition

7.3.6

7.3.6.1

148

Locale

localedef langinfo Conversion POSIX
Keyword Constant Specification Locale Value
era_d_fmt ERA_D_FMT %EX N/A
era_t_fmt ERA_T FMT %EX N/A
era_d_t_fmt ERA_D T FMT | %Ec N/A
alt_digits ALT_DIGITS %0 N/A

The entry N/A indicates the value is not available in the POSIX locale.

LC_MESSAGES

The LC_MESSAGES category shall define the format and values used by various utilities for
affirmative and negative responses. This information is available through the nl_langinfo()

function.

The message catalog used by the standard utilities and selected by the catopen () function shall be
determined by the setting of NLSPATH; see Chapter 8 (on page 157). The LC_MESSAGES
category can be specified as part of an NLSPATH substitution field.

The following keywords shall be recognized as part of the locale definition file.

copy

Note:

yesexpr

This is a localedef keyword, unavailable through nl_langinfo().

Specify the name of an existing locale which shall be used as the definition of this
category. If this keyword is specified, no other keyword shall be specified.

The operand consists of an extended regular expression (see Section 9.4 (on page

171)) that describes the acceptable affirmative response to a question expecting an
affirmative or negative response.

noexpr

The operand consists of ‘an extended regular expression that describes the

acceptable negative response to a question expecting an affirmative or negative
response.

LC_MESSAGES Category in the POSIX Locale

The format and values for affirmative and negative responses of the POSIX locale follow; the
code listing depicting the localedef input, the table representing the same information with the
addition of nl.langinfo() constants.

LC_MESSAGES

This is the POSIX locale definition for
t he LC_MESSAGES category.

#

yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"

#

noexpr “"<circumflex><left-square-bracket><n><N><right-square-bracket>"

#

END LC_MESSAGES
localedef Keyword | langinfo Constant | POSIX Locale Value
yesexpr YESEXPR "“yY]"
noexpr NOEXPR "[nN]"

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5110

5111
5112
5113
5114

5115

5116

5117
5118

5119

5120

5121

5122
5123
5124

5125
5126

5127
5128
5129
5130

5131
5132

5133
5134
5135
5136

5137
5138
5139
5140

5141
5142
5143
5144

5145

5146
5147

5148

Locale

7.4

74.1

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Grammar

Locale Definition Grammar

The grammar and lexical conventions in this section shall together describe the syntax for the
locale definition source. The general conventions for this style of grammar are described in the
Shell and Utilities volume of IEEE Std 1003.1-200x, Section 1.10, Grammar Conventions. The
grammar shall take precedence over the text in this chapter.

Locale Lexical Conventions

The lexical conventions for the locale definition grammar are described in this section.

The following tokens shall be processed (in addition to those string constants shown in the

grammar):
LOC_NAME
CHAR
NUMBER
COLLSYMBOL

COLLELEMENT

CHARCLASS

CHARSYMBOL

OCTAL_CHAR

HEX_CHAR

DECIMAL_CHAR

ELLIPSIS
EXTENDED_REG_EXP

EOL

A string of characters representing the name of a locale.
Any single character.
A decimal number, represented by one or more decimal digits.

A symbolic name, enclosed between angle brackets. The string
cannot duplicate any charmap symbol defined in the current
charmap (if any), or a COLLELEMENT symbol.

A symbolic name, enclosed between angle brackets, which cannot
duplicate either any charmap symbol or a COLLSYMBOL symbol.

A string of alphanumeric characters from the portable character set,
the first of which is not a digit, consisting of at least one and at most
{CHARCLASS_NAME MAX]} bytes, and optionally surrounded by
double-quotes.

A symbolic name, enclosed between angle brackets, from the current
charmap (if any).

One or more octal representations of the encoding of each byte in a
single character. The octal representation consists of an escape
character (normally @ backslash) followed by two or more octal
digits.

One or more hexadecimal representations of the encoding of each
byte in'a single character. The hexadecimal representation consists of
an escape character followed by the constant x and two or more
hexadecimal digits.

One or more decimal representations of the encoding of each byte in
a single character. The decimal representation consists of an escape
character followed by a character 'd’ and two or more decimal
digits.

The string "..."

An extended regular expression as defined in the grammar in Section
9.5 (on page 175).

The line termination character <newline>.

149

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5149

5150

5151
5152
5153
5154
5155
5156
5157
5158

5159

5160

5161
5162
5163

5164
5165
5166

5167
5168
5169

5170
5171
5172

5173
5174
5175

5176

5177
5178
5179

5180
5181
5182

5183
5184
5185
5186
5187
5188
5189

5190
5191
5192

5193

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Grammar Locale

7.4.2

150

Locale Grammar

This section presents the grammar for the locale definition.

%token LOC_NAME
%token CHAR
%token NUMBER
%token COLLSYMBOL COLLELEMENT
%token CHARSYMBOL OCTAL_CHAR HEX_CHAR DECIMAL_CHAR
%token ELLIPSIS
%token EXTENDED_REG_EXP
%token EOL
Y%start locale_definition
%%
locale_definition global_statements locale categories
| | ocale_categories
global_statements global_statements symbol_redefine

| s ymbol_redefine

symbol_redefine : ‘'escape_char" CHAR EOL
| * comment_char' CHAR EOL

locale_categories locale_categories locale_.category
| | ocale_category

locale_category : Ic_ctype | Ic_collate | lc_messages
| I 'c_monetary | Ic_numeric | Ic_time

/* The following grammar rules are common to all categories */

char_list : char list char_symbol
| ¢ har_symbol

char_symbol ! CHAR | CHARSYMBOL
| OCTAL_CHAR | HEX_CHAR | DECIMAL_CHAR

elem_list : elem_list char_symbol

e lem_list COLLSYMBOL
e lem_list COLLELEMENT
¢ har_symbol

C OLLSYMBOL
C OLLELEMENT
symb_list : symb_list COLLSYMBOL
| COLLSYMBOL
locale_name : LOC_NAME

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Locale Definition Grammar
5194 | * " LOC_NAME ™
5195 ;
5196 * The following is the LC_CTYPE category grammar */
5197 Ic_ctype : ctype_hdr ctype keywords ctype_tlr
5198 | c type_hdr 'copy’ locale_name EOL ctype_tlr
5199 ;
5200 ctype_hdr : 'LC_CTYPE' EOL
5201 ;
5202 ctype_keywords : ctype_keywords ctype_keyword
5203 | c type_keyword
5204 ;
5205 ctype_keyword : charclass_keyword charclass_list EOL
5206 | ¢ harconv_keyword charconv_list EOL

5207 | * charclass’ charclass_namelist EOL

5208 ;

5209 charclass_namelist : charclass_namelist ’;’ CHARCLASS
5210 | CHARCLASS
5211 ;
5212 charclass_keyword ‘'upper’ | 'lower’ |'alpha’ | 'digit’
5213 | * punct’ | 'xdigit"| 'space’ | 'print’
5214 | ' graph’|’blank’ | ‘cntrl’ | 'alnum’
5215 | CHARCLASS
5216 ;
5217 charclass_list : charclass list’;’ char_symbol
5218 | ¢ harclass_list’;" ELLIPSIS ;' char_symbol
5219 | ¢ har_symbol
5220 ’
5221 charconv_keyword : ‘toupper’
5222 | . tolower
5223)
5224 charconv_list : charconv_list’;’ charconv_entry
5225 | ¢ harconv._entry
5226)
5227 charconv_entry : '(" char_symbol ', char_symbol ’)’
5228 ;
5229 ctype_tlr : 'END’'LC_CTYPE’ EOL
5230 ;
5231 * The following is the LC_COLLATE category grammar */
5232 Ic_collate : collate_hdr collate_keywords collate_tir
5233 | c ollate_hdr 'copy’ locale_name EOL collate_tIr
5234 ;
5235 collate_hdr : 'LC_COLLATE’ EOL
5236 ;
5237 collate_keywords : order_statements
5238 | o pt_statements order_statements
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 151

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5239

5240
5241
5242
5243
5244

5245
5246

5247
5248
5249

5250
5251

5252
5253
5254

5255
5256
5257

5258
5259
5260

5261
5262

5263
5264
5265

5266
5267
5268
5269

5270
5271
5272
5273
5274

5275
5276
5277
5278

5279
5280
5281
5282
5283
5284

152

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition Grammar Locale

opt_statements

collating_symbols

collating_elements

order_statements

order_start

order_opts

order_opt

opt_word

collation_order

collation entry

collation_element

weight_list

weight_symbol

opt_statements collating_symbols
| o pt_statements collating_elements
| c ollating_symbols
| c ollating_elements

‘collating-symbol’ COLLSYMBOL EOL

‘collating-element’ COLLELEMENT
| * from’ ™ elem_list "™ EOL

order_start collation_order order_end

‘order_start’ EOL
| ' order_start’ order_opts EOL

order_opts”’;’ order_opt
| o rder_opt

order_opt ', opt. word
| opt_word

"forward’ | "backward’ | *position’

collation_order.collation_entry
| c ollation_entry

COLLSYMBOL EOL
| c ollation_element weight_list EOL
| c ollation_element EOL

char_symbol
| C OLLELEMENT
| ELLIPSIS
| ') UNDEFINED'

weight_list ;" weight_symbol
| weight_list’;
| weight_symbol

/* empty */

¢ har_symbol
C OLLSYMBOL
T " elem_list
symb_list
E LLIPSIS

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5285
5286

5287
5288

5289
5290

5291

5292
5293
5294

5295
5296

5297
5298
5299

5300
5301
5302

5303
5304

5305

5306
5307
5308

5309
5310

5311
5312
5313

5314
5315
5316
5317
5318

5319
5320
5321
5322

5323
5324
5325

5326
5327
5328
5329

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale Definition Grammar

Locale

order_end

collate_tir

| * IGNORFE’

'order_end’ EOL

'END’ 'LC_COLLATE’ EOL

/* The following is the LC_MESSAGES category grammar */

Ic_messages

messages_hdr

messages_keywords

messages_keyword

messages_tIr

messages_hdr messages_keywords messages_tIr

| messages_hdr 'copy’ locale_name EOL messages_tlr

'LC_MESSAGES’ EOL

messages_keywords messages_keyword

messages_keyword

'yesexpr' " EXTENDED. REG._EXP ™ EOL
noexpr’ <" EXTENDED_REG_EXP ™ EOL

'END’ 'LC_MESSAGES’ EOL

/* The following is the LC_MONETARY category grammar */

Ic_monetary

monetary_hdr

monetary_keywords

monetary_keyword

mon_keyword_string

mon_string

mon_keyword_char

monetary_hdr monetary_keywords monetary _tir

monetary_hdr’copy’ locale_name EOL monetary_tlr

'LC_MONETARY’ EOL

monetary keywords monetary keyword

monetary_keyword

mon_keyword_ string mon_string EOL

mon_keyword_char NUMBER EOL
mon_keyword_char ’-1’ EOL
mon_keyword_grouping mon_group_list EOL

'int_curr_symbol’ | 'currency_symbol’
mon_decimal_point’ | 'mon_thousands_sep’
positive_sign’ | 'negative_sign’

char_list

mn

'int_frac_digits’ | 'frac_digits’
p_cs_precedes’ | 'p_sep_by_space’
n_cs_precedes’ | 'n_sep_by_space’
p_sign_posn’ | 'n_sign_posn’

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

153

5330
5331
5332
5333

5334
5335

5336
5337
5338

5339
5340

5341

5342
5343
5344

5345
5346

5347
5348
5349

5350
5351
5352

5353
5354
5355

5356
5357
5358

5359
5360

5361
5362
5363

5364
5365

5366

5367
5368
5369

5370
5371

5372
5373

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Definition Grammar Locale

154

| ' int_p_cs_precedes’ |'int_p_sep_by space’

| ' int_n_cs_precedes’ | 'int_n_sep_by space’

| * int_p_sign_posn’|’int_n_sign_posn’
mon_keyword_grouping : ‘'mon_grouping’

mon_group_list : NUMBER
| mon_group_list’; NUMBER

monetary_tlr : 'END’ 'LC_MONETARY’ EOL
/* The following is the LC_NUMERIC category grammar */

Ic_numeric : numeric_hdr numeric_keywords numeric_tlr
| n umeric_hdr 'copy’ locale_name EOL numeric_tlr

numeric_hdr : 'LC_NUMERIC’ EOL

numeric_keywords : numeric_keywords numeric_keyword
| n umeric_keyword

numeric_keyword : num_keyword_string num_string EOL
| n um_keyword_grouping hum_group_list EOL

num_keyword_string 'decimal._point’
| 7 thousands_sep’

num_string char_list

I E) nm
num_keyword. grouping: 'grouping’

num_group_list : NUMBER
| 'n um_group_list ’;’ NUMBER

numeric_tlr : 'END’ 'LC_NUMERIC’ EOL
/* The following is the LC_TIME category grammar */

Ic_time : time_hdr time_keywords time_tlr
| t ime_hdr 'copy’ locale_name EOL time_tlr

time_hdr : 'LC_TIME’ EOL
time_keywords : time_keywords time_keyword
| t ime_keyword

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5374

5375
5376
5377
5378

5379
5380

5381
5382
5383

5384
5385
5386

5387
5388
5389

5390
5391

5392
5393

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Locale Locale Definition Grammar

time_keyword : time_keyword_name time_list EOL
| t ime_keyword_fmt time_string EOL
| t ime_keyword_opt time_list EOL

time_keyword_name ‘abday’ | 'day’ | 'abmon’ | 'mon’

time_keyword_fmt : 'd_t_fmt' | 'd_fmt’ | 't_fmt’
| * am_pm’|’'t_fmt_ampm’

time_keyword_opt : ‘era’ | 'era_d_fmt’ | 'era_t_fmt’
| * era_d_t_fmt'| alt_digits’

time_list : time_list ’;" time_string
| t ime_string

time_string "™ char_list™

time_tir : 'END’ 'LC_TIME* EOL

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

155

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Locale

OB

156 Base Definitions, Issue 7Z- Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5394

5395

5396

5397
5398
5399
5400
5401
5402

5403
5404
5405

5406

5407
5408
5409
5410
5411

5412
5413
5414
5415
5416
5417
5418
5419

5420
5421

5422
5423
5424

5425
5426
5427
5428

5429
5430

8.1

X8I

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 8

Environment Variables

Environment Variable Definition

Environment variables defined in this chapter affect the operation of multiple utilities, functions,
and applications. There are other environment variables that are of interest only to specific
utilities. Environment variables that apply to a single utility only are defined as part of the
utility description. See the ENVIRONMENT VARIABLES section of the utility descriptions in
the Shell and Utilities volume of IEEE Std 1003.1-200x for information on environment variable
usage.

The value of an environment variable is a string of characters. For a C-language program, an
array of strings called the environment shall be made available when a process begins. The array
is pointed to by the external variable environ, which is defined as:

extern char **environ;

These strings have the form name=value; names shall not contain the character '=" . For values to
be portable across systems conforming to IEEE Std 1003.1-200x, the value shall be composed of
characters from the portable character set (except NUL and as indicated below). There is no
meaning associated with the order of strings in the environment. If more than one string in an
environment of a process has the same narme, the consequences are undefined.

Environment variable names used by the utilities in the Shell and Utilities volume of
IEEE Std 1003.1-200x ‘consist solely of uppercase letters, digits, and the '_’ (underscore) from
the characters defined in Table 6-1 and do not begin with a digit. Other characters may be
permitted by an implementation; applications shall tolerate the presence of such names.
Uppercase and lowercase letters shall retain' their unique identities and shall not be folded
together. The name space of environment variable names containing lowercase letters is
reserved for applications. Applications can define any environment variables with names from
this name space without modifying the behavior of the standard utilities.

Note: Other applications may have difficulty dealing with environment variable names that start with
a digit. For this reason, use of such names is not recommended anywhere.

The values that the environment variables may be assigned are not restricted except that they are
considered to end with a null byte and the total space used to store the environment and the
arguments to the process is limited to {ARG_MAX]} bytes.

Other name=value pairs may be placed in the environment by, for example, calling any of the
setenv(), unsetenv(), or putenv() functions, manipulating the environ variable, or by using envp
arguments when creating a process; see exec in the System Interfaces volume of
IEEE Std 1003.1-200x.

It is unwise to conflict with certain variables that are frequently exported by widely used
command interpreters and applications:

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 157

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Environment Variable Definition

Environment Variables

5431 ARFLAGS IFS MAILPATH PS1
5432 CcC LANG MAILRC pS2
5433 CDPATH LC_ALL MAKEFLAGS PS3
5434 CFLAGS LC_COLLATE MAKESHELL PS4
5435 CHARSET LC_CTYPE MANPATH PWD
5436 COLUMNS LC_MESSAGES MBOX RANDOM
5437 DATEMSK LC_MONETARY MORE SECONDS
5438 DEAD LC_NUMERIC MSGVERB SHELL
5439 EDITOR LC_TIME NLSPATH TERM
5440 ENV LDFLAGS NPROC TERMCAP
5441 EXINIT LEX OLDPWD TERMINFO
5442 FC LFLAGS OPTARG TMPDIR
5443 FCEDIT LINENO OPTERR TZ
5444 FFLAGS LINES OPTIND USER
5445 GET LISTER PAGER VISUAL
5446 GFLAGS LOGNAME PATH YACC
5447 HISTFILE LPDEST PPID YFLAGS
5448 HISTORY MAIL PRINTER
5449 HISTSIZE MAILCHECK PROCLANG
5450 HOME MAILER PROJECTDIR
5451 If the variables in the following two sections are present in the environment during the
5452 execution of an application or-utility, they shall be given the meaning described below. Some are
5453 placed into the environment by the implementation at the time the user logs in; all can be added
5454 or changed by the user or any ancestor of the current process. The implementation adds or
5455 changes environment variables named in IEEE Std 1003.1-200x only as specified in
5456 IEEE Std 1003.1-200x. If they are defined in the application’s environment, the utilities in the
5457 Shell and Utilities volume of IEEE Std 1003.1-200x and the functions in the System Interfaces
5458 volume of IEEE Std1003.1-200x assume . they have the specified meaning. Conforming
5459 applications shall not set these environment variables to have meanings other than as described.
5460 See getenv() and the Shell and Utilities volume of IEEE Std1003.1-200x, Section 2.12, Shell
5461 Execution Environment for methods of accessing these variables.
5462 8.2 Internationalization Variables
5463 This section describes \ environment variables that are relevant to the operation of
5464 internationalized interfaces described in IEEE Std 1003.1-200x.
5465 Users may use the following environment variables to announce specific localization
5466 requirements to applications. Applications can retrieve this information using the setlocale()
5467 function to initialize the correct behavior of the internationalized interfaces. The descriptions of
5468 the internationalization environment variables describe the resulting behavior only when the
5469 application locale is initialized in this way. The use of the internationalization variables by
5470 utilities described in the Shell and Utilities volume of IEEE Std 1003.1-200x is described in the
5471 ENVIRONMENT VARIABLES section for those utilities in addition to the global effects
5472 described in this section.
5473 LANG This variable shall determine the locale category for native language, local
5474 customs, and coded character set in the absence of the LC_ALL and other LC_*
5475 (LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
5476 LC_TIME) environment variables. This can be used by applications to
5477 determine the language to use for error messages and instructions, collating
5478 sequences, date formats, and so on.

158 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5479
5480
5481
5482
5483

5484
5485
5486
5487
5488

5489
5490
5491
5492
5493
5494
5495

5496
5497
5498
5499
5500
5501
5502
5503

5504
5505
5506

5507
5508
5509
5510
5511

5512
5513
5514

5515
5516
5517
5518

5519

5520

5521
5522
5523

5524
5525

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Environment Variables

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

NLSPATH

Internationalization Variables

This variable shall determine the values for all locale categories. The value of
the LC_ALL environment variable has precedence over any of the other
environment variables starting with LC_ (LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC, LC_TIME) and the LANG
environment variable.

This variable shall determine the locale category for character collation. It
determines collation information for regular expressions and sorting,
including equivalence classes and multi-character collating elements, in
various utilities and the strcoll() and strxfrm () functions. Additional semantics
of this variable, if any, are implementation-defined.

This variable shall determine the locale category for character handling
functions, such as folower(), toupper(), and isalpha(). This environment
variable determines the interpretation of sequences of bytes of text data as
characters (for example, single as opposed to multi-byte characters), the
classification of characters (for example, alpha, digit, graph), and the behavior
of character classes. Additional semantics of this variable, if any, are
implementation-defined.

This variable shall determine the locale category for processing affirmative
and negative responses and the language and cultural conventions in which
messages should be written. It also affects the behavior of the catopen()
function in determining the message catalog. 'Additional semantics of this
variable, if any, are implementation-defined. The language and cultural
conventions ' of “diagnostic and informative messages whose format is
unspecified by IEEE Std 1003.1-200x should be affected by the setting of
LC_MESSAGES.

This variable shall determine the locale category for monetary-related numeric
formatting information. “Additional semantics of this variable, if any, are
implementation-defined.

This variable shall determine the locale category for numeric formatting (for
example, thousands separator and radix character) information in various
utilities as well as the formatted I/O operations in printf() and scanf() and the
string conversion functions in strfod(). Additional semantics of this variable,
if any, are implementation-defined.

This variable shall determine the locale category for date and time formatting
information. It affects the behavior of the time functions in strftime().
Additional semantics of this variable, if any, are implementation-defined.

This variable shall contain a sequence of templates that the catopen () function
uses when attempting to locate message catalogs. Each template consists of an
optional prefix, one or more conversion specifications, a filename, and an
optional suffix.

For example:
NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs in the directory
/system/nlslib, where the catalog name should be constructed from the name
parameter passed to catopen () (%N, with the suffix .cat.

Conversion specifications consist of a '%’ symbol, followed by a single-letter
keyword. The following keywords are currently defined:

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 159

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5526

5527

5528

5529

5530

5531

5532
5533
5534

5535
5536

5537

5538
5539
5540

5541
5542
5543
5544

5545
5546
5547
5548
5549
5550

5551
5552

5553
5554

5555
5556
5557
5558

5559
5560

5561
5562

5563
5564

5565
5566
5567

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Internationalization Variables Environment Variables

160

%N The value of the name parameter passed to catopen ().
%L The value of the LC_MESSAGES category.

%l The language element from the LC_MESSAGES category.
%t The territory element from the LC_MESSAGES category.
%c The codeset element from the LC_MESSAGES category.
%% A single '%’ character.

An empty string is substituted if the specified value is not currently defined.
The separators underscore (_') and period (".") are not included in the %t
and %cconversion specifications.

Templates defined in NLSPATH are separated by colons ("). A leading or

two adjacent colons "::" is equivalent to specifying %N For example:
NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen () that it should look for the requested message catalog in
name, name.cat, and /nlslib/category/name.cat, where category is the value of the
LC_MESSAGES category of the current locale.

Users should not set the NLSPATH variable unless they have a specific reason
to override the default system path. Setting NLSPATH to override the default
system path" produces undefined results in the standard utilities and in
applications with appropriate privileges.

The environment variables LANG, LC_ALL, 'LC_COLLATE, LC.CTYPE, LC_MESSAGES,
LC_MONETARY, LC_.NUMERIC, LC_TIME, and. NLSPATH provide ‘for the support of
internationalized applications. The standard utilities shall make use of these environment
variables as described in this section and the individual ENVIRONMENT VARIABLES sections
for the utilities. If these variables specify locale categories that are not based upon the same
underlying codeset, the results are unspecified.

The values of locale categories shall be determined by a precedence order; the first condition met
below determines the value:

1. If the LC_ALL environment variable is defined and is not null, the value of LC_ALL shall
be used.

2. If the LC_* ‘environment variable (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME) is defined and is not null, the value of the
environment variable shall be used to initialize the category that corresponds to the
environment variable.

3. If the LANG environment variable is defined and is not null, the value of the LANG
environment variable shall be used.

4. If the LANG environment variable is not set or is set to the empty string, the
implementation-defined default locale shall be used.

If the locale value is "C" or "POSIX" , the POSIX locale shall be used and the standard utilities
behave in accordance with the rules in Section 7.2 for the associated category.

If the locale value begins with a slash, it shall be interpreted as the pathname of a file that was
created in the output format used by the localedef utility; see OUTPUT FILES under localedef.
Referencing such a pathname shall result in that locale being used for the indicated category.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5568

5569

5570
5571

5572
5573
5574
5575

5576

5577
5578

5579
5580

5581
5582

5583

5584

5585

5586

5587

5588

5589
5590
5591
5592
5593
5594
5595
5596

5597
5598
5599

5600

5601
5602

5603
5604
5605
5606

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Environment Variables Internationalization Variables

X8I

8.3

X8I

If the locale value has the form:
| anguage[_territory][.codeset]

it refers to an implementation-provided locale, where settings of language, territory, and codeset
are implementation-defined.

LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME are
defined to accept an additional field @modifier, which allows the user to select a specific instance
of localization data within a single category (for example, for selecting the dictionary as opposed
to the character ordering of data). The syntax for these environment variables is thus defined as:

[l anguage[_territory][.codeset] [@modifier]]

For example, if a user wanted to interact with the system in French, but required to sort German
text files, LANG and LC_COLLATE could be defined as:

LANG=Fr_FR
LC_COLLATE=De_DE

This could be extended to select dictionary collation (say) by use of the @modifier field; for
example:

LC_COLLATE=De_DE@dict

An implementation may support other formats.
If the locale value is not recognized by the implementation, the behavior is unspecified.
At runtime, these values are bound to the locale of a process by calling the setlocale() function.

Additional criteria for determining a valid locale name are implementation-defined.

Other Environment Variables

COLUMNS This variable shall represent a decimal integer >0 used to indicate the user’s
preferred width in column positions for the terminal screen or window; see
Section 3.103 (on page 45). If this variable is unset or null, the implementation
determines the number of columns, appropriate for the terminal or window,
in an unspecified manner. When COLUMNS is set, any terminal-width
information implied by TERM 1is overridden. Users and conforming
applications should not set COLUMNS unless they wish to override the
system selection and produce output unrelated to the terminal characteristics.

Users should not need to set this variable in the environment unless there is a
specific reason to override the implementation’s default behavior, such as to
display data in an area arbitrarily smaller than the terminal or window.

DATEMSK Indicates the pathname of the template file used by getdate().

HOME The system shall initialize this variable at the time of login to be a pathname of
the user’s home directory. See <pwd.h>.

LINES This variable shall represent a decimal integer >0 used to indicate the user’s
preferred number of lines on a page or the vertical screen or window size in
lines. A line in this case is a vertical measure large enough to hold the tallest
character in the character set being displayed. If this variable is unset or null,

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 161

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5607
5608
5609
5610
5611
5612

5613
5614
5615

5616
5617
5618
5619

5620
5621

5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637

5638
5639
5640

5641
5642
5643
5644
5645

5646
5647

5648
5649
5650
5651

5652
5653
5654

Other Environment Variables

X8I

162

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

LOGNAME

MSGVERB

PATH

PWD

SHELL

TMPDIR

TERM

TZ

Environment Variables

the implementation determines the number of lines, appropriate for the
terminal or window (size, terminal baud rate, and so on), in an unspecified
manner. When LINES is set, any terminal-height information implied by
TERM is overridden. Users and conforming applications should not set LINES
unless they wish to override the system selection and produce output
unrelated to the terminal characteristics.

Users should not need to set this variable in the environment unless there is a
specific reason to override the implementation’s default behavior, such as to
display data in an area arbitrarily smaller than the terminal or window.

The system shall initialize this variable at the time of login to be the user’s
login name. See <pwd.h>. For a value of LOGNAME to be portable across
implementations of IEEE Std 1003.1-200x, the value should be composed of
characters from the portable filename character set.

Describes which message components shall be used in writing messages by
fmtmsg ().

This variable shall represent the sequence of path prefixes that certain
functions and utilities apply in searching for an executable file known only by
a filename. The prefixes shall be separated by a colon ('). When a non-
zero-length prefix is applied to this filename, a slash shall be inserted between
the prefix and the filename. A zero-length prefix is a legacy feature that
indicates the current working directory. It appears as two adjacent colons
("::"), as an initial colon preceding the rest of the list, or as a trailing colon
following the rest of the list. A strictly conforming application shall use an
actual pathname (such as .) to represent the current working directory in
PATH. The list shall be searched from beginning to end, applying the filename
to each prefix, until an executable file with the specified name and appropriate
execution permissions is found. If the pathname being sought contains a slash,
the search through the path prefixes shall not be performed. If the pathname
begins with a slash, the specified path is resolved (see Section 4.12 (on page
97)). If PATH is unset or is set to null, the path search is implementation-
defined.

This variable shall represent an absolute pathname of the current working
directory. It shall not contain any filename components of dot or dot-dot. The
value is set by the cd utility.

This variable shall represent a pathname of the user’s preferred command
language interpreter. If this interpreter does not conform to the Shell
Command Language in the Shell and Utilities volume of IEEE Std 1003.1-200x,
Chapter 2, Shell Command Language, utilities may behave differently from
those described in IEEE Std 1003.1-200x.

This variable shall represent a pathname of a directory made available for
programs that need a place to create temporary files.

This variable shall represent the terminal type for which output is to be
prepared. This information is used by utilities and application programs
wishing to exploit special capabilities specific to a terminal. The format and
allowable values of this environment variable are unspecified.

This variable shall represent timezone information. The contents of the
environment variable named TZ shall be used by the ctime(), ctime_r(),
localtime(), localtime_r() strftime(), mktime(), functions, and by various

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5655
5656

5657

5658

5659

5660
5661
5662

5663
5664

5665

5666

5667
5668
5669
5670
5671

5672
5673

5674
5675
5676
5677
5678
5679
5680
5681

5682
5683
5684

5685
5686
5687
5688

5689
5690

5691

5692
5693
5694
5695
5696
5697
5698
5699

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Environment Variables

Other Environment Variables

utilities, to override the default timezone. The value of TZ has one of the two
forms (spaces inserted for clarity):

:characters
or:
std of fset dst offset, rule

If TZ is of the first format (that is, if the first character is a colon), the
characters following the colon are handled in an implementation-defined
manner.

The expanded format (for all TZs whose value does not have a colon as the
first character) is as follows:

stdoffset[dst[offset][,start[/time],end[/tine]]]
Where:

std and dst Indicate no less than three, nor more than {TZNAME_MAX]},
bytes that are the designation for the standard (std) or the
alternative (dst—such as Daylight Savings Time) timezone. Only
std is required; if dst is-missing, then the alternative time does
not apply in this locale.

Each of these fields may occur in either of two formats quoted or
unquoted:

—In the quoted form, the first character shall be the less-than
(<’) character and the last character shall be the greater-
than (>) character. All characters between these quoting
characters shall be' alphanumeric characters from the
portable character set in the current locale, the plus-sign
('+") character, or the minus-sign (' =") character. The std
and dst fields in this case shall not include the quoting
characters.

— In the unquoted form, all characters in these fields shall be
alphabetic characters from the portable character set in the
current locale.

The interpretation of these fields is unspecified if either field is
less than three bytes (except for the case when dst is missing),
more than {TZNAME_MAX]} bytes, or if they contain characters
other than those specified.

offset Indicates the value added to the local time to arrive at
Coordinated Universal Time. The offset has the form:
hh[: m{: ss]]

The minutes (mm) and seconds (ss) are optional. The hour (k)
shall be required and may be a single digit. The offset following
std shall be required. If no offset follows dst, the alternative time
is assumed to be one hour ahead of standard time. One or more
digits may be used; the value is always interpreted as a decimal
number. The hour shall be between zero and 24, and the minutes
(and seconds)—if present—between zero and 59. The result of
using values outside of this range is unspecified. If preceded by

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 163

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Other Environment Variables Environment Variables
5700 a ' -, the timezone shall be east of the Prime Meridian;
5701 otherwise, it shall be west (which may be indicated by an
5702 optional preceding '+).
5703 rule Indicates when to change to and back from the alternative time.
5704 The rule has the form:
5705 date[/tine],date[/tine]
5706 where the first date describes when the change from standard to
5707 alternative time occurs and the second date describes when the
5708 change back happens. Each time field describes when, in current
5709 local time, the change to the other time is made.
5710 The format of date is one of the following:
5711 Jn The Julian day 7n (1 < n < 365). Leap days shall not be
5712 counted. That is, in all years—including leap years—
5713 February 28 is day 59 and March 1 is day 60. It is
5714 impossible to refer explicitly to the occasional February
5715 29.
5716 n The zero-based Julian day (0 < n < 365). Leap days shall
5717 be counted, and it is possible to refer to February 29.
5718 Mm.n.d The d’th day (0 < d <6) of week n of month m of the
5719 year (1 <n<5,1<m <12, where week 5 means “the last
5720 d day in month m” which may occur in either the fourth
5721 or the fifth week). Week 1 is the first week in which the
5722 d’th day occurs. Day zero is Sunday.
5723 The time has the same format as offset except that no leading sign
5724 (= or'+) is allowed. The default, if time is not given, shall be
5725 02:00:00.

164 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5726

5727

5728
5729

5730
5731
5732
5733
5734

5735
5736
5737
5738
5739
5740

5741

5742

5743
5744
5745

5746
5747
5748
5749

5750
5751
5752
5753
5754
5755

5756
5757
5758
5759
5760
5761
5762

5763
5764
5765
5766

9.1

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 9

Regular Expressions

Regular Expressions (REs) provide a mechanism to select specific strings from a set of character
strings.

Regular expressions are a context-independent syntax that can represent a wide variety of
character sets and character set orderings, where these character sets are interpreted according
to the current locale. While many regular expressions can be interpreted differently depending
on the current locale, many features, such as character class expressions, provide for contextual
invariance across locales.

The Basic Regular Expression (BRE) notation and construction rules in Section 9.3 shall apply to
most utilities supporting regular expressions. Some utilities, instead, support the Extended
Regular Expressions (ERE) described in Section 9.4 (on page 171); any exceptions for both cases
are noted in the descriptions of the specific utilities using regular expressions. Both BREs and
EREs are supported by the Regular Expression Matching interface in the System Interfaces
volume of IEEE Std 1003.1-200x under regcomp (), regexec(), and related functions.

Regular Expression Definitions
For the purposes of this section, the following definitions shall apply:

entire regular expression
The concatenated set of one or more BREs or EREs that make up the pattern specified for
string selection.

matched
A sequence of zero or more characters shall be said to be matched by a BRE or ERE when
the characters in the sequence correspond to a-sequence of characters defined by the
pattern.

Matching shall be based on the bit pattern used for encoding the character, not on the
graphic representation of the character. This means that if a character set contains two or
more encodings for a graphic symbol, or if the strings searched contain text encoded in
more than one codeset, no attempt is made to search for any other representation of the
encoded symbol. If that is required, the user can specify equivalence classes containing all
variations of the desired graphic symbol.

The search for a matching sequence starts at the beginning of a string and stops when the
first sequence matching the expression is found, where “first” is defined to mean “begins
earliest in the string”. If the pattern permits a variable number of matching characters and
thus there is more than one such sequence starting at that point, the longest such sequence
is matched. For example, the BRE "bb*' matches the second to fourth characters of the
string "abbbc" , and the ERE "(wee|lweek)(knights|night)" matches all ten
characters of the string "weeknights"

Consistent with the whole match being the longest of the leftmost matches, each subpattern,
from left to right, shall match the longest possible string. For this purpose, a null string shall
be considered to be longer than no match at all. For example, matching the BRE
"\(K). " against "abcdef" , the subexpression "(\1)" is "abcdef' , and matching

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 165

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expression Definitions Regular Expressions
5767 the BRE "\(a*\)*" against "bc" , the subexpression "(\1)" is the null string.
5768 When a multi-character collating element in a bracket expression (see Section 9.3.5 (on page
5769 168)) is involved, the longest sequence shall be measured in characters consumed from the
5770 string to be matched; that is, the collating element counts not as one element, but as the
5771 number of characters it matches.
5772 BRE (ERE) matching a single character
5773 A BRE or ERE that shall match either a single character or a single collating element.
5774 Only a BRE or ERE of this type that includes a bracket expression (see Section 9.3.5 (on page
5775 168)) can match a collating element.
5776 BRE (ERE) matching multiple characters
5777 A BRE or ERE that shall match a concatenation of single characters or collating elements.
5778 Such a BRE or ERE is made up from a BRE (ERE) matching a single character and BRE
5779 (ERE) special characters.
5780 invalid
5781 This section uses the term “invalid” for certain constructs or conditions. Invalid REs shall
5782 cause the utility or function using the RE to generate an error condition. When invalid is not
5783 used, violations of the specified syntax or semantics for REs produce undefined results: this
5784 may entail an error, enabling an extended syntax for that RE, or using the construct in error
5785 as literal characters to be matched. For example, the BRE construct "\{1,2,3\}" does not
5786 comply with the grammar. A conforming application cannot rely on it producing an error
5787 nor matching the literal characters "\{1,2,3\}"
5788 9.2 Regular Expression General Requirements
5789 The requirements in this section shall apply to both basic and extended regular expressions.
5790 The use of regular expressions is generally associated with text processing. REs (BREs and EREs)
5791 operate on text strings; that is, zero or more characters followed by an end-of-string delimiter
5792 (typically NUL). Some utilities employing regular expressions limit the processing to lines; that
5793 is, zero or more characters followed by a <newline>. In the regular expression processing
5794 described in IEEE Std 1003.1-200x, the <newline> is regarded as an ordinary character and both
5795 a period and a non-matching list. can match one. The Shell and Ultilities volume of
5796 IEEE Std 1003.1-200x ‘specifies within the individual descriptions of those standard utilities
5797 employing regular expressions whether they permit matching of <newline>s; if not stated
5798 otherwise, the use of literal <newline>s or any escape sequence equivalent produces undefined
5799 results. Those utilities (like grep) that do not allow <newline>s to match are responsible for
5800 eliminating any <newline> from strings before matching against the RE. The regcomp () function
5801 in the System Interfaces volume of IEEE Std 1003.1-200x, however, can provide support for such
5802 processing without violating the rules of this section.
5803 The interfaces specified in IEEE Std 1003.1-200x do not permit the inclusion of a NUL character
5804 in an RE or in the string to be matched. If during the operation of a standard utility a NUL is
5805 included in the text designated to be matched, that NUL may designate the end of the text string
5806 for the purposes of matching.
5807 When a standard utility or function that uses regular expressions specifies that pattern matching
5808 shall be performed without regard to the case (uppercase or lowercase) of either data or
5809 patterns, then when each character in the string is matched against the pattern, not only the
5810 character, but also its case counterpart (if any), shall be matched. This definition of case-
5811 insensitive processing is intended to allow matching of multi-character collating elements as
5812 well as characters, as each character in the string is matched using both its cases. For example, in

166 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5813
5814
5815

5816
5817

5818

5819

5820
5821
5822

5823

5824
5825

5826
5827

5828

5829

5830

5831

5832
5833
5834
5835

5836
5837
5838
5839

5840

5841

5842

5843
5844

5845

5846

5847

5848

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expressions Regular Expression General Requirements

a locale where "Ch" is a multi-character collating element and where a matching list expression
matches such elements, the RE "[[.Ch.]]" when matched against the string "char" is in
reality matched against "ch" , "Ch" , "cH" , and "CH".

The implementation shall support any regular expression that does not exceed 256 bytes in
length.

9.3 Basic Regular Expressions
9.3.1 BREs Matching a Single Character or Collating Element

A BRE ordinary character, a special character preceded by a backslash, or a period shall match a

single character. A bracket expression shall match a single character or a single collating

element.
9.3.2 BRE Ordinary Characters

An ordinary character is a BRE that matches itself: any character in the supported character set,

except for the BRE special characters listed in Section 9.3:3 (on page 167).

The interpretation of an ordinary character preceded by a backslash ('\') is undefined, except

for:

e The characters”)’ ,'(,'{ ,and’}
 The digits 1 to 9 inclusive (see Section 9.3.6 (on page 170))
* A characterinside a bracket expression

9.3.3 BRE Special Characters

A BRE special character has special properties in certain contexts. Outside those contexts, or

when preceded by a backslash, such a character is a BRE that matches the special character itself.

The BRE special characters and the contexts in which they have their special meaning are as

follows:

JN The period, left-bracket, and backslash shall be special except when used in a bracket
expression (see Section 9.3.5 (on page 168)). An expression containing a’[" that is not
preceded by a backslash and is not part of a bracket expression produces undefined
results.

* The asterisk shall be special except when used:

* In a bracket expression
* As the first character of an entire BRE (after an initial ™ , if any)
* As the first character of a subexpression (after an initial ™ , if any); see Section
9.3.6
- The circumflex shall be special when used as:
» An anchor (see Section 9.3.8 (on page 171))
« The first character of a bracket expression (see Section 9.3.5 (on page 168))

$ The dollar sign shall be special when used as an anchor.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 167

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5849

5850
5851

5852

5853
5854
5855

5856

5857
5858
5859
5860
5861
5862
5863
5864
5865

5866
5867
5868
5869
5870

5871
5872
5873
5874
5875

5876
5877
5878
5879
5880
5881
5882

5883
5884
5885
5886
5887
5888

5889

5890
5891
5892
5893

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Basic Regular Expressions Regular Expressions
9.3.4 Periods in BREs

9.3.5

168

A period (.), when used outside a bracket expression, is a BRE that shall match any character
in the supported character set except NUL.

RE Bracket Expression

A bracket expression (an expression enclosed in square brackets, "[*) is an RE that shall
match a single collating element contained in the non-empty set of collating elements
represented by the bracket expression.

The following rules and definitions apply to bracket expressions:

1. A bracket expression is either a matching list expression or a non-matching list
expression. It consists of one or more expressions: collating elements, collating symbols,
equivalence classes, character classes, or range expressions. The right-bracket (']) shall
lose its special meaning and represent itself in a bracket expression if it occurs first in the
list (after an initial circumflex ("), if any). Otherwise, it shall terminate the bracket
expression, unless it appears in a collating symbol (such as "[.].]") or is the ending
right-bracket for a collating symbol, equivalence class, or character class. The special
characters ' , ™ , [, and '\ (period, asterisk, left-bracket, and backslash,
respectively) shall lose their special meaning within a bracket expression.

The character sequences "[." , "[=" , and "[" (left-bracket followed by a period,
equals-sign, or colon) shall be special inside a bracket expression and are used to delimit
collating symbols, equivalence class expressions, and character class expressions. These
symbols shall be followed by a valid expression and the matching terminating sequence
“I" ,"=]" ,or™]" ,asdescribed in the following items.

2. A matching list expression specifies a list that shall match any single-character collating
element in any of the expressions represented in the list. The first character in the list shall
not be the circumflex; for example, "[abc]" is an RE that matches any of the characters
‘a~,’b’ ,or’c . Itis unspecified whether a matching list expression matches a multi-
character collating element that is matched by one of the expressions.

3. A non-matching list expression begins with a circumflex (™), and specifies a list that
shall match any single-character collating element except for the expressions represented
in the list after the leading circumflex. For.example, "["abc]" is an RE that matches any
character ‘except the characters 'a’ , 'b’ , or 'c’ . It is unspecified whether a non-
matching list expression matches a multi-character collating element that is not matched
by any of the expressions. The circumflex shall have this special meaning only when it
occurs first in the list, immediately following the left-bracket.

4. A collating symbol is a collating element enclosed within bracket-period ("[." and
"]") delimiters. Collating elements are defined as described in Section 7.3.2.4 (on page
132). Conforming applications shall represent multi-character collating elements as
collating symbols when it is necessary to distinguish them from a list of the individual
characters that make up the multi-character collating element. For example, if the string
"ch" is a collating element defined using the line:

collating-element <ch-digraph> from "<c><h>"

in the locale definition, the expression “[[.ch.]]" shall be treated as an RE containing
the collating symbol 'ch’ , while "[ch]" shall be treated as an RE matching 'c’ or i’
Collating symbols are recognized only inside bracket expressions. If the string is not a
collating element in the current locale, the expression is invalid.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expressions Basic Regular Expressions
5894 5. An equivalence class expression shall represent the set of collating elements belonging to
5895 an equivalence class, as described in Section 7.3.2.4 (on page 132). Only primary
5896 equivalence classes shall be recognized. The class shall be expressed by enclosing any one
5897 of the collating elements in the equivalence class within bracket-equal ("[=" and "=]")
5898 delimiters. For example, if 'a’ ,’a’ ,and ™ belong to the same equivalence class, then
5899 "[[=a=]b]" , "[[=a=]b]" , and "[[="=]b]" are each equivalent to "[ad"b]" . If the
5900 collating element does not belong to an equivalence class, the equivalence class
5901 expression shall be treated as a collating symbol.
5902 6. A character class expression shall represent the union of two sets:
5903 a. The set of single-character collating elements whose characters belong to the
5904 character class, as defined in the LC_CTYPE category in the current locale.
5905 b. An unspecified set of multi-character collating elements.
5906 All character classes specified in the current locale shall be recognized. A character class
5907 expression is expressed as a character class name enclosed within bracket-colon (“[:"
5908 and ":]") delimiters.
5909 The following character class expressions shall be supported in all locales:
5910 [;alnum:] [entrl;] [:lower] [:space:]
5911 [:alpha:] [:digit] [:print] [:upper:]
5912 [blank:] [:graph:] [:punct] [:xdigit]
5913 In addition, character class expressions of the form:
5914 [} nane:]
5915 are recognized in those locales where the name keyword has been given a charclass
5916 definition in the LC_CTYPE category.
5917 7. In the POSIX locale, a range expression represents the set of collating elements that fall
5918 between two elements in the collation sequence, inclusive. In other locales, a range
5919 expression has unspecified behavior: strictly conforming applications shall not rely on
5920 whether the range expression is valid, or-on the set of collating elements matched. A
5921 range expression shall be expressed as the starting point and the ending point separated
5922 by ahyphen (' -).
5923 In the following; all examples assume the POSIX locale.
5924 The starting range point and the ending range point shall be a collating element or
5925 collating symbol.)An equivalence class expression used as a starting or ending point of a
5926 range expression produces unspecified results. An equivalence class can be used portably
5927 within a bracket expression, but only outside the range. If the represented set of collating
5928 elements is empty, it is unspecified whether the expression matches nothing, or is treated
5929 as invalid.
5930 The interpretation of range expressions where the ending range point is also the starting
5931 range point of a subsequent range expression (for example, "[a —m-0]") is undefined.
5932 The hyphen character shall be treated as itself if it occurs first (after an initial ™ , if any)
5933 or last in the list, or as an ending range point in a range expression. As examples, the
5934 expressions "[—ac]" and "[ac -]" are equivalent and match any of the characters 'a’ ,
5935 ' ,or’'— ;" -ac]" and "[fac -]" are equivalent and match any characters except
5936 ‘a’ ,’'c’ ,or’ —;the expression "[% —-]" matches any of the characters between "%’
5937 and ' - inclusive; the expression "[—-@]" matches any of the characters between ’ -’
5938 and '@’ inclusive; and the expression "[a —-@]" is either invalid or equivalent to '@’ ,
5939 because the letter 'a’ follows the symbol’ =" in the POSIX locale. To use a hyphen as the
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 169

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Basic Regular Expressions Regular Expressions
5940 starting range point, it shall either come first in the bracket expression or be specified as a
5941 collating symbol; for example, "[[[. -] —0]" , which matches either a right bracket or
5942 any character or collating element that collates between hyphen and 0, inclusive.
5943 If a bracket expression specifies both” =" and] ,the] shall be placed first (after the
5944 "™ ,ifany) and the ' - last within the bracket expression.
5945 9.3.6 BREs Matching Multiple Characters
5946 The following rules can be used to construct BREs matching multiple characters from BREs
5947 matching a single character:
5948 1. The concatenation of BREs shall match the concatenation of the strings matched by each
5949 component of the BRE.
5950 2. A subexpression can be defined within a BRE by enclosing it between the character pairs
5951 (" and "\)" . Such a subexpression shall match whatever it would have matched
5952 without the "\(" and ") , except that anchoring within subexpressions is optional
5953 behavior; see Section 9.3.8 (on page 171). Subexpressions can be arbitrarily nested.
5954 3. The back-reference expression \n’ shall match the same (possibly empty) string of
5955 characters as was matched by a subexpression enclosed between "\(* and "\)"
5956 preceding the \n’ . The character 'n’ shall be a digit from 1 through 9, specifying the
5957 nth subexpression (the one that begins with the nth "\(" from the beginning of the
5958 pattern and ends with the corresponding paired "\)"). The expression is invalid if less
5959 than n subexpressions precede the n" . The string matched by a contained
5960 subexpression shall be within the string. matched by the containing subexpression. If the
5961 containing subexpression does not match, or if there is no match for the contained
5962 subexpression within the string matched by the containing subexpression, then back-
5963 reference’ expressions corresponding to the contained subexpression shall not match.
5964 When a subexpression matches more than one string, a back-reference expression
5965 corresponding to the subexpression shall refer to the last matched string. For example, the
5966 expression "\(F)\1$" matches lines consisting of two adjacent appearances of the
5967 same ‘string, and the expression "\(a\)*\1" failsto match 'a’ , the expression
5968 “\(@a\(b\)*\)*\2" fails to match 'abab’ ', and the expression ""\(ab*\)*\1$"
5969 matches 'ababbabb’ ., but fails to match 'ababbab’
5970 4. When a BRE matching a single character, a subexpression, or a back-reference is followed
5971 by the special character asterisk (*'*.), together with that asterisk it shall match what zero
5972 or more consecutive occurrences of the BRE would match. For example, "[ab]*" and
5973 "[ab][ab]" are equivalent when matching the string "ab" .
5974 5. When a BRE matching a single character, a subexpression, or a back-reference is followed
5975 by an interval expression of the format "{m\}" , "{m,\}" , or "\{m,n\}" , together
5976 with that interval expression it shall match what repeated consecutive occurrences of the
5977 BRE would match. The values of m and n are decimal integers in the range 0
5978 <m<n<{RE_DUP_MAX]}, where m specifies the exact or minimum number of occurrences
5979 and n specifies the maximum number of occurrences. The expression "\{m\}" shall
5980 match exactly m occurrences of the preceding BRE, "\{m\}" shall match at least m
5981 occurrences, and "\{{m,n\}" shall match any number of occurrences between m and n,
5982 inclusive.
5983 For example, in the string "abababccccced” the BRE "c\{3\}" is matched by
5984 characters seven to nine, the BRE "\(ab\)\{4 \}" is not matched at all, and the BRE
5985 "c\{1,3\}d" is matched by characters ten to thirteen.
5986 The behavior of multiple adjacent duplication symbols (* and intervals) produces undefined
5987 results.

170 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

5988
5989
5990

5991

5992

5993

5994
5995
5996
5997
5998
5999
6000

6001

6002
6003
6004

6005
6006
6007
6008
6009
6010
6011
6012

6013
6014
6015
6016
6017

6018
6019

6020

6021
6022
6023

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expressions Basic Regular Expressions

A subexpression repeated by an asterisk (*’) or an interval expression shall not match a null
expression unless this is the only match for the repetition or it is necessary to satisfy the exact or
minimum number of occurrences for the interval expression.

9.3.7 BRE Precedence
The order of precedence shall be as shown in the following table:
BRE Precedence (from high to low)
Collation-related bracket symbols | [==] [::] [..]
Escaped characters \<special character>
Bracket expression I}
Subexpressions/back-references \() \n
Single-character-BRE duplication | * \ {m,n\}
Concatenation
Anchoring "%
9.3.8 BRE Expression Anchoring
A BRE can be limited to matching strings that begin or end a line; this is called “anchoring”.
The circumflex and dollar sign special characters shall be considered BRE anchors in the
following contexts:
1. A circumflex (") shall be an anchor when used as the first character of an entire BRE.
The implementation may treat the circumflex as an anchor when used as the first
character of a subexpression. The circumflex shall anchor the expression (or optionally
subexpression) to the beginning of a string; only sequences starting at the first character
of a string shall be matched by the BRE. For example, the BRE ""ab" matches "ab" in
the string "abcdef" , but fails to match in the string "cdefab” . The BRE "\("ab\)"
may match the former string. A portable BRE shall escape a leading circumflex in a
subexpression to match a literal circumflex.
2. A dollar sign ('$') shall be an anchor when used as the last character of an entire BRE.
The implementation may treat a dollar sign as an anchor when used as the last character
of a subexpression. The dollar sign ‘shall anchor the expression (or optionally
subexpression) to the end of the string being matched; the dollar sign can be said to
match the end-of-string following the last character.
3. A BRE anchored by both ™" and ’'$". shall match only an entire string. For example, the
BRE "abcdef$" | matches strings consisting only of "abcdef"
94 Extended Regular Expressions
The extended regular expression (ERE) notation and construction rules shall apply to utilities
defined as using extended regular expressions; any exceptions to the following rules are noted
in the descriptions of the specific utilities using EREs.
Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 171

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Extended Regular Expressions Regular Expressions
6024 9.4.1 EREs Matching a Single Character or Collating Element
6025 An ERE ordinary character, a special character preceded by a backslash, or a period shall match
6026 a single character. A bracket expression shall match a single character or a single collating
6027 element. An ERE matching a single character enclosed in parentheses shall match the same as
6028 the ERE without parentheses would have matched.
6029 9.4.2 ERE Ordinary Characters
6030 An ordinary character is an ERE that matches itself. An ordinary character is any character in the
6031 supported character set, except for the ERE special characters listed in Section 9.4.3 (on page
6032 172). The interpretation of an ordinary character preceded by a backslash ('\') is undefined.
6033 9.4.3 ERE Special Characters
6034 An ERE special character has special properties in certain contexts. Outside those contexts, or
6035 when preceded by a backslash, such a character shall be an ERE that matches the special
6036 character itself. The extended regular expression special characters and the contexts in which
6037 they shall have their special meaning are as follows:
6038 I\ The period, left-bracket, backslash, and left-parenthesis shall be special except when
6039 used in a bracket expression (see Section 9.3:5 (on page 168)). Outside a bracket
6040 expression, a left-parenthesis immediately followed by a right-parenthesis produces
6041 undefined results.
6042) The right-parenthesis shall be special when matched with a preceding left-parenthesis,
6043 both outside a bracket expression.
6044 *+?{ The asterisk, plus-sign, question-mark, and left-brace shall be special except when used
6045 in a bracket expression (see Section 9.3.5 (on page 168)). Any of the following uses
6046 produce undefined results:
6047 « If these characters appear first in an ERE, or immediately following a vertical-line,
6048 circumflex, or left-parenthesis
6049 « If a left-brace is not part of a'valid interval expression (see Section 9.4.6 (on page
6050 173))
6051 The vertical-line is special except when used in a bracket expression (see Section 9.3.5
6052 (on page 168)). A vertical-line appearing first or last in an ERE, or immediately
6053 following. a vertical-line or a left-parenthesis, or immediately preceding a right-
6054 parenthesis, produces undefined results.
6055 h The circumflex shall be special when used as:
6056 » An anchor (see Section 9.4.9 (on page 174))
6057 « The first character of a bracket expression (see Section 9.3.5 (on page 168))
6058 $ The dollar sign shall be special when used as an anchor.

172 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6059

6060
6061

6062

6063
6064

6065

6066
6067

6068
6069
6070
6071
6072

6073
6074
6075
6076
6077

6078
6079
6080
6081
6082
6083

6084
6085
6086
6087

6088
6089
6090
6091
6092
6093
6094
6095

6096
6097

6098
6099

6100
6101
6102

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expressions Extended Regular Expressions
9.4.4 Periods in EREs

9.4.5

9.4.6

A period (.), when used outside a bracket expression, is an ERE that shall match any
character in the supported character set except NUL.

ERE Bracket Expression

The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see Section
9.3.5 (on page 168).

EREs Matching Multiple Characters

The following rules shall be used to construct EREs matching multiple characters from EREs
matching a single character:

1. A concatenation of EREs shall match the concatenation of the character sequences
matched by each component of the ERE. A concatenation of EREs enclosed in parentheses
shall match whatever the concatenation without the parentheses matches. For example,
both the ERE "cd" and the ERE "(cd)" arematched by the third and fourth character of
the string "abcdefabcdef”

2. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character plus-sign ('+'), together with that plus-sign it shall match what
one or more consecutive occurrences of the ERE would match. For example, the ERE
"b+(bc)" matches the fourth to seventh characters in the string "acabbbcde” . And,
"[ab]+" and "[ab][ab]*" are equivalent.

3. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character asterisk (*"), together with that asterisk it shall match what zero
or more consecutive occurrences of the ERE would match. For example, the ERE "b*c"
matches the first character in the string "cabbbcde” , and the ERE"b*cd" matches the
third to seventh characters in the string "cabbbcdebbbbbbcdbc” . And, "[ab]*" and
“[ab][ab]" are equivalent when matching the string "ab" .

4. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character question-mark (?"), together with that question-mark it shall
match what zero or one-consecutive occurrences of the ERE would match. For example,
the ERE "b?c" matches the second character in the string "acabbbcde”

5. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by an interval expression of the format "{m}" , "{m,}" , or "{m,n}" , together with that
interval expression ‘it shall match what repeated consecutive occurrences of the ERE
would match, The \values of m and n are decimal integers in the range 0
<m<n<{RE_DUP.MAX]}, where m specifies the exact or minimum number of occurrences
and n specifies the maximum number of occurrences. The expression "{m}" matches
exactly m occurrences of the preceding ERE, "{m,}" matches at least m occurrences, and
"{m,n}* matches any number of occurrences between m and 7, inclusive.

For example, in the string "abababcccceced” the ERE "c¢{3}" is matched by characters

seven to nine and the ERE "(ab){2,}" is matched by characters one to six.
The behavior of multiple adjacent duplication symbols (+ , ™

undefined results.

,'?" , and intervals) produces

An ERE matching a single character repeated by an* ,’?" , or an interval expression shall not
match a null expression unless this is the only match for the repetition or it is necessary to satisfy
the exact or minimum number of occurrences for the interval expression.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 173

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Extended Regular Expressions Regular Expressions
6103 9.4.7 ERE Alternation
6104 Two EREs separated by the special character vertical-line (|') shall match a string that is
6105 matched by either. For example, the ERE "a((bc)|d)" matches the string "abc" and the
6106 string "ad" . Single characters, or expressions matching single characters, separated by the
6107 vertical bar and enclosed in parentheses, shall be treated as an ERE matching a single character.
6108 9.4.8 ERE Precedence
6109 The order of precedence shall be as shown in the following table:
6110 ERE Precedence (from high to low)
6111 Collation-related bracket symbols | [==] [::] [..]
6112 Escaped characters \<special character>
6113 Bracket expression I}
6114 Grouping 0
6115 Single-character-ERE duplication | *+ ? { m,n}
6116 Concatenation
6117 Anchoring "%
6118 Alternation |
6119 For example, the ERE "abbalcde" matches either the string "abba" or the string "cde”
6120 (rather than the string "abbade"” or "abbcde” , because concatenation has a higher order of
6121 precedence than alternation).
6122 9.4.9 ERE Expression Anchoring
6123 An ERE can be limited to matching strings that begin or end a line; this is called “anchoring”.
6124 The circumflex and dollar sign special characters shall be considered ERE anchors when used
6125 anywhere outside a bracket expression. This shall have the following effects:
6126 1. A circumflex (7') outside a' bracket expression'shall anchor the expression or
6127 subexpression it begins to the beginning of a string; such an expression or subexpression
6128 can match only a sequence starting at the first character of a string. For example, the EREs
6129 "ab" - and "("ab)" . match "ab" in the string "abcdef" , but fail to match in the string
6130 "cdefab™. ,'and the ERE "a'b" is valid, but can never match because the 'a’ prevents
6131 the expression ""b" from matching starting at the first character.
6132 2. A dollar sign ('$') outside a bracket expression shall anchor the expression or
6133 subexpression it ends to the end of a string; such an expression or subexpression can
6134 match only a sequence ending at the last character of a string. For example, the EREs
6135 "ef$" and "(ef$)" match "ef" in the string "abcdef" , but fail to match in the string
6136 “cdefab" , and the ERE "e$f" is valid, but can never match because the 'f prevents
6137 the expression "e$". from matching ending at the last character.

174 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6138

6139
6140
6141

6142

6143

6144

6145
6146

6147
6148

6149
6150

6151
6152

6153
6154
6155
6156

6157

6158

6159
6160
6161

6162
6163

6164
6165
6166
6167

6168

6169

6170

6171

6172
6173

6174
6175
6176
6177

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expressions Regular Expression Grammar
9.5 Regular Expression Grammar

Grammars describing the syntax of both basic and extended regular expressions are presented in
this section. The grammar takes precedence over the text. See the Shell and Utilities volume of
IEEE Std 1003.1-200x, Section 1.10, Grammar Conventions.

9.5.1 BRE/ERE Grammar Lexical Conventions
The lexical conventions for regular expressions are as described in this section.
Except as noted, the longest possible token or delimiter beginning at a given point is recognized.
The following tokens are processed (in addition to those string constants shown in the
grammar):
COLL_ELEM_SINGLE
Any single-character collating element, unless it isa META_CHAR.
COLL_ELEM_MULTI
Any multi-character collating element.
BACKREF Applicable only to basic regular expressions. The character string
consisting of ' followed by a single-digit numeral,’l’ to’'9’
DUP_COUNT Represents a numeric constant. It shall be an integer in the range 0
<DUP_COUNT <{RE_DUP_MAX]. This token is only recognized when
the context of the grammar requires it. At all other times, digits not
preceded by '\ are treated as ORD_CHAR.
META_CHAR One of the characters:
B When found first in a bracket expression
~ When found anywhere but first (after an initial ™ , if any) or
last in a bracket expression, or as the ending range point in a
range expression
] When found anywhere but first (after an initial ™ , if any) in a
bracket expression
L_ANCHOR Applicable only to basic regular expressions. The character ™ when it
appears as the first character of a basic regular expression and when not
QUOTED_CHAR: The ™ may be recognized as an anchor elsewhere;
see Section 9.3.8 (on page 171).
ORD_CHAR A character, other than one of the special characters in SPEC_CHAR.
QUOTED_CHAR In a BRE, one of the character sequences:
\" \. * \[\$ \\
In an ERE, one of the character sequences:
\" \. \[\$ \(\) \|
* \+ \? \ \\
R_ANCHOR (Applicable only to basic regular expressions.) The character '$’ when it
appears as the last character of a basic regular expression and when not
QUOTED_CHAR. The’'$ may be recognized as an anchor elsewhere;
see Section 9.3.8 (on page 171).
Base Definitions, Issue % Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 175

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6178

6179

6180

6181

6182
6183

6184

6185
6186
6187

6188
6189

6190
6191

6192
6193

6194

6195
6196

6197

6198

6199
6200

6201
6202

6203
6204

6205

6206
6207

6208
6209
6210
6211

6212
6213

6214
6215
6216
6217
6218
6219

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expression Grammar Regular Expressions
SPEC_CHAR For basic regular expressions, one of the following special characters:

9.5.2

176

Anywhere outside bracket expressions
\ Anywhere outside bracket expressions
[Anywhere outside bracket expressions

When used as an anchor (see Section 9.3.8 (on page 171)) or
when first in a bracket expression

$ When used as an anchor

* Anywhere except first in an entire RE, anywhere in a bracket
expression, directly following "\(" , directly following an
anchoring "™

For extended regular expressions, shall be one of the following special
characters found anywhere outside bracket expressions:

i - [$ () |

* + ? { \

(The close-parenthesis shall be considered special in this context only if
matched with a preceding open-parenthesis.)

RE and Bracket Expression Grammar

This section presents the grammar for basic regular expressions, including the bracket
expression grammar that is common to both BREs and EREs.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT
%token BACKREF L_ANCHOR R:ANCHOR

%token Back_open_paren Back close_paren
* N "\ *

/ \(\) /
%token Back_open_brace Back_close_brace

[* \f’ Wy */

/* The following tokens are for the Bracket Expression
grammar common to both REs and EREs. */

%token COLL_ELEM_SINGLE COLL_ELEM_MULTI META_CHAR

%token Open_equal Equal_close Open_dot Dot_close Open_colon Colon_close

/* 1[:l 1:]! 1[.! 1.]!)[:1 1:]! */
%token class_name

/* class_name is a keywordto the LC_CTYPE locale category */

/* (representing a character class) in the current locale */
/* and is only recognized between [: and :] */

Y%start basic_reg_exp
%%

/*

Basic Regular Expression

*
basic_reg_exp : RE_expression
| L _ANCHOR

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245

6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expressions Regular Expression Grammar
R _ANCHOR
L _ANCHOR R_ANCHOR

L ANCHOR RE_expression
R E_expression R_ANCHOR
L ANCHOR RE_expression R_ANCHOR

RE_expression : simple_RE
| RE_expression simple_RE

simple_RE : nondupl_RE
| n ondupl_RE RE_dupl_symbol
nondupl_RE . one_char_or_coll_elem_RE
| B ack_open_paren RE_expression Back_close_paren

| B ACKREF

one_char_or_coll_elem_RE : ORD_CHAR
| QUOTED_CHAR
|
| b racket_expression
RE_dupl_symbol :
| B ack_open_brace DUP_COUNT Back close_brace
| B ack_open._brace DUP.COUNT '/ Back_close_brace
| B ack_open_brace DUP_COUNT.’, DUP_COUNT Back_close_brace

/*

Bracket Expression

*/
bracket_expression : [matching_list ']’
| * [nonmatching_list ']’

matching_list : bracket list
nonmatching_list : ~ bracket_list
bracket_list , follow_list
| f ollow list’-’
follow_list : , expression_term

| f ollow_list expression_term

expression_term : single_expression

| r ange_expression
single_expression : end_range

| ¢ haracter_class

| e quivalence_class

range_expression : start_range end_range
| s tart_range -’

177

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

6315
6316

Regular Expression Grammar Regular Expressions
6272 ;
6273 start_range : end_range -’
6274 ;
6275 end_range : COLL_ELEM_SINGLE
6276 | c ollating_symbol
6277 ;
6278 collating_symbol : Open_dot COLL_ELEM_SINGLE Dot_close
6279 | Open_dot COLL_ELEM_MULTI Dot_close
6280 | Open_dot META_CHAR Dot_close
6281 ;
6282 equivalence_class : Open_equal COLL_ELEM_SINGLE Equal_close
6283 | Open_equal COLL_ELEM_MULTI Equal_close
6284 ;
6285 character_class : Open_colon class_name Colon_close
6286 ;
6287 The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside "\(" and "\)" (which
6288 implies that ™ and '$’ are ordinary characters). This reflects the semantic limits on the
6289 application, as noted in Section 9.3.8 (on page 171). Implementations are permitted to extend the
6290 language to interpret ™ and '$ " as anchors in these locations, and as such, conforming
6291 applications cannot use unescaped ™ <and '$ in positionsinside "\(" and ")" that might
6292 be interpreted as anchors.
6293 9.5.3 ERE Grammar
6294 This section presents the grammar for extended regular expressions, excluding the bracket
6295 expression grammar.
6296 Note: The bracket expression grammar and the associated %token lines are identical between BREs
6297 and EREs. It has been omitted from the ERE section to.avoid unnecessary editorial duplication.
6298 %token ORD_CHAR QUOTED_CHAR DUP_COUNT
6299 %start extended_reg exp
6300 %%
6301 [*
6302 Extended Regular Expression
6303
6304 *
6305 extended_reg_exp " : ERE_branch
6306 | ‘e xtended_reg_exp ’|' ERE_branch
6307 ;
6308 ERE_branch X ERE_expression
6309 | E'RE_branch ERE_expression
6310 ;
6311 ERE_expression : one_char_or_coll_elem_ERE
6312 | "™
6313 | ' &
6314 | * (extended_reg_exp’)

I

E RE_expression ERE_dupl_symbol

6317 one_char_or_coll_elem_ERE : ORD_CHAR
6318 | QUOTED_CHAR
6319 I
6320 | b racket_expression
6321 ;
178 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6322
6323
6324
6325
6326
6327
6328

6329
6330

6331

6332
6333

6334

6335
6336

6337
6338

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Regular Expressions Regular Expression Grammar
ERE_dupl_symbol : !
| *+
| =7
| * { DUP_COUNT Y
| * { DUP_COUNT "/ Y
|

' { DUP_COUNT’, DUP_COUNT '}

The ERE grammar does not permit several constructs that previous sections specify as having
undefined results:

¢ ORD_CHAR preceded by 'V

¢ One or more ERE_dupl_symbols appearing first in an ERE, or immediately following ' ,
"y , Or 1(!

e '{" notpart of a valid ERE_dupl_symbol

e ’|" appearing first or last in an ERE, or immediately following '|' or '(, or
immediately preceding ’)’

Implementations are permitted to extend the language to allow these. Conforming applications
cannot use such constructs.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 179

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Regular Expressions

180 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6339

6340

6341

6342
6343
6344

6345

6346

6347

6348
6349
6350

6351

6352
6353

6354
6355
6356
6357
6358
6359

6360

6361
6362
6363
6364
6365

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 10

Directory Structure and Devices

10.1 Directory Structure and Files

The following directories shall exist on conforming systems and conforming applications shall

make use of them only as described. Strictly conforming applications shall not assume the

ability to create files in any of these directories, unless specified below.

/ The root directory.

/dev Contains /dev/console, /dev/null, and /dev/tty, described below.

The following directory shall exist on conforming systems and shall be used as described:

/tmp A directory made available for applications that need a place to create temporary
files. Applications shall be allowed to create files in this directory, but shall not
assume that such files are preserved between invocations of the application.

The following files shall exist on conforming systems and shall be both readable and writable:

/dev/null An infinite data source and data sink. Data written to /dev/null shall be discarded.
Reads from /dev/null shall always return end-of-file (EOEF).

/dev/tty In each process, a synonym for the controlling terminal associated with the process
group of that process, if any. It is useful for programs or shell procedures that wish
to be sure of writing messages to or reading data from the terminal no matter how
output has been redirected. It can also be used for applications that demand the
name of a file for output, when typed output is desired and it is tiresome to find
out what terminal is currently in use.

The following file shall exist on conforming systems and need not be readable or writable:

/dev/console The /dev/console file is'a generic name given to the system console (see Section
3.384 (on page 84)). It is usually linked to an implementation-defined special file.
It shall provide an interface to the system console conforming to the requirements
of the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11, General
Terminal Interface.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 181

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Output Devices and Terminal Types Directory Sructure and Devices

6366 10.2 Output Devices and Terminal Types
6367 The utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x historically have been
6368 implemented on a wide range of terminal types, but a conforming implementation need not
6369 support all features of all utilities on every conceivable terminal. IEEE Std 1003.1-200x states
6370 which features are optional for certain classes of terminals in the individual utility description
6371 sections. The implementation shall document in the system documentation which terminal
6372 types it supports and which of these features and utilities are not supported by each terminal.
6373 When a feature or utility is not supported on a specific terminal type, as allowed by
6374 IEEE Std 1003.1-200x, and the implementation considers such a condition to be an error
6375 preventing use of the feature or utility, the implementation shall indicate such conditions
6376 through diagnostic messages or exit status values or both (as appropriate to the specific utility
6377 description) that inform the user that the terminal type lacks the appropriate capability.
6378 IEEE Std 1003.1-200x uses a notational convention based on historical practice that identifies
6379 some of the control characters defined in Section 7.3.1'in a manner easily remembered by users
6380 on many terminals. The correspondence between this “<control>-char’” notation and the actual
6381 control characters is shown in the following table. When IEEE Std 1003.1-200x refers to a
6382 character by its <control>-name, it is referring to the actual control character shown in the Value
6383 column of the table, which is not necessarily the exact control key sequence on all terminals.
6384 Some terminals have keyboards that do not allow the direct transmission of all the non-
6385 alphanumeric characters shown. In such cases; the system documentation shall describe which
6386 data sequences transmitted by the terminal are interpreted by the system as representing the
6387 special characters.
6388 Table 10-1 Control Character Names
6389 Name Value Symbolic Name Name Value Symbolic Name
6390 <control>-A | <SOH> | <SOH> <control>-Q <DC1> <DC1>
6391 <control>-B | <STX> <STX> <control>-R| <DC2> | <DC2>
6392 <control>-C | <ETX> | <ETX> <control>-5 <DC3> | <DC3>
6393 <control>-D" | <EOT> | <EOT> <control>-T | <DC4> | <DC4>
6394 <control>-E <ENQ> | <ENQ> <control>-U <NAK> | <NAK>
6395 <control>-F_ | <ACK> | <ACK> <control>-V | <SYN> | <SYN>
6396 <control>-G | <BEL> <alert> <control>-W | <ETB> <ETB>
6397 <control>-H | <BS> <backspace> <control>-X | <CAN> | <CAN>
6398 <control>-1 <HT> <tab> <control>-Y |
6399 <control>-] <LF> <linefeed> <control>-Z <SUB> <SUB>
6400 <control>-K | <VT> <vertical-tab> <control>-[<ESC> <ESC>
6401 <control>-L. | <FF> <form-feed> <control>-\ <FS> <FS>
6402 <control>-M | <CR> <carriage-return> || <control>-] <GS> <GS>
6403 <control>-N | <50> <50> <control>-" <RS> <RS>
6404 <control>-O | <SI> <SI> <control>-_ <US> <US>
6405 <control>-P | <DLE> | <DLE> <control>-? |
6406 Note: The notation uses uppercase letters for arbitrary editorial reasons. There is no implication that
6407 the keystrokes represent control-shift-letter sequences.

182 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6408

6409

6410
6411
6412
6413

6414

6415

6416
6417
6418

6419
6420
6421
6422
6423

6424

6425
6426
6427

6428
6429
6430
6431
6432
6433

6434
6435
6436
6437
6438
6439
6440

11.1

11.1.1

11.1.2

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 11

General Terminal Interface

This chapter describes a general terminal interface that shall be provided. It shall be supported
on any asynchronous communications ports if the implementation provides them. It is
implementation-defined whether it supports network connections or synchronous ports, or
both.

Interface Characteristics

Opening a Terminal Device File

When a terminal device file is opened, it normally causes the thread to wait until a connection is
established. In practice, application programs seldom open'these files; they are opened by
special programs and become an application’s standard input, output, and error files.

As described in open (), opening a terminal device file with the O_NONBLOCK flag clear shall
cause the thread to block until the terminal device is ready and available. If CLOCAL mode is
not set, this means blocking until a connection is established. If CLOCAL mode is set in the
terminal, or the O-NONBLOCK flag, is specified in the open (), the open() function shall return a
file descriptor without waiting for a connection to be established.

Process Groups

A terminal may have a foreground process group associated with it. This foreground process
group plays a special role in handling signal-generating input characters, as discussed in Section
11.1.9 (on page 187).

A command interpreter process supporting job control can allocate the terminal to different jobs,
or process groups, by placing related processes in a single process group and associating this
process group with the terminal. A terminal’s foreground process group may be set or examined
by a process, assuming the permission requirements are met; see tcgetpgrp() and tcsetpgrp().
The terminal interface aids in this allocation by restricting access to the terminal by processes
that are not in the current process group; see Section 11.1.4 (on page 184).

When there is no longer any process whose process ID or process group ID matches the
foreground process group- 1D, the terminal shall have no foreground process group. It is
unspecified whether the terminal has a foreground process group when there is a process whose
process ID matches the foreground process group ID, but whose process group ID does not. No
actions defined in IEEE Std 1003.1-200x, other than allocation of a controlling terminal or a
successful call to tcsetpgrp(), shall cause a process group to become the foreground process
group of the terminal.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 183

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Interface Characteristics General Terminal Interface
6441 11.1.3 The Controlling Terminal
6442 A terminal may belong to a process as its controlling terminal. Each process of a session that has
6443 a controlling terminal has the same controlling terminal. A terminal may be the controlling
6444 terminal for at most one session. The controlling terminal for a session is allocated by the session
6445 leader in an implementation-defined manner. If a session leader has no controlling terminal, and
6446 opens a terminal device file that is not already associated with a session without using the
6447 O_NOCTTY option (see open()), it is implementation-defined whether the terminal becomes the
6448 controlling terminal of the session leader. If a process which is not a session leader opens a
6449 terminal file, or the O_NOCTTY option is used on open(), then that terminal shall not become
6450 the controlling terminal of the calling process. When a controlling terminal becomes associated
6451 with a session, its foreground process group shall be set to the process group of the session
6452 leader.
6453 The controlling terminal is inherited by a child process during a fork() function call. A process
6454 relinquishes its controlling terminal when it creates a new session with the setsid() function;
6455 other processes remaining in the old session that had this terminal as their controlling terminal
6456 continue to have it. Upon the close of the last file descriptor in the system (whether or not it is in
6457 the current session) associated with the controlling terminal, it is unspecified whether all
6458 processes that had that terminal as their controlling terminal cease to have any controlling
6459 terminal. Whether and how a session leader can reacquire a controlling terminal after the
6460 controlling terminal has been relinquished in this fashion is unspecified. A process does not
6461 relinquish its controlling terminal simply by closing all of its file descriptors associated with the
6462 controlling terminal if other processes continue to have it open.
6463 When a controlling process terminates, the controlling terminal is dissociated from the current
6464 session, allowing it to be acquired by a new session leader. Subsequent access to the terminal by
6465 other processes in the earlier session may be denied, with attempts to access the terminal treated
6466 as if a modem disconnect had been sensed.
6467 11.1.4 Terminal Access Control
6468 If a process is in the foreground process group of its controlling terminal, read operations shall
6469 be allowed, as described in Section 11.1.5' (on _page 185). Any attempts by a process in a
6470 background process group to read from its controlling terminal cause its process group to be
6471 sent a SIGTTIN signal unless one of the following special cases applies: if the reading process is
6472 ignoring or blocking the SIGTTIN signal, or if the process group of the reading process is
6473 orphaned, the read() shall return -1, with errno set to [EIO] and no signal shall be sent. The
6474 default action of the SIGTTIN signal shall be to stop the process to which it is sent. See
6475 <signal.h>.
6476 If a process is in the foreground process group of its controlling terminal, write operations shall
6477 be allowed as described in Section 11.1.8 (on page 187). Attempts by a process in a background
6478 process group to write to-its controlling terminal shall cause the process group to be sent a
6479 SIGTTOU signal unless one of the following special cases applies: if TOSTOP is not set, or if
6480 TOSTOP is set and the process is ignoring or blocking the SIGTTOU signal, the process is
6481 allowed to write to the terminal and the SIGTTOU signal is not sent. If TOSTOP is set, and the
6482 process group of the writing process is orphaned, and the writing process is not ignoring or
6483 blocking the SIGTTOU signal, the write() shall return -1, with errno set to [EIO] and no signal
6484 shall be sent.
6485 Certain calls that set terminal parameters are treated in the same fashion as write(), except that
6486 TOSTOP is ignored; that is, the effect is identical to that of terminal writes when TOSTOP is set
6487 (see Section 11.2.5 (on page 193), tcdrain(), tcflow(), tcflush(), tcsendbreak(), tcsetattr(), and
6488 tesetpgrp()).

184 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6489

6490
6491
6492
6493
6494
6495

6496
6497
6498
6499
6500
6501
6502

6503
6504
6505

6506
6507
6508

6509
6510

6511
6512
6513

6514

6515
6516

6517

6518
6519
6520
6521
6522
6523
6524

6525
6526
6527

6528
6529
6530
6531
6532
6533
6534

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Terminal Interface Interface Characteristics

11.1.5

11.1.6

Input Processing and Reading Data

A terminal device associated with a terminal device file may operate in full-duplex mode, so
that data may arrive even while output is occurring. Each terminal device file has an input
queue associated with it, into which incoming data is stored by the system before being read by
a process. The system may impose a limit, {MAX_INPUT}, on the number of bytes that may be
stored in the input queue. The behavior of the system when this limit is exceeded is
implementation-defined.

Two general kinds of input processing are available, determined by whether the terminal device
file is in canonical mode or non-canonical mode. These modes are described in Section 11.1.6 and
Section 11.1.7 (on page 186). Additionally, input characters are processed according to the c_iflag
(see Section 11.2.2 (on page 189)) and c_Iflag (see Section 11.2.5 (on page 193)) fields. Such
processing can include “echoing”, which in general means transmitting input characters
immediately back to the terminal when they are received from the terminal. This is useful for
terminals that can operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal device file is
dependent on whether the terminal file is in canonical or non-canonical mode, and on whether
or not the O_NONBLOCK flag is set by open () or fentl().

If the O_NONBLOCK flag is clear, then the read request shall be blocked until data is available
or a signal has been received. If the O_NONBLOCK flag is set, then the read request shall be
completed, without blocking, in one of three ways:

1. If there is enough data available to satisfy the entire request, the read() shall complete
successfully and shall return the number of bytes read.

2. If there is not enough data available to satisfy the entire request, the read () shall complete
successfully, having read as much data as possible, and shall return the number of bytes it
was able to read.

3. If there is no data available, the read () shall return -1, with errno set to [EAGAIN].

When data is available depends on whether the input processing mode is canonical or non-
canonical. Section 11.1.6 and Section 11.1.7 describe each of these input processing modes.

Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines. A line is
delimited by a newline character (NL), an end-of-file character (EOF), or an end-of-line (EOL)
character. See Section 11.1.9 for more information on EOF and EOL. This means that a read
request shall not returnuntil an entire line has been typed or a signal has been received. Also, no
matter how many bytes are requested in the read() call, at most one line shall be returned. It is
not, however, necessary to read a whole line at once; any number of bytes, even one, may be
requested in a read () without losing information.

If {IMAX_CANON} is defined for this terminal device, it shall be a limit on the number of bytes
in a line. The behavior of the system when this limit is exceeded is implementation-defined. If
{MAX_CANON} is not defined, there shall be no such limit; see pathconf().

Erase and kill processing occur when either of two special characters, the ERASE and KILL
characters (see Section 11.1.9 (on page 187)), is received. This processing shall affect data in the
input queue that has not yet been delimited by an NL, EOF, or EOL character. This un-delimited
data makes up the current line. The ERASE character shall delete the last character in the current
line, if there is one. The KILL character shall delete all data in the current line, if there is any.
The ERASE and KILL characters shall have no effect if there is no data in the current line. The
ERASE and KILL characters themselves shall not be placed in the input queue.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 185

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Interface Characteristics General Terminal Interface
6535 11.1.7 Non-Canonical Mode Input Processing
6536 In non-canonical mode input processing, input bytes are not assembled into lines, and erase and
6537 kill processing shall not occur. The values of the MIN and TIME members of the c_cc array are
6538 used to determine how to process the bytes received. IEEE Std 1003.1-200x does not specify
6539 whether the setting of O_NONBLOCK takes precedence over MIN or TIME settings. Therefore,
6540 if O_NONBLOCK is set, read() may return immediately, regardless of the setting of MIN or
6541 TIME. Also, if no data is available, read() may either return 0, or return —1 with errno set to
6542 [EAGAIN].
6543 MIN represents the minimum number of bytes that should be received when the read () function
6544 returns successfully. TIME is a timer of 0.1 second granularity that is used to time out bursty and
6545 short-term data transmissions. If MIN is greater than {MAX_INPUT], the response to the request
6546 is undefined. The four possible values for MIN and TIME and their interactions are described
6547 below.
6548 Case A: MIN>0, TIME>0
6549 In case A, TIME serves as an inter-byte timer which shall be activated after the first byte is
6550 received. Since it is an inter-byte timer, it shall be reset after a byte is received. The interaction
6551 between MIN and TIME is as follows. As’soon as one byte is received, the inter-byte timer shall
6552 be started. If MIN bytes are received before the inter-byte timer expires (remember that the timer
6553 is reset upon receipt of each byte), the read shall be satisfied. If the timer expires before MIN
6554 bytes are received, the characters received to that point shall be returned to the user. Note that if
6555 TIME expires at least one byte shall be returned because the timer would not have been enabled
6556 unless a byte was received. In this case (MIN>0, TIME>0) the read shall block until the MIN and
6557 TIME mechanisms are activated by the receipt of the first byte, or a signal is received. If data is
6558 in the buffer at the time of the read(), the result shall be as if data has been received immediately
6559 after the read ().
6560 Case B: MIN>0, TIME=0
6561 In case B, since the value of TIME is zero, the timer plays no role and only MIN is significant. A
6562 pending read shall not be satisfied until MIN bytes are received (that is, the pending read shall
6563 block until MIN bytes are received), or a signal is received. A program that uses case B to read
6564 record-based terminal I/O may block indefinitely in the read operation.
6565 Case C: MIN=0, TIME>0
6566 In case C, since MIN=0, TIME no longer represents an inter-byte timer. It now serves as a read
6567 timer that shall be activated as soon as the read() function is processed. A read shall be satisfied
6568 as soon as a single byte is received or the read timer expires. Note that in case C if the timer
6569 expires, no bytes shall be returned. If the timer does not expire, the only way the read can be
6570 satisfied is if a byte is received. If bytes are not received, the read shall not block indefinitely
6571 waiting for a byte; if no byte is received within TIME*0.1 seconds after the read is initiated, the
6572 read () shall return a value of zero, having read no data. If data is in the buffer at the time of the
6573 read (), the timer shall be started as if data has been received immediately after the read().

186 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6574

6575
6576
6577

6578

6579
6580
6581
6582
6583

6584

6585
6586

6587
6588
6589
6590

6591
6592
6593
6594

6595
6596
6597
6598

6599
6600
6601

6602
6603
6604
6605
6606
6607

6608
6609

6610
6611

6612
6613
6614

6615
6616
6617
6618

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Terminal Interface Interface Characteristics

Case D: MIN=0, TIME=0

The minimum of either the number of bytes requested or the number of bytes currently
available shall be returned without waiting for more bytes to be input. If no characters are
available, read () shall return a value of zero, having read no data.

11.1.8 Writing Data and Output Processing

When a process writes one or more bytes to a terminal device file, they are processed according

to the c_oflag field (see Section 11.2.3 (on page 190)). The implementation may provide a

buffering mechanism; as such, when a call to write() completes, all of the bytes written have

been scheduled for transmission to the device, but the transmission has not necessarily
completed. See write() for the effects of O_NONBLOCK on write().
11.1.9 Special Characters

Certain characters have special functions on input or output or both. These functions are

summarized as follows:

INTR Special character on input, which is recognized if the ISIG flag is set. Generates a
SIGINT signal which is sent to all processes in the foreground process group for which
the terminal is the controlling terminal. If ISIG is set, the INTR character shall be
discarded when processed.

QUIT Special character on input, which is recognized if the ISIG flag is set. Generates a
SIGQUIT signal which is sent to all processes in the foreground process group for
which the terminal is the controlling terminal. If ISIG is set, the QUIT character shall be
discarded when processed.

ERASE Special character on input, which is recognized if the ICANON flag is set. Erases the
last character in the current line; see Section 11.1.6 (on page 185). It shall not erase
beyond the start of a line, as delimited by an NL, EOF, or EOL character. If ICANON is
set, the ERASE character shall be discarded when processed.

KILL ~ Special character on input, which is recognized if the ICANON flag is set. Deletes the
entire line, as delimited by an NL, EOF, or EOL character. If ICANON is set, the KILL
character shall be discarded when processed.

EOF Special character on input, which is recognized if the ICANON flag is set. When
received, all the bytes waiting to be read are immediately passed to the process without
waiting for a newline, and the EOF is discarded. Thus, if there are no bytes waiting
(that is, the EOF occurred at the beginning of a line), a byte count of zero shall be
returned from- the read(), representing an end-of-file indication. If ICANON is set, the
EOF character shall be discarded when processed.

NL Special character on input, which is recognized if the ICANON flag is set. It is the line
delimiter newline. It cannot be changed.

EOL Special character on input, which is recognized if the ICANON flag is set. It is an
additional line delimiter, like NL.

SUSP If the ISIG flag is set, receipt of the SUSP character shall cause a SIGTSTP signal to be
sent to all processes in the foreground process group for which the terminal is the
controlling terminal, and the SUSP character shall be discarded when processed.

STOP Special character on both input and output, which is recognized if the IXON (output
control) or IXOFF (input control) flag is set. Can be used to suspend output
temporarily. It is useful with CRT terminals to prevent output from disappearing before
it can be read. If IXON is set, the STOP character shall be discarded when processed.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 187

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Interface Characteristics General Terminal Interface
6619 START Special character on both input and output, which is recognized if the IXON (output
6620 control) or IXOFF (input control) flag is set. Can be used to resume output that has been
6621 suspended by a STOP character. If IXON is set, the START character shall be discarded
6622 when processed.
6623 CR Special character on input, which is recognized if the ICANON flag is set; it is the
6624 carriage-return character. When ICANON and ICRNL are set and IGNCR is not set,
6625 this character shall be translated into an NL, and shall have the same effect as an NL
6626 character.
6627 The NL and CR characters cannot be changed. It is implementation-defined whether the START
6628 and STOP characters can be changed. The values for INTR, QUIT, ERASE, KILL, EOF, EOL, and
6629 SUSP shall be changeable to suit individual tastes. Special character functions associated with
6630 changeable special control characters can be disabled individually.
6631 If two or more special characters have the same value, the function performed when that
6632 character is received is undefined.
6633 A special character is recognized not only by its value, but also by its context; for example, an
6634 implementation may support multi-byte sequences that have a meaning different from the
6635 meaning of the bytes when considered. individually. Implementations may also support
6636 additional single-byte functions. These implementation-defined multi-byte or single-byte
6637 functions shall be recognized only if the IEXTEN flag is set; otherwise, data is received without
6638 interpretation, except as required to recognize the special characters defined in this section.
6639 XSl If IEXTEN is set, the ERASE, KILL, and EOF characters can be escaped by a preceding '\
6640 character, in which case no special function shall occur.
6641 11.1.10 Modem Disconnect
6642 If a modem disconnect is detected by the terminal interface for a controlling terminal, and if
6643 CLOCAL is not set in the c_cflag field for the terminal (see Section 11.2.4 (on page 192)), the
6644 SIGHUP signal shall be sent to the controlling process for which the terminal is the controlling
6645 terminal. Unless other arrangements have been made, this shall cause the controlling process to
6646 terminate (see exit()). Any subsequent read from the terminal device shall return the value of
6647 zero, indicating end-of-file; see read (). Thus, processes that read a terminal file and test for end-
6648 of-file can terminate appropriately after a disconnect. If the EIO condition as specified in read ()
6649 also exists, it is unspecified whether on EOF condition or [EIO] is returned. Any subsequent
6650 write() to the terminal device shall return -1, with errno set to [EIO], until the device is closed.
6651 11.1.11 Closing a Terminal Device File
6652 The last process to close a terminal device file shall cause any output to be sent to the device and
6653 any input to be discarded. If HUPCL is set in the control modes and the communications port
6654 supports a disconnect function, the terminal device shall perform a disconnect.

188 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6655

6656

6657
6658
6659

6660
6661

6662
6663
6664
6665
6666

6667
6668

6669

6670
6671
6672

6673

6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685

6686
6687
6688
6689
6690

6691
6692
6693
6694
6695
6696

6697

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Terminal Interface Parameters that Can be Set

11.2

11.2.1

11.2.2

XSI

Parameters that Can be Set

The termios Structure

Routines that need to control certain terminal I/O characteristics shall do so by using the
termios structure as defined in the <termios.h> header. The members of this structure include
(but are not limited to):

Member | Array | Member
Type Size Name Description

teflag t c_iflag Input modes.
teflag t c_oflag Output modes.
teflag t c_cflag Control modes.
teflag t c_lflag Local modes.

cc_t NCCS | c_cc[] Control characters.

The types tcflag_t and cc_t are defined in the <termios.h> header. They shall be unsigned
integer types.

Input Modes

Values of the c_iflag field describe the basic terminal input control, and are composed of the
bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in this table are defined in <termios.h>:

Mask Name Description

BRKINT Signal interrupt on break.

ICRNL Map CR to NL on input.

IGNBRK Ignore break condition.

IGNCR Ignore CR.

IGNPAR Ignore characters with parity errors.
INLCR Map NL to CRon input.

INPCK Enable input parity check.

ISTRIP Strip character.

IXANY Enable any character to restart output.
IXOFF Enable start/stop input control.
IXON Enable start/stop output control.
PARMRK Mark parity errors.

In the context of asynchronous serial data transmission, a break condition shall be defined as a
sequence of zero-valued bits that continues for more than the time to send one byte. The entire
sequence of zero-valued bits is interpreted as a single break condition, even if it continues for a
time equivalent to more than one byte. In contexts other than asynchronous serial data
transmission, the definition of a break condition is implementation-defined.

If IGNBRK is set, a break condition detected on input shall be ignored; that is, not put on the
input queue and therefore not read by any process. If IGNBRK is not set and BRKINT is set, the
break condition shall flush the input and output queues, and if the terminal is the controlling
terminal of a foreground process group, the break condition shall generate a single SIGINT
signal to that foreground process group. If neither IGNBRK nor BRKINT is set, a break
condition shall be read as a single 0x00, or if PARMRK is set, as Oxff 0x00 0x00.

If IGNPAR is set, a byte with a framing or parity error (other than break) shall be ignored.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 189

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Parameters that Can be Set General Terminal Interface
6698 If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other than
6699 break) shall be given to the application as the three-byte sequence 0xff 0x00 X, where 0xff 0x00 is
6700 a two-byte flag preceding each sequence and X is the data of the byte received in error. To avoid
6701 ambiguity in this case, if ISTRIP is not set, a valid byte of Oxff is given to the application as Oxff
6702 Oxff. If neither PARMRK nor IGNPAR is set, a framing or parity error (other than break) shall be
6703 given to the application as a single byte 0x00.
6704 If INPCK is set, input parity checking shall be enabled. If INPCK is not set, input parity checking
6705 shall be disabled, allowing output parity generation without input parity errors. Note that
6706 whether input parity checking is enabled or disabled is independent of whether parity detection
6707 is enabled or disabled (see Section 11.2.4 (on page 192)). If parity detection is enabled but input
6708 parity checking is disabled, the hardware to which the terminal is connected shall recognize the
6709 parity bit, but the terminal special file shall not check whether or not this bit is correctly set.
6710 If ISTRIP is set, valid input bytes shall first be stripped to seven bits; otherwise, all eight bits
6711 shall be processed.
6712 If INLCR is set, a received NL character shall be translated into a CR character. If IGNCR is set, a
6713 received CR character shall be ignored (not read). If IGNCR is not set and ICRNL is set, a
6714 received CR character shall be translated into an NL character.
6715 XSl If IXANY is set, any input character shall restart output that has been suspended.
6716 If IXON is set, start/stop output control shall be enabled. A received STOP character shall
6717 suspend output and a received START character shall restart output. When IXON is set, START
6718 and STOP characters are not read, but merely perform flow control functions. When IXON is not
6719 set, the START and STOP characters shall be read.
6720 If IXOFF is set, start/stop input control shall be enabled. The system shall transmit STOP
6721 characters, which are intended to cause the terminal device to stop transmitting data, as needed
6722 to prevent the input queue from overflowing and causing implementation-defined behavior,
6723 and shall transmit START characters, which are intended to cause the terminal device to resume
6724 transmitting data, as soon as the device can continue transmitting data without risk of
6725 overflowing the input queue. The precise conditions under which STOP and START characters
6726 are transmitted are implementation-defined.
6727 The initial input control value after open () is implementation-defined.
6728 11.2.3 Output Modes
6729 The c_oflag field specifies the terminal interface’s treatment of output, and is composed of the
6730 bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
6731 symbols in the following table are defined in <termios.h>:

190 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761

6762
6763
6764

6765
6766
6767
6768
6769
6770
6771

6772
6773
6774
6775
6776

6777

6778
6779

6780

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Terminal Interface Parameters that Can be Set
Mask Name Description
OPOST Perform output processing.
XSl ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NUL.
NLDLY Select newline delays:
NLO Newline character type 0.
NL1 Newline character type 1.
CRDLY Select carriage-return delays:
CRO Carriage-return delay type 0.
CR1 Carriage-return delay type 1.
CR2 Carriage-return delay type 2.
CR3 Carriage-return delay type 3.
TABDLY Select horizontal-tab delays:

XSI

TABO Horizontal-tab delay type 0.
TAB1 Horizontal-tab delay type 1.
TAB2 Horizontal-tab delay type 2.
TAB3 Expand tabs to spaces.

BSDLY Select backspace delays:
BS0 Backspace-delay type 0.
BS1 Backspace-delay type 1.

VTDLY Select vertical-tab delays:
VTO0 Vertical-tab delay type 0.
VT1 Vertical-tab delay type 1.

FFDLY Select form-feed delays:
FFO Form-feed delay type 0.
FF1 Form-feed delay type 1.

If OPOST is set, output data shall be post-processed as described below, so that lines of text are
modified to appear appropriately on the terminal device; otherwise, characters shall be
transmitted without change.

If ONLCR is set, the NL character shall be transmitted as the CR-NL character pair. If OCRNL is
set, the CR character shall be transmitted as the NL character. If ONOCR is set, no CR character
shall be transmitted when at column O (first position). If ONLRET is set, the NL character is
assumed to do the carriage-return function; the column pointer shall be set to 0 and the delays
specified for CR shall be used. Otherwise, the NL character is assumed to do just the line-feed
function; the column pointer remains unchanged. The column pointer shall also be set to 0 if the
CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 shall indicate no delay. If
OFILL is set, fill characters shall be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
shall be DEL; otherwise, NUL.

If a form-feed or vertical-tab delay is specified, it shall last for about 2 seconds.

Newline delay shall last about 0.10 seconds. If ONLRET is set, the carriage-return delays shall be
used instead of the newline delays. If OFILL is set, two fill characters shall be transmitted.

Carriage-return delay type 1 shall be dependent on the current column position, type 2 shall be

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 191

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Parameters that Can be Set General Terminal Interface
6781 about 0.10 seconds, and type 3 shall be about 0.15 seconds. If OFILL is set, delay type 1 shall
6782 transmit two fill characters, and type 2 four fill characters.
6783 Horizontal-tab delay type 1 shall be dependent on the current column position. Type 2 shall be
6784 about 0.10 seconds. Type 3 specifies that tabs shall be expanded into spaces. If OFILL is set, two
6785 fill characters shall be transmitted for any delay.
6786 Backspace delay shall last about 0.05 seconds. If OFILL is set, one fill character shall be
6787 transmitted.
6788 The actual delays depend on line speed and system load.
6789 The initial output control value after open () is implementation-defined.
6790 11.24 Control Modes
6791 The c_cflag field describes the hardware control of the terminal, and is composed of the bitwise-
6792 inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name symbols in
6793 this table are defined in <termios.h>; not all values specified are required to be supported by the
6794 underlying hardware:
6795 Mask Name Description
6796 CLOCAL Ignore modem status lines.
6797 CREAD Enable receiver.
6798 CSIZE Number of bits transmitted or received per byte:
6799 CS5 5 bits
6800 CSé6 6 bits
6801 cs7 7 bits
6802 CS8 8 bits.
6803 CSTOPB Send two stop bits, else one.
6804 HUPCL Hang up on last close.
6805 PARENB Parity enable.
6806 PARODD Odd parity, else even.
6807 In addition, the input and output baud rates are stored in the termios structure. The symbols in
6808 the following table are defined in <termios.h>. Not all values specified are required to be
6809 supported by the underlying hardware.
6810 Name Description Name Description
6811 BO Hang up B600 600 baud
6812 B50 50 baud B1200 1200 baud
6813 B75 75 baud B1800 1800 baud
6814 B110 110 baud B2400 2400 baud
6815 B134 134.5 baud B4800 4800 baud
6816 B150 150 baud B9600 9600 baud
6817 B200 200 baud B19200 19200 baud
6818 B300 300 baud B38400 38400 baud
6819 The following functions are provided for getting and setting the values of the input and output
6820 baud rates in the termios structure: cfgetispeed(), cfgetospeed(), cfsetispeed(), and cfsetospeed().
6821 The effects on the terminal device shall not become effective and not all errors need be detected
6822 until the fcsetattr() function is successfully called.
6823 The CSIZE bits shall specify the number of transmitted or received bits per byte. If ISTRIP is not
6824 set, the value of all the other bits is unspecified. If ISTRIP is set, the value of all but the 7 low-
6825 order bits shall be zero, but the value of any other bits beyond CSIZE is unspecified when read.
6826 CSIZE shall not include the parity bit, if any. If CSTOPB is set, two stop bits shall be used;

192 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6827

6828

6829
6830
6831

6832
6833
6834

6835
6836

6837
6838
6839

6840
6841
6842
6843

6844

6845

6846
6847
6848
6849

6850

6851
6852
6853
6854
6855
6856
6857
6858
6859

6860
6861

6862
6863
6864

6865
6866

6867

6868
6869
6870

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Terminal Interface Parameters that Can be Set

11.2.5

otherwise, one stop bit. For example, at 110 baud, two stop bits are normally used.
If CREAD is set, the receiver shall be enabled; otherwise, no characters shall be received.

If PARENB is set, parity generation and detection shall be enabled and a parity bit is added to
each byte. If parity is enabled, PARODD shall specify odd parity if set; otherwise, even parity
shall be used.

If HUPCL is set, the modem control lines for the port shall be lowered when the last process
with the port open closes the port or the process terminates. The modem connection shall be
broken.

If CLOCAL is set, a connection shall not depend on the state of the modem status lines. If
CLOCAL is clear, the modem status lines shall be monitored.

Under normal circumstances, a call to the open () function shall wait for the modem connection
to complete. However, if the O_NONBLOCK flag is set (see open()) or if CLOCAL has been set,
the open () function shall return immediately without waiting for the connection.

If the object for which the control modes are set isnot an asynchronous serial connection, some
of the modes may be ignored; for example, if an attempt is made to set the baud rate on a
network connection to a terminal on another host, the<baud rate need not be set on the
connection between that terminal and the machine to which it is directly connected.

The initial hardware control value after open () is'implementation-defined.

Local Modes

The c_Iflag field of the argument structure is used to control various functions. It is composed of
the bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in this table are defined in:<termios.h>; not all values specified are required to be
supported by the underlying hardware:

Mask Name Description

ECHO Enable echo.

ECHOE Echo ERASE as an error correcting backspace.
ECHOK Echo KILL.

ECHONL Echo <newline>.

ICANON Canonical input (erase and kill processing).

IEXTEN Enable extended (implementation-defined) functions.
ISIG Enable signals.

NOFLSH Disable flush after interrupt, quit, or suspend.
TOSTOP Send SIGTTOU for background output.

If ECHO is set, input characters shall be echoed back to the terminal. If ECHO is clear, input
characters shall not be echoed.

If ECHOE and ICANON are set, the ERASE character shall cause the terminal to erase, if
possible, the last character in the current line from the display. If there is no character to erase, an
implementation may echo an indication that this was the case, or do nothing.

If ECHOK and ICANON are set, the KILL character shall either cause the terminal to erase the
line from the display or shall echo the newline character after the KILL character.

If ECHONL and ICANON are set, the newline character shall be echoed even if ECHO is not set.

If ICANON is set, canonical processing shall be enabled. This enables the erase and kill edit
functions, and the assembly of input characters into lines delimited by NL, EOF, and EOL, as
described in Section 11.1.6 (on page 185).

Base Definitions, Issue % Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 193

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Parameters that Can be Set General Terminal Interface
6871 If ICANON is not set, read requests shall be satisfied directly from the input queue. A read shall
6872 not be satisfied until at least MIN bytes have been received or the timeout value TIME expired
6873 between bytes. The time value represents tenths of a second. See Section 11.1.7 for more details.
6874 If IEXTEN is set, implementation-defined functions shall be recognized from the input data. It is
6875 implementation-defined how IEXTEN being set interacts with ICANON, ISIG, IXON, or IXOFF.
6876 If IEXTEN is not set, implementation-defined functions shall not be recognized and the
6877 corresponding input characters are processed as described for ICANON, ISIG, IXON, and
6878 IXOFF.
6879 If ISIG is set, each input character shall be checked against the special control characters INTR,
6880 QUIT, and SUSP. If an input character matches one of these control characters, the function
6881 associated with that character shall be performed. If ISIG is not set, no checking shall be done.
6882 Thus these special input functions are possible only if ISIG is set.
6883 If NOFLSH is set, the normal flush of the input and output queues associated with the INTR,
6884 QUIT, and SUSP characters shall not be done.
6885 If TOSTOP is set, the signal SIGTTOU shall be sent to the process group of a process that tries to
6886 write to its controlling terminal if it is not in the foreground process group for that terminal. This
6887 signal, by default, stops the members of the process group. Otherwise, the output generated by
6888 that process shall be output to the current output stream. Processes that are blocking or ignoring
6889 SIGTTOU signals are excepted and allowed to produce output, and the SIGTTOU signal shall
6890 not be sent.
6891 The initial local control value after open () is implementation-defined.
6892 11.2.6 Special Control Characters
6893 The special control character values shall be defined by the array c¢_cc. The subscript name and
6894 description for each element in both canonical and non-canonical modes are as follows:
6895 Subscript Usage
6896 Canonical | Non-Canonical
6897 Mode Mode Description
6898 VEOF EOF character
6899 VEOL EOL character
6900 VERASE ERASE character
6901 VINTR VINTR INTR character
6902 VKILL KILL character
6903 VMIN MIN value
6904 VQUIT VQUIT QUIT character
6905 VSusP VSuUSsP SUSP character
6906 VTIME TIME value
6907 VSTART VSTART START character
6908 VSTOP VSTOP STOP character
6909 The subscript values are unique, except that the VMIN and VTIME subscripts may have the
6910 same values as the VEOF and VEOL subscripts, respectively.
6911 Implementations that do not support changing the START and STOP characters may ignore the
6912 character values in the c_cc array indexed by the VSTART and VSTOP subscripts when
6913 tesetattr () is called, but shall return the value in use when tcgetattr() is called.
6914 The initial values of all control characters are implementation-defined.
6915 If the value of one of the changeable special control characters (see Section 11.1.9 (on page 187))
6916 is _POSIX_VDISABLE, that function shall be disabled; that is, no input data is recognized as the

194 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

General Terminal Interface Parameters that Can be Set
6917 disabled special character. If ICANON is not set, the value of _POSIX_VDISABLE has no special
6918 meaning for the VMIN and VTIME entries of the c_cc array.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 195

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
General Terminal Interface

196 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

12.1

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 12

Utility Conventions

Utility Argument Syntax

This section describes the argument syntax of the standard utilities and introduces terminology
used throughout IEEE Std 1003.1-200x for describing the arguments processed by the utilities.

Within IEEE Std 1003.1-200x, a special notation is used for describing the syntax of a utility’s
arguments. Unless otherwise noted, all utility descriptions use this notation, which is illustrated
by this example (see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.9.1, Simple
Commands):

utility_name [-a] [-b][-c option_argumnent]
[—d| -

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Utility Argument Syntax Utility Conventions

section, or unless the exception in Guideline 11 of Section 12.2 applies. If an option that
does not have option-arguments is repeated, the results are undefined, unless otherwise
stated.

4. Frequently, names of parameters that require substitution by actual values are shown
with embedded underscores. Alternatively, parameters are shown as follows:

<par aneter nanme>

The angle brackets are used for the symbolic grouping of a phrase representing a single
parameter and conforming applications shall not include them in data submitted to the
utility.

5. When a utility has only a few permissible options, they are sometimes shown
individually, as in the example. Utilities with many flags generally show all of the
individual flags (that do not take option-arguments) grouped, as in:

utility_name [-abcDxyz][-p arg] [oper and]
Utilities with very complex arguments may be shown as follows:
utility_name [options][oper ands]

6. Unless otherwise specified, whenever an operand or option-argument is, or contains, a
numeric value:

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

6998

6999
7000

7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012

7013
7014
7015

7016

7017
7018
7019

7020

7021

7022
7023

7024
7025
7026

7027

7028
7029
7030
7031

7032
7033

7034
7035
7036
7037

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Utility Conventions Utility Argument Syntax

12.2

For example:

utility_name —d[—a] [-c option_argunent][operand...]
utility_name [-a] [-b] [operand...]

When multiple synopsis lines are given for a utility, it is an indication that the utility has
mutually-exclusive arguments. These mutually-exclusive arguments alter the
functionality of the utility so that only certain other arguments are valid in combination
with one of the mutually-exclusive arguments. Only one of the mutually-exclusive
arguments is allowed for invocation of the utility. Unless otherwise stated in an
accompanying OPTIONS section, the relationships between arguments depicted in the
SYNOPSIS sections are mandatory requirements placed on conforming applications. The
use of conflicting mutually-exclusive arguments produces undefined results, unless a
utility description specifies otherwise. When an option is shown without the [and
1" brackets, it means that option is required for that version of the SYNOPSIS. However,
it is not required to be the first argument, as shown in the example above, unless
otherwise stated.

9. Ellipses ("...") are used to denote that‘one or more occurrences of an operand are
allowed. When an option or an operand followed by ellipses is enclosed in brackets, zero
or more options or operands can be specified. The form:

utility_name [-g option_argunent].. [operand..]

indicates that multiple occurrences of the option and its option-argument preceding the
ellipses are valid, with semantics as indicated in the OPTIONS section of the utility. (See
also Guideline 11 in Section 12.2 (on page 199).)

The form:
utility_name —f option_argunment [-f option_argunent].. [operand...]

indicates that the —f option is required to appear at least once and may appear multiple
times.

10. . When the synopsis line is too long to be printed on a single line in the Shell and Utilities
volume of IEEE Std 1003.1-200x, the indented lines following the initial line are
continuation lines. An actual use of the command would appear on a single logical line.

Utility Syntax Guidelines

The following guidelines are established for the naming of utilities and for the specification of
options, option-arguments, and operands. The getopt() function in the System Interfaces
volume of IEEE Std 1003.1-200x assists utilities in handling options and operands that conform
to these guidelines.

Operands and option-arguments can contain characters not specified in the portable character
set.

The guidelines are intended to provide guidance to the authors of future utilities, such as those
written specific to a local system or that are components of a larger application. Some of the
standard utilities do not conform to all of these guidelines; in those cases, the OPTIONS sections
describe the deviations.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 199

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7038

7039
7040

7041
7042
7043

7044

7045

7046
7047

7048
7049

7050

7051
7052
7053

7054

7055
7056
7057

7058
7059
7060
7061
7062
7063

7064
7065

7066
7067
7068
7069

7070
7071
7072

7073
7074
7075
7076

7077
7078
7079
7080
7081

Utility Syntax Guidelines

200

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Guideline 1:
Guideline 2:

Guideline 3:

Guideline 4:
Guideline 5:

Guideline 6:

Guideline 7:
Guideline 8:

Guideline 9:
Guideline 10:

Guideline 11:

Guideline 12:

Guideline 13:

Guideline 14:

Utility Conventions

Utility names should be between two and nine characters, inclusive.

Utility names should include lowercase letters (the lower -character
classification) and digits only from the portable character set.

Each option name should be a single alphanumeric character (the alnum
character classification) from the portable character set. The -W (capital-W)
option shall be reserved for vendor options.

Multi-digit options should not be allowed.
All options should be preceded by the’ =’ delimiter character.

Options without option-arguments should be accepted when grouped behind
one’ -’ delimiter.

Each option and option-argument should be a separate argument, except as
noted in Section 12.1 (on page 197), item (2).

Option-arguments should not be optional.

When multiple option-arguments are specified to follow a single option, they
should be presented as a single argument, using commas within that
argument or <blank>s-within that argument to separate them.

All options should precede operands on the command line.

The first — —-argument that is'not an option-argument should be accepted as a
delimiter indicating the end of options. Any following arguments should be
treated as operands, even if they begin with the * =% character.

The order of different options relative to one another should not matter, unless
the options are documented as mutually-exclusive and such an option is
documented to override any incompatible options preceding it. If an option
that has option-arguments is repeated, the option and option-argument
combinations should be interpreted in the order specified on the command
line.

The order of operands may matter and position-related interpretations should
be determined on a utility-specific basis.

For utilities that use operands to represent files to be opened for either reading
or writing, the ' =’ ‘operand should be used to mean only standard input (or
standard output when it is clear from context that an output file is being
specified) or a file named ’ —' .

If an argument can be identified according to Guidelines 3 through 10 as an
option, or as a group of options without option-arguments behind one ' —'
delimiter, then it should be treated as such.

The utilities in the Shell and Ultilities volume of IEEE Std 1003.1-200x that claim conformance to
these guidelines shall conform completely to these guidelines as if these guidelines contained
the term “shall” instead of “should”. On some implementations, the utilities accept usage in
violation of these guidelines for backwards-compatibility as well as accepting the required form.

Where a utility described in the Shell and Utilities volume of IEEE Std 1003.1-200x as
conforming to these guidelines is required to accept the operand ' = to mean standard input or
output, this usage is explained in the OPERANDS section. Otherwise, if such a utility uses
operands to represent files, it is implementation-defined whether the operand ' = stands for
standard input (or standard output), or for a file named ’ - .

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Utility Conventions Utility Syntax Guidelines
7082 It is recommended that all future utilities and applications use these guidelines to enhance user
7083 portability. The fact that some historical utilities could not be changed (to avoid breaking
7084 existing applications) should not deter this future goal.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 201

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Utility Conventions

OB

202 Base Definitions, Issue 7- Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7085

7086

7087

7088
7089
7090
7091
7092

7093

7094
7095

7096
7097

7098
7099

7100
7101

7102
7103
7104
7105
7106

7107
7108
7109
7110

7111
7112
7113
7114

7115
7116

7117
7118
7119

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Chapter 13

Headers

This chapter describes the contents of headers.

Headers contain function prototypes, the definition of symbolic constants, common structures,
preprocessor macros, and defined types. Each function in the System Interfaces volume of
IEEE Std 1003.1-2001 specifies the headers that an application shall include in order to use that
function. In most cases, only one header is required. These headers are present on an application
development system; they need not be present on the target execution system.

13.1 Format of Entries

The entries in this chapter are based on a common format as follows. The only sections relating

to conformance are the SYNOPSIS and DESCRIPTION.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described.

DESCRIPTION
This section describes the functionality of the header.

APPLICATION USAGE
This section is informative. This section gives warnings and advice to application
writers about the entry. In the event of conflict between warnings and advice and a
normative part of this volume of IEEE Std 1003.1-200x, the normative material is to be
taken as correct.

RATIONALE
This section is informative. This section contains historical information concerning the
contents of this volume of IEEE Std 1003.1-200x and why features were included or
discarded by the standard developers.

FUTURE DIRECTIONS
This section is informative. This section provides comments which should be used as a
guide to current thinking; there is not necessarily a commitment to adopt these future
directions.

SEE ALSO
This section is informative. This section gives references to related information.

CHANGE HISTORY
This section is informative. This section shows the derivation of the entry and any
significant changes that have been made to it.

Base Definitions, Issue % Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 203

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7120
7121

7122
7123

7124
7125
7126

7127
7128
7129
7130
7131
7132
7133

7134

7135
7136

7137
7138

7139
7140
7141

7142
7143

7144
7145
7146

7147

7148
7149

7150

7151
7152

7153
7154
7155
7156
7157
7158
7159
7160
7161
7162

7163

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<aio.h> Headers

NAME

aio.h — asynchronous input and output (REALTIME)

SYNOPSIS

#include <aio.h>

DESCRIPTION

204

The <aio.h> header shall define the aiocb structure which shall include at least the following
members:

int aio_fildes File descriptor.

off t aio_offset File offset.

volatile void *aio_buf Location of buffer.

size t aio_nbytes Length of transfer.

int aio_reqgprio Request priority offset.
struct sigevent aio_sigevent Signal number and value.
int aio_lio_opcode Operation to be performed.

This header shall also include the following constants:

AIO_ALLDONE A return value indicating that none of the requested operations could be
canceled since they are already complete.

AIO_CANCELED A return value indicating that all requested operations have been
canceled.

AIO_NOTCANCELED
A return value indicating that some of the requested operations could not
be canceled since they are in progress.

LIO_NOP A lio_listio() element operation option indicating that no transfer is
requested.
LIO_NOWAIT A Tio) listio() synchronization operation indicating that the calling thread

is\ to continue execution while the lio_listio() operation is being
performed, and no notification is given when the operation is complete.

LIO_READ A lio_listio() element operation option requesting a read.

LIO_WAIT A lio_listio() synchronization operation indicating that the calling thread
is to suspend until the lio_listio () operation is complete.

LIO_WRITE Alio. listio () element operation option requesting a write.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int aio_cancel(int, struct aiocb *);
int aio_error(const struct aiocb *);
int aio_fsync(int, struct aiocb *);
int aio_read(struct aiocb *);
ssize_t aio_return(struct aiocb *);
int aio_suspend(const struct aiocb *const([], int,
const struct timespec *);
int aio_write(struct aiocb *);
int lio_listio(int, struct aiocb *restrict const[restrict], int,

struct sigevent *restrict);

Inclusion of the <aio.h> header may make visible symbols defined in the headers <fecntl.h>,

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <aio.h>

<signal.h>, <sys/types.h>, and <time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7182
7183

7184
7185

7186
7187

7188

7189
7190

7191
7192

7193
7194
7195
7196

7197

7198
7199

7200
7201
7202
7203
7204

7205
7206

7207
7208

7209
7210

7211
7212

7213
7214
7215

7216
7217

7218

7219
7220

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<arpalinet.h> Headers
NAME
arpa/inet.h — definitions for internet operations
SYNOPSIS
#include <arpa/inet.h>
DESCRIPTION

The in_port_t and in_addr_t types shall be defined as described in <netinet/in.h>.
The in_addr structure shall be defined as described in <netinet/in.h>.

1P6 The INET_ADDRSTRLEN and INET6_ADDRSTRLEN macros shall be defined as described in
<netinet/in.h>.

The following shall be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

uint32_t htonl(uint32_t);
uintl6_t htons(uintl6_t);
uint32_t ntohl(uint32_t);
uintl6_t ntohs(uintl6_t);

The uint32_t and uint16_t types shall be defined as described in <inttypes.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

in_addr_t inet_addr(const char *);

char *inet_ntoa(struct in_addr);

const char *inet_ntop(int, const void *restrict, char *restrict,
socklen_t);

int inet_pton(int, const char *restrict, void *restrict);

Inclusion of the <arpa/inet.h> header may also make visible all symbols from <netinet/in.h>
and <inttypes.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<netinet/in.h>, <inttypes.h>, the System Interfaces volume of IEEE Std 1003.1-200x, htonl(),
inet_addr()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the prototypes for inet_ntop() and inet_pton().

Issue 7
SD5-XBD-ERN-6 is applied.

206 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7221
7222

7223
7224

7225
7226
7227
7228

7229
7230
7231

7232

7233

7234
7235

7236
7237

7238
7239

7240
7241

7242
7243

7244
7245

7246
7247

7248
7249
7250

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <assert.h>
NAME
assert.h — verify program assertion
SYNOPSIS
#include <assert.h>
DESCRIPTION
cx The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The <assert.h> header shall define the assert() macro. It refers to the macro NDEBUG which is
not defined in the header. If NDEBUG is defined as a macro name before the inclusion of this
header, the assert () macro shall be defined simply as:

#define assert(ignore)((void) 0)
Otherwise, the macro behaves as described in assert ().

The assert() macro shall be redefined according to the current state of NDEBUG each time
<assert.h> is included.

The assert() macro shall be implemented as a macro, not as a function. If the macro definition is
suppressed in order to access an actual function, the behavior is undefined.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The System Interfaces volume of IEEE Std 1003.1-200x, assert ()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The definition of the assert() macro is changed for alignment with the ISO/IEC 9899:1999
standard.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 207

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7251
7252

7253
7254

7255
7256
7257
7258

7259

7260

7261
7262

7263

7264
7265

7266
7267

7268
7269

7270

7271
7272

7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<complex.h> Headers
NAME
complex.h — complex arithmetic
SYNOPSIS
#include <complex.h>
DESCRIPTION
cx The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.
The <complex.h> header shall define the following macros:
complex Expands to _Complex.
_Complex_I Expands to a constant expression of type const float _Complex, with the value
of the imaginary unit (that is, a number i such that >=-1).
imaginary Expands to _Imaginary.
_Imaginary_I Expands to a constant expression of type const float _Imaginary with the
value of the imaginary unit.
I Expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined,
I expands to _Complex_I.
The macros imaginary and _Imaginary_I shall be defined if and only if the implementation
supports imaginary types.
An application may undefine and then, perhaps, redefine the complex, imaginary, and I macros.
The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.
double cabs(double complex);
float cabsf(float complex);
long double cabsl(long double complex);
double complex cacos(double complex);
float complex cacosf(float complex);
double complex cacosh(double complex);
float complex cacoshf(float complex);
long double complex cacoshl(long double complex);
long double complex cacosl(long double complex);
double carg(double complex);
float cargf(float complex);
long double cargl(long double complex);
double complex casin(double complex);
float complex casinf(float complex);
double complex casinh(double complex);
float complex casinhf(float complex);
long double complex casinhl(long double complex);
long double complex casinl(long double complex);
double complex catan(double complex);
float complex catanf(float complex);
double complex catanh(double complex);
float complex catanhf(float complex);
long double complex catanhl(long double complex);
long double complex catanl(long double complex);
208 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338

7339
7340

7341
7342
7343
7344

7345
7346

7347
7348

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers

double complex
float complex

double complex
float complex

long double complex
long double complex
double complex
float complex

long double complex

ccos(double complex);
ccosf(float complex);

ccosh(double complex);
ccoshf(float complex);
ccoshl(long double complex);
ccosl(long double complex);

cexp(double complex);
cexpf(float complex);
cexpl(long double complex);

double cimag(double complex);
float cimagf(float complex);
long double cimagl(long double complex);

double complex
float complex

long double complex
double complex
float complex

long double complex
double complex
float complex

long double complex
double complex
float complex

long double complex

clog(double complex);
clogf(float complex);
clogl(long double complex);
conj(double complex);
conjf(float complex);
conjl(long double complex);
cpow(double complex, double complex);
cpowf(float complex, float complex);
cpowl(long double complex, long double complex);
cproj(double complex);
cprojf(float complex);
cprojl(long double complex);

double creal(double complex);
float crealf(float complex);
long double creall(long double complex);

double complex
float complex

double complex
float complex

long double complex
long double complex
double complex
float complex

long double complex
double complex
float complex

double complex
float complex

long double complex
long double complex

APPLICATION USAGE

csin(double complex);
csinf(float complex);
csinh(double complex);
csinhf(float complex);
csinhl(long double complex);
csinl(long double complex);
csgrt(double complex);
csqrtf(float complex);
csqrtl(long double complex);
ctan(double complex);
ctanf(float complex);
ctanh(double complex);
ctanhf(float complex);
ctanhl(long double complex);
ctanl(long double complex);

Values are interpreted as radians, not degrees.

RATIONALE

<complex.h>

The choice of I instead of i for the imaginary unit concedes to the widespread use of the
identifier i for other purposes. The application can use a different identifier, say j, for the

imaginary unit by following the inclusion of the <complex.h> header with:

#undef |

#define j _Imaginary_|

An [suffix to designate imaginary constants is not required, as multiplication by I provides a
sufficiently convenient and more generally useful notation for imaginary terms. The

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 209

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7349
7350

7351
7352
7353
7354

7355

7356
7357
7358

7359
7360
7361

7362
7363
7364

7365
7366
7367
7368

7369
7370

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
<complex.h> Headers

corresponding real type for the imaginary unit is float, so that use of I for algorithmic or
notational convenience will not result in widening types.

On systems with imaginary types, the application has the ability to control whether use of the
macro I introduces an imaginary type, by explicitly defining I to be _Imaginary_I or _Complex_I.
Disallowing imaginary types is useful for some applications intended to run on
implementations without support for such types.

The macro _Imaginary_I provides a test for whether imaginary types are supported.

The cis() function (cos(x) + I*sin(x)) was considered but rejected because its implementation is
easy and straightforward, even though some implementations could compute sine and cosine
more efficiently in tandem.

FUTURE DIRECTIONS
The following function names and the same names suffixed with f or I are reserved for future
use, and may be added to the declarations in the <complex.h> header.

cerf() cexpm1() clog2()
cerfc() clog10() clgammal()

cexp2() cloglp() ctgammal()

SEE ALSO
The System Interfaces volume of IEEE Std 1003.1-200x, cabs(), cacos(), cacosh(), carg(), casin(),
casinh(), catan(), catanh(), ccos(), ccosh(), cexp(), cimag(), clog(), conj(), cpow(), cproj(), creal(),
csin(), csinh(), csqrt(), ctan(), ctanh()

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

210 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <cpio.h>
7371 NAME
7372 cpio.h — cpio archive values
7373 SYNOPSIS
7374 #include <cpio.h>
7375 DESCRIPTION
7376 Values needed by the c_mode field of the cpio archive format are described as follows:
7377 Name Description Value (Octal)
7378 C_IRUSR Read by owner. 0000400
7379 C_IWUSR Write by owner. 0000200
7380 C_IXUSR Execute by owner. 0000100
7381 C_IRGRP Read by group. 0000040
7382 C_IWGRP | Write by group. 0000020
7383 C_IXGRP Execute by group. 0000010
7384 C_IROTH Read by others. 0000004
7385 C_IWOTH | Write by others. 0000002
7386 C_IXOTH Execute by others. 0000001
7387 C_ISUID Set user ID. 0004000
7388 C_ISGID Set group ID. 0002000
7389 C_ISVTX On directories, restricted deletion flag: 0001000
7390 C_ISDIR Directory. 0040000
7391 C_ISFIFO FIFO. 0010000
7392 C_ISREG Regular file. 0100000
7393 C_ISBLK Block special. 0060000
7394 C ISCHR Character special. 0020000
7395 C_ISCTG Reserved. 0110000
7396 C_ISLNK Symbolic link. 0120000
7397 C_ISSOCK | ‘Socket. 0140000
7398 The header shall define the symbolic constant:
7399 MAGIC "070707"
7400 APPLICATION USAGE
7401 None.
7402 RATIONALE
7403 None.
7404 FUTURE DIRECTIONS
7405 None.
7406 SEE ALSO
7407 The Shell and Utilities volume of IEEE Std 1003.1-200x, pax
7408 CHANGE HISTORY
7409 First released in the Headers Interface, Issue 3 specification. Derived from the POSIX.1-1988
7410 standard.
7411 Issue 6
7412 The SEE ALSO is updated to refer to pax.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 211

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<cpio.h> Headers
7413 Issue 7
7414 The <cpio.h> header is moved from the XSI option to the Base.

212 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <ctype.h>
7415 NAME
7416 ctype.h — character types
7417 SYNOPSIS
7418 #include <ctype.h>
7419 DESCRIPTION
7420 cx Some of the functionality described on this reference page extends the ISO C standard.
7421 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
7422 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
7423 symbols in this header.
7424 The <ctype.h> header shall provide a definition for a type locale_t as defined in <locale.h>
7425 representing a locale object.
7426 The following shall be declared as functions and may also be defined as macros. Function
7427 prototypes shall be provided for use with ISO C standard compilers.
7428 int isalnum(int);
7429 o4 int isalnum_I(int, locale_t);
7430 int isalpha(int);
7431 o4 int isalpha_l(int, locale_t);
7432 oB xsI int isascii(int);
7433 int isblank(int);
7434 o4 int isblank_I(int, locale_t);
7435 int iscntrl(int);
7436 o4 int iscntrl_I(int, locale_t);
7437 int isdigit(int);
7438 o4 int isdigit_I(int, locale_t);
7439 int isgraph(int);
7440 o4 int isgraph_I(int, locale_t);
7441 int islower(int);
7442 o4 int islower_I(int, locale_t);
7443 int isprint(int);
7444 o4 int isprint_I(int, locale_t);
7445 int ispunct(int);
7446 o4 int ispunct_I(int, locale_t);
7447 int isspace(int);
7448 o4 int isspace_|(int, locale_t);
7449 int isupper(int);
7450 o4 int isupper_I(int, locale_t);
7451 int isxdigit(int);
7452 o4 int isxdigit_I(int, locale_t);
7453 oB xs1 int toascii(int);
7454 int tolower(int);
7455 o4 int tolower_I(int, locale_t);
7456 int toupper(int);
7457 o4 int toupper_I(int, locale_t);
7458 The <ctype.h> header shall define the following as macros:
7459 oB xs1 int _toupper(int);
7460 int _tolower(int);
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 213

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7461
7462

7463
7464

7465
7466

7467
7468
7469
7470
7471

7472
7473

7474
7475

7476
7477
7478

7479
7480

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
<ctype.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, the System Interfaces volume of IEEE Std 1003.1-200x, isalnum(), isalpha(), isascii(),
iscntrl(), isdigit (), isgraph(), islower (), isprint(), ispunct(), isspace(), isupper(), isxdigit (), mblen(),
mbstowcs (), mbtowc (), setlocale(), toascii(), tolower (), _tolower (), toupper(), _toupper (), westombs (),

wctomb ()
CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 6
Extensions beyond the ISO C standard are marked.
Issue 7
SD5-XBD-ERN-6 is applied, updating the wording regarding the function declarations for
consistency.
The *_I() functions are added from The Open Group Technical Standard, 2006, Extended API Set
Part 4.
214 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7481
7482

7483
7484

7485
7486

7487

7488

7489

7490
7491

7492

7493
7494

7495
7496

7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511

7512
7513

7514
7515
7516
7517
7518
7519
7520
7521

7522

7523

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <dirent.h>

NAME

dirent.h — format of directory entries

SYNOPSIS

#include <dirent.h>

DESCRIPTION

The internal format of directories is unspecified.
The <dirent.h> header shall define the following type:
DIR A type representing a directory stream.

It shall also define the structure dirent which shall include the following members:

XSI ino_t d_ino File serial number.
char d_name]] Name of entry.
XSI The type ino_t shall be defined as described in <sys/types.h>.
The character array d_name is of unspecified size, but the number of bytes preceding the
terminating null byte shall not exceed {NAME_MAX]}.
The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.
int alphasort(const struct dirent **, const struct dirent **);
int closedir(DIR *);
int dirfd(DIR *);
DIR *fdopendir(int);
DIR *opendir(const char *);
struct dirent *readdir(DIR *);
int readdir_r(DIR *restrict, struct dirent *restrict,
struct dirent **restrict);
void rewinddir(DIR *);
int scandir(const char *, struct dirent ***,
int (*) (const struct dirent *),
int (*) (const struct dirent **,
const struct dirent **));
XSI void seekdir(DIR *, long);
long telldir(DIR *);
APPLICATION USAGE
None.
RATIONALE
Information similar to that in the <dirent.h> header is contained in a file <sys/dir.h> in 4.2 BSD
and 4.3 BSD. The equivalent in these implementations of struct dirent from this volume of
IEEE Std 1003.1-200x is struct direct. The filename was changed because the name <sys/dir.h>
was also used in earlier implementations to refer to definitions related to the older access
method; this produced name conflicts. The name of the structure was changed because this
volume of IEEE Std 1003.1-200x does not completely define what is in the structure, so it could
be different on some implementations from struct direct.
The name of an array of char of an unspecified size should not be used as an lvalue. Use of:
sizeof(d_name)
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 215

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7524

7525

7526

7527
7528
7529

7530
7531

7532
7533
7534

7535
7536

7537
7538

7539
7540

7541

7542
7543
7544

7545
7546

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
<dirent.h> Headers

is incorrect; use:
strlen(d_name)
instead.

The array of char d_name is not a fixed size. Implementations may need to declare struct dirent
with an array size for d_name of 1, but the actual number of characters provided matches (or
only slightly exceeds) the length of the filename.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, closedir(), opendir(),
readdir (), rewinddir (), seekdir (), telldir()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.
Issue 6
The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().
The restrict keyword is added to the prototype for readdir_r ().
Issue 7
The alphasort(), dirfd(), and scandir() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 1.
The fopendir() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.
216 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7547
7548

7549
7550

7551
7552
7553

7554

7555

7556

7557
7558

7559
7560

7561
7562
7563
7564

7565
7566

7567
7568

7569
7570

7571
7572

7573
7574

7575
7576

7577
7578

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <dlIfcn.h>
NAME
dlfcn.h — dynamic linking
SYNOPSIS
#include <dlfcn.h>
DESCRIPTION

The <dlfcn.h> header shall define at least the following macros for use in the construction of a
dlopen () mode argument:

RTLD_LAZY Relocations are performed at an implementation-defined time.

RTLD_NOW Relocations are performed when the object is loaded.

RTLD_GLOBAL All symbols are available for relocation processing of other modules.

RTLD_LOCAL All symbols are not made available for relocation processing by other
modules.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int diclose(void *);

char *dlerror(void);

void *dlopen(const char *, int);

void *dlsym(void *restrict, const char *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The System Interfaces volume of IEEE Std 1003.1-200x, dlopen (), diclose(), dlsym(), dlerror()

CHANGE HISTORY
First released in Issue 5.

Issue 6
The restrict keyword is added to the prototype for disym ().

Issue 7
The <dlfcn.h> header is moved from the XSI option to the Base.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 217

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7579
7580

7581
7582

7583
7584
7585
7586

7587

7588
7589

7590

7591

7592

7593

7594

7595
7596

7597

7598

7599

7600

7601

7602

7603

7604

7605

7606

7607

7608

7609

7610

7611

7612

7613

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<errno.h> Headers
NAME
errno.h — system error numbers
SYNOPSIS
#include <errno.h>
DESCRIPTION
cx Some of the functionality described on this reference page extends the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The ISO C standard only requires the symbols [EDOM], [EILSEQ], and [ERANGE] to be defined.

The <errno.h> header shall provide a declaration for errno and give positive values for the
following symbolic constants. Their values shall be unique except as noted below.

[E2BIG] Argument list too long.
[EACCES] Permission denied.
[EADDRINUSE] Address in use.
[EADDRNOTAVAIL] Address not available.
[EAFNOSUPPORT] Address family not supported.
[

EAGAIN] Resource wunavailable, try again (may be the same value as
[EWOULDBLOCK]).

[EALREADY] Connection already in progress.
[EBADF] Bad file descriptor.
[EBADMSG] Bad message.
[EBUSY] Device or resource busy.
[ECANCELED] Operation canceled.
[ECHILD] No child processes.
[ECONNABORTED] Connection aborted.
[ECONNREFUSED] Connection refused.
[ECONNRESET] Connection reset.
[EDEADLK] Resource deadlock would occur.
[EDESTADDRREQ] Destination address required.

[EDOM] Mathematics argument out of domain of function.
[EDQUOT] Reserved.

[EEXIST] File exists.

[EFAULT] Bad address.

[EFBIG] File too large.

[EHOSTUNREACH] Host is unreachable.

218 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7614

7615

7616

7617

7618

7619

7620

7621

7622

7623

7624

7625

7626

7627

7628

7629

7630

7631

7632

7633

7634

7635

7636

7637

7638

7639

7640

7641

7642

7643

7644

7645

7646

7647

7648

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers

OB XSR

OB XSR

OB XSR

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

EIDRM]
EILSEQ]
EINPROGRESS]

EMSGSIZE]
EMULTIHOP]

Identifier removed.
Illegal byte sequence.
Operation in progress.
Interrupted function.
Invalid argument.
1/0 error.

Socket is connected.

Is a directory.

Too many levels of symbolic links.

File descriptor value too large.
Too many links.
Message too large.

Reserved.

ENAMETOOLONG] Filename too long.

ENETDOWN]
ENETRESET]
ENETUNREACH]
ENFILE]
ENOBUFS]
[ENODATA]
[ENODEV]
[ENOENT]
[ENOEXEC]
[ENOLCK]
[ENOLINK]
[

[

[

[

[
[
[
[
[
[
[
[
[
[EMFILE]
[
[
[
[
[
[
[
[
[

ENOMEM]
ENOMSG]
ENOPROTOOPT]
ENOSPC]
[ENOSR]
[ENOSTR]
[ENOSYS]
[ENOTCONN]
[ENOTDIR]
[ENOTEMPTY]

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

Network is down.

Connection aborted by network.
Network unreachable.

Too many files open in system.

No buffer space available.

No message is available on the STREAM head read queue.

No such device.

No such file or directory.
Executable file format error.
No locks available.
Reserved.

Not enough space.

No message of the desired type.
Protocol not available.

No space left on device.

No STREAM resources.
Not a STREAM.

Function not supported.
The socket is not connected.
Not a directory.

Directory not empty.

<errno.h>

219

7649
7650

7651

7652

7653

7654

7655
7656

7657

7658

7659

7660

7661

7662
7663

7664

7665

7666

7667

7668

7669

7670

7671

7672

7673

7674

7675
7676
7677

7678
7679

7680
7681

7682
7683

7684
7685

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<errno.h> Headers

[ENOTRECOVERABLE]
State not recoverable.

[ENOTSOCK] Not a socket.

[ENOTSUP] Not supported (may be the same value as [EOPNOTSUPP]).

[ENOTTY] Inappropriate I/O control operation.

[ENXIO] No such device or address.

[EOPNOTSUPP] Operation not supported on socket (may be the same value as
[ENOTSUP]).

[EOVERFLOW] Value too large to be stored in data type.

[EOWNERDEAD] Previous owner died.

[EPERM] Operation not permitted.

[EPIPE] Broken pipe.

[EPROTO] Protocol error.

[EPROTONOSUPPORT]
Protocol not supported.

[EPROTOTYPE] Protocol wrong type for socket.

[ERANGE] Result too large.

[EROFS] Read-only file system.

[ESPIPE] Invalid seek.

[ESRCH] No such process.

[ESTALE] Reserved.

oB xskR [ETIME] Stream ioctl () timeout.
[ETIMEDOUT] Connection timed out.
[ETXTBSY] Text file busy.

[EWOULDBLOCK]. Operation would block (may be the same value as [EAGAIN]).
[EXDEV] Cross-device link.

APPLICATION USAGE

Additional error numbers may be defined on conforming systems; see the System Interfaces
volume of IEEE Std 1003.1-200x.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

The System Interfaces volume of IEEE Std 1003.1-200x, Section 2.3, Error Numbers

CHANGE HISTORY

220

First released in Issue 1. Derived from Issue 1 of the SVID.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7686
7687

7688
7689
7690

7691
7692

7693
7694

7695
7696

7697
7698

7699

7700

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <errno.h>

Issue 5
Updated for alignment with the POSIX Realtime Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

» The majority of the error conditions previously marked as extensions are now mandatory,
except for the STREAMS-related error conditions.

Values for errno are now required to be distinct positive values rather than non-zero values. This
change is for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #050 is applied.

The [ENOTRECOVERABLE] and [EOWNERDEAD] errors are added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 221

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7701
7702

7703
7704

7705
7706
7707

7708

7709

7710

7711

7712

7713

7714

7715

7716

7717

7718

7719

7720
7721

7722

7723

7724

7725
7726

7727
7728

7729

7730

7731

7732

7733

7734

7735

7736

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<fcntl.h> Headers

NAME

fentl.h — file control options

SYNOPSIS

#include <fcntl.h>

DESCRIPTION

SIO

222

The <fentl.h> header shall define the following values for the cmd argument used by fentl().
The values shall be unique.

F_DUPFD Duplicate file descriptor.

F_GETFD Get file descriptor flags.

F_SETFD Set file descriptor flags.

F_GETFL Get file status flags and file access modes.
F_SETFL Set file status flags.

F_GETLK Get record locking information.

F_SETLK Set record locking information.

F_SETLKW Set record locking information; wait if blocked.

F_GETOWN Get process or process group ID to receive SIGURG signals.
F_SETOWN Set process or process group ID to receive SIGURG signals.
The <fentl.h> header shall define the file descriptor flags used for fentl() as follows:
FD_CLOEXEC - Close the file descriptor upon execution of an exec family function.

The <fentl.h> header shall also define the following values for the I_type argument used for
record locking with fcntl (). The values shall be unique.

F_RDLCK Shared or read lock.
F_UNLCK Unlock.
F_WRLCK Exclusive or write lock.

The <fcntl.h> header shall define the values used for I_whence, SEEK_SET, SEEK_CUR, and
SEEK_END as described in <unistd.h>.

The <fentl.h> header shall define the following values as file creation flags for use in the oflag
value to open(). They shall be bitwise-distinct.

O_CREAT Create file if it does not exist.

O_EXCL Exclusive use flag.

O_NOCTTY Do not assign controlling terminal.

O_TRUNC Truncate flag.

The fentl.h() header shall define the file status flags used for open () and fentl() as follows:
O_APPEND Set append mode.

O_DSYNC Write according to synchronized I/O data integrity completion.
O_NONBLOCK Non-blocking mode.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7737

7738

7739

7740

7741

7742
7743

7744

7745

7746

7747
7748

7749
7750

7751
7752

7753

7754

7755
7756

7757
7758

7759

7760
7761

7762

7763

7764

7765

7766

7767
7768

7769
7770
7771

7772
7773
7774

7775
7776

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <fentl.h>
SIO O_RSYNC Synchronized read I/O operations.
O_SYNC Write according to synchronized I/O file integrity completion.

ADV

The <fentl.h> header shall define the mask for use with file access modes as follows:
O_ACCMODE Mask for file access modes.

The <fentl.h> header shall define the file access modes used for open () and fentl() as follows:

O_EXEC Open for execute only (non-directory files). Use of this flag on directories
is currently unspecified.

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_WRONLY Open for writing only.

The <fentl.h> header shall define the symbolic names for file modes for use as values of mode_t
as described in <sys/stat.h>.

The <fentl.h> header shall define the following value as a special value used in place of a file
descriptor:

AT_FDCWD Use the current working directory to determine the target of relative file
paths.

The <fentl.h> header shall define the following as a value for the flag used by faccessat():
AT_EACCESS Check access using effective user and group ID.

The <fcntl.h> header shall define the following as a value for the flag used by fstatat(),
fchmodat (), and fchownat ():

AT_SYMLINK_NOFOLLOW
Do not follow symbolic links.

The following is a value for flag used by linkat ():

AT_SYMLINK_FOLLOW
Follow symbolic link.

The following is a value for flag used by open () and openat ():
O_DIRECTORY Fail if not a directory.
O_NOFOLLOW Do not follow symbolic links.

The following is a value for flag used by unlinkat ():
AT_REMOVEDIR Remove directory instead of file.

The <fentlh> header shall define the following values for the advice argument used by
posix_faduvise():

POSIX_FADV_NORMAL
The application has no advice to give on its behavior with respect to the specified data. It is
the default characteristic if no advice is given for an open file.

POSIX_FADV_SEQUENTIAL
The application expects to access the specified data sequentially from lower offsets to higher
offsets.

POSIX_FADV_RANDOM
The application expects to access the specified data in a random order.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 223

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7777
7778

7779
7780

7781
7782

7783
7784

7785
7786
7787
7788
7789

7790
7791

7792
7793

7794
7795
7796
7797
7798
7799

7800
7801

7802
7803

7804
7805

7806
7807

7808
7809
7810

7811
7812

7813
7814

7815
7816

7817
7818

7819
7820

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
<fentl.h> Headers

POSIX_FADV_WILLNEED
The application expects to access the specified data in the near future.

POSIX_FADV_DONTNEED
The application expects that it will not access the specified data in the near future.

POSIX_FADV_NOREUSE
The application expects to access the specified data once and then not reuse it thereafter.

The <fcntl.h> header shall define the flock structure describing a file lock. It shall include the
following members:

short |_type Type of lock; F_RDLCK, F_WRLCK, F_UNLCK.

short |_whence Flag for starting offset.

off t |_start Relative offset in bytes.

off t Ilen Size; if 0 then until EOF.

pid_t |_pid Process ID of the process holding the lock; returned with F_GETLK.

The <fcntlh> header shall define the mode_t, off t, and pid_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int creat(const char *, mode_t);

int fentl(int, int, ...);

int open(const char *,int, ...);

int openat(int, const char *, int, ...);
ADV int posix_fadvise(int, off_t, off_t, int);

int posix_fallocate(int, off_t, off t);

Inclusion of the <fentl.h> header may also make visible all symbols from <sys/stat.h> and
<unistd.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The meaning of the O_EXEC flag on directories may be specified in a future version.

SEE ALSO
<sys/stat.h>, <sys/types.h>, <unistd.h>, the System Interfaces volume of IEEE Std 1003.1-200x,
creat (), exec, fentl(), open(), posix_fadvise(), posix_fallocate (), posix_madvise ()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.
Issue 6
The following changes are made for alignment with the ISO POSIX-1: 1996 standard:
¢ O_DSYNC and O_RSYNC are marked as part of the Synchronized Input and Output
option.
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:
224 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7821

7822

7823
7824

7825
7826

7827
7828

7829
7830
7831

7832
7833

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <fentl.h>

 The definition of the mode_t, off_t, and pid_t types is mandated.
The F_GETOWN and F_SETOWN values are added for sockets.

The posix_fadvise(), posix_fallocate(), and posix_madvise() functions are added for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #102 is applied, moving the prototype for posix_madvise() to
<sys/mman.h>.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/18 is applied, updating the prototypes for
posix_fadvise () and posix_fallocate() to be large file-aware, using off_t instead of size_t.

Issue 7
The openat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Additional flags are added to support faccessat(), fchmodat(), fchownat(), fstatat(), linkat(),
open(), openat (), and unlinkat ().

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 225

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<fenv.h> Headers
7834 NAME
7835 fenv.h — floating-point environment
7836 SYNOPSIS
7837 #include <fenv.h>
7838 DESCRIPTION
7839 cx The functionality described on this reference page is aligned with the ISO C standard. Any
7840 conflict between the requirements described here and the ISO C standard is unintentional. This
7841 volume of IEEE Std 1003.1-200x defers to the ISO C standard.
7842 The <fenv.h> header shall define the following data types through typedef:
7843 fenv_t Represents the entire floating-point environment. The floating-point environment
7844 refers collectively to any floating-point status flags and control modes supported
7845 by the implementation.
7846 fexcept_t Represents the floating-point status flags collectively, including any status the
7847 implementation associates with the flags. A floating-point status flag is a system
7848 variable whose value is set (but never cleared) when a floating-point exception is
7849 raised, which occurs as a side effect of exceptional floating-point arithmetic to
7850 provide auxiliary information. A floating-point control mode is a system variable
7851 whose value may be set by the user to affect the subsequent behavior of floating-
7852 point arithmetic.
7853 The <fenv.h> header shall define each of the following constants if and only if the
7854 implementation supports the floating-point exception by means of the floating-point functions
7855 feclearexcept (), fegetexceptflag (), feraiseexcept (), fesetexceptflag(), and fetestexcept(). Each expands
7856 to an integer constant expression with values such that bitwise-inclusive ORs of all combinations
7857 of the constants result in distinct values.
7858 FE_DIVBYZERO
7859 FE_INEXACT
7860 FE_INVALID
7861 FE_OVERFLOW
7862 FE_UNDERFLOW
7863 MX If the implementation supports the IEC 60559 Floating-Point option, all five constants shall be
7864 defined. = Additional implementation-defined floating-point exceptions with constants
7865 beginning with FE_ and an uppercase letter may also be specified by the implementation.
7866 The <fenv.h> header shall define the constant FE_ALL_EXCEPT as the bitwise-inclusive OR of
7867 all floating-point exception constants defined by the implementation, if any. If no such constants
7868 are defined, then the constant FE_ALL_EXCEPT shall be defined as zero.
7869 The <fenv.h> header shall define each of the following constants if and only if the
7870 implementation supports getting and setting the represented rounding direction by means of the
7871 fegetround() and fesetround() functions. Each expands to an integer constant expression whose
7872 values are distinct non-negative vales.
7873 FE_DOWNWARD
7874 FE_TONEAREST
7875 FE_TOWARDZERO
7876 FE_UPWARD
7877 MX If the implementation supports the IEC 60559 Floating-Point option, all four constants shall be
7878 defined. Additional implementation-defined rounding directions with constants beginning

226 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <fenv.h>

7879 with FE_ and an uppercase letter may also be specified by the implementation.

788078810gra61 T4d(227)78 Tlae <fenv.h> header shall define the following constant, which represents the default floating-
point environment (that is, the one installed at program startup) and has type pointer to const-
qualified fenv_t. It can be used as an argument to the functions within the <fenv.h> header that
manage the floating-point environment.

FE_DFL_ENV
The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int feclearexcept(int);

int fegetexceptflag(fexcept_t *,int);
int feraiseexcept(int);
int fesetexceptflag(const fexcept_t *, int);

int fetestexcept(int);
int fegetround(void);
int fesetround(int);

int fegetenv(fenv_t *);

int feholdexcept(fenv_t *);
int fesetenv(const fenv_t*);
int feupdateenv(const fenv_t*);

The FENV_ACCESS pragma provides'a means to inform the implementation when an
application might access the floating-point environment to test floating-point status flags or run
under non-default floating-point control modes. The pragma shall occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
FENV_ACCESS pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FENV_ACCESS
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. If part of an application tests floating-point status flags, sets floating-
point control modes, or runs under non-default mode settings, but was translated with the state
for the FENV_ACCESS pragma off, the behavior is undefined. The default state (on or off) for
the pragma is implementation-defined. (When execution passes from a part of the application
translated with FENV_ACCESS off to a part translated with FENV_ACCESS on, the state of the
floating-point status flags is unspecified and the floating-point control modes have their default
settings.)

APPLICATION USAGE
This header is designed to support the floating-point exception status flags and directed-
rounding control modes required by the IEC 60559: 1989 standard, and other similar floating-
point state information. Also it is designed to facilitate code portability among all systems.

Certain application programming conventions support the intended model of use for the
floating-point environment:

« A function call does not alter its caller’s floating-point control modes, clear its caller’s
floating-point status flags, nor depend on the state of its caller’s floating-point status flags
unless the function is so documented.

e A function call is assumed to require default floating-point control modes, unless its
documentation promises otherwise.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 227

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<fenv.h> Headers
7926 e A function call is assumed to have the potential for raising floating-point exceptions,
7927 unless its documentation promises otherwise.
7928 With these conventions, an application can safely assume default floating-point control modes
7929 (or be unaware of them). The responsibilities associated with accessing the floating-point
7930 environment fall on the application that does so explicitly.
7931 Even though the rounding direction macros may expand to constants corresponding to the
7932 values of FLT_ROUNDS, they are not required to do so.
7933 For example:
7934 #include <fenv.h>
7935 void f(double x)
7936 {
7937 #pragma STDC FENV_ACCESS ON
7938 void g(double);
7939 void h(double);
7940 ¥
7941 g(x + 1);
7942 h(x + 1);
7943 ¥
7944 }
7945 If the function g() might depend on status flags set as a side effect of the first x+1, or if the
7946 second x+1 might depend on control modes set as a side effect of the call to function g(), then
7947 the application shall contain an appropriately placed invocation as follows:
7948 #pragma STDC FENV_ACCESS ON
7949 RATIONALE
7950 The fexcept_t Type
7951 fexcept_t does not have to be an integer type. Its values must be obtained by a call to
7952 fegetexceptflag(), and cannot be created by logical operations from the exception macros. An
7953 implementation might simply \implement. fexcept.t as an int and use the representations
7954 reflected by the exception macros, but is not required to; other representations might contain
7955 extra information about the exceptions. fexcept.t might be a struct with a member for each
7956 exception (that might hold the address of the first or last floating-point instruction that caused
7957 that exception). ‘The ISO/IEC 9899: 1999 standard makes no claims about the internals of an
7958 fexcept_t, and so the user cannot inspect it.
7959 Exception and Rounding Macros
7960 Macros corresponding to unsupported modes and rounding directions are not defined by the
7961 implementation and must not be defined by the application. An application might use #ifdef to
7962 test for this.
7963 FUTURE DIRECTIONS
7964 None.
7965 SEE ALSO
7966 The System Interfaces volume of IEEE Std 1003.1-200x, feclearexcept (), fegetenv(), fegetexceptflag (),
7967 fegetround (), feholdexcept (), feraiseexcept(), fesetenv(), fesetexceptflag(), fesetround(), fetestexcept(),
7968 feupdateenv ()

228 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

7969
7970

7971
7972
7973

7974
7975

7976

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <fenv.h>

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

The return types for feclearexcept(), fegetexceptflag(), feraiseexcept(), fesetexceptflag(), fegetenv(),
fesetenv(), and feupdateenv() are changed from void to int for alignment with the
ISO/IEC 9899: 1999 standard, Defect Report 202.

Issue 7
SD5-XBD-ERN-48 and ISO C TC2 #37 (SD5-XBD-ERN-49) are applied.

SD5-XBD-ERN-69 is applied.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 229

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<float.h> Headers
7977 NAME
7978 float.h — floating types
7979 SYNOPSIS
7980 #include <float.h>
7981 DESCRIPTION
7982 cx The functionality described on this reference page is aligned with the ISO C standard. Any
7983 conflict between the requirements described here and the ISO C standard is unintentional. This
7984 volume of IEEE Std 1003.1-200x defers to the ISO C standard.
7985 The characteristics of floating types are defined in terms of a model that describes a
7986 representation of floating-point numbers and values that provide information about an
7987 implementation’s floating-point arithmetic.
7988 The following parameters are used to define the model for each floating-point type:
7989 s Sign (1).
7990 b Base or radix of exponent representation (an integer >1).
7991 e Exponent (an integer between a minimum e,,;, and a maximum €,,y).
7992 p Precision (the number of base-b digits in the significand).
7993 fr Non-negative integers less than b (the significand digits).
7994 A floating-point number x is defined by the following model:

‘ k
7995 x=sb® > fir b, emin S € S €max
k=1

7996 In addition to normalized floating-point numbers (f;>0 if x20), floating types may be able to
7997 contain other kinds of floating-point numbers, such as subnormal floating-point numbers (xZ0,
7998 e=emin, f1=0) and unnormalized floating-point numbers (x£0, e>e,,, f1=0), and values that are
7999 not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying Not-a-
8000 Number. A quiet NaN propagates through almost every arithmetic operation without raising a
8001 floating-point exception; a signaling NaN generally raises a floating-point exception when
8002 occurring as an arithmetic operand.
8003 An implementation may give zero and non-numeric values, such as infinities and NaNs, a sign,
8004 or may leave them unsigned. Wherever such values are unsigned, any requirement in this
8005 standard to retrieve the sign shall produce an unspecified sign and any requirement to set the
8006 sign shall be ignored.
8007 The accuracy of the floating-point operations (+ , ' =, ™ , '/) and of the functions in
8008 <math.h> and <complex.h> that return floating-point results is implementation-defined, as is
8009 the accuracy of the conversion between floating-point internal representations and string
8010 representations performed by the functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The
8011 implementation may state that the accuracy is unknown.
8012 All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
8013 suitable for use in #if preprocessing directives; all floating values shall be constant expressions.
8014 All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have
8015 separate names for all three floating-point types. The floating-point model representation is
8016 provided for all values except FLT_EVAL_METHOD and FLT_ROUNDS.
8017 The rounding mode for floating-point addition is characterized by the implementation-defined

230 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8018

8019

8020

8021

8022

8023

8024

8025
8026
8027
8028

8029

8030

8031
8032
8033

8034

8035
8036

8037
8038
8039

8040

8041

8042

8043

8044

8045

8046
8047
8048

8049

8050

Headers

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
<float.h>

value of FLT_ROUNDS:

-1
0
1
2
3

Indeterminable.

Toward zero.

To nearest.

Toward positive infinity.

Toward negative infinity.

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The values of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision may
be greater than required by the type. The use of evaluation formats is characterized by the
implementation-defined value of FLT_EVAL_METHOD:

-1
0
1

2

Indeterminable.
Evaluate all operations and constants just to the range and precision of the type.

Evaluate operations and constants of type float and double to the range and precision of
the double type; evaluate long double operations and constants to the range and precision
of the long double type.

Evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined
behavior.

The values given in the following list shall be defined as constant expressions with
implementation-defined values that are greater or equal in magnitude (absolute value) to those
shown, with the same sign.

+ Radix of exponent representation, b.
FLT_RADIX 2
» Number of base-FLT_RADIX digits in the floating-point significand, p.
FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

¢ Number of decimal digits, 7, such that any floating-point number in the widest supported
floating type with' p,,, radix b digits can be rounded to a floating-point number with n
decimal digits and back again without change to the value.

g
Epmax logy, b if b is a power of 10
0 Bl + Prnax 1081, bg otherwise
u
DECIMAL_DIG 10
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 231

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<float.h> Headers
8051 ¢ Number of decimal digits, g, such that any floating-point number with g decimal digits can
8052 be rounded into a floating-point number with p radix b digits and back again without
8053 change to the g decimal digits.
8054 0
Op log,, b if b is a power of 10
0 B(p ~1) log,, b E otherwise
O
8055 FLT_DIG 6
8056 DBL_DIG 10
8057 LDBL_DIG 10
8058 e Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
8059 normalized floating-point number, e,;,.
8060 FLT_MIN_EXP
8061 DBL_MIN_EXP
8062 LDBL_MIN_EXP
8063 ¢ Minimum negative integer such that 10 raised to that power is in the range of normalized
8064 floating-point numbers.
D min B D
8065 Dloglo be .
8066 FLT MIN_10_EXP =37
8067 DBL_MIN_ 10 EXP " =37
8068 LDBL_MIN_10_EXP ~-37
8069 ¢ Maximum integer such that FLT _RADIX raised to that power minus 1 is a representable
8070 finite floating-point number, €.y
8071 FLT _MAX_EXP
8072 DBL_MAX_EXP.
8073 LDBL_MAX_EXP
8074 e Maximum integer suchthat 10 raised to that power is in the range of representable finite
8075 floating-point numbers.
8076 Eloglo((l — 5P peme) S
8077 FLT_MAX_10_EXP +37
8078 DBL_MAX_10_EXP +37
8079 LDBL_MAX_10_EXP +37
8080 The values given in the following list shall be defined as constant expressions with
8081 implementation-defined values that are greater than or equal to those shown:
232 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8082

8083

8084

8085

8086

8087
8088

8089
8090

8091

8092

8093

8094

8095

8096

8097

8098
8099

8100
8101

8102
8103

8104
8105

8106
8107

8108
8109
8110

8111
8112

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <float.h>

¢ Maximum representable finite floating-point number.

(1 -— b_p) bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

The values given in the following list shall be defined as constant expressions with
implementation-defined (positive) values that are less than or equal to those shown:

¢ The difference between 1 and the least value greater than 1 that is representable in the
given floating-point type, b' ~7.

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

« Minimum normalized positive floating-point number, b

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
<complex.h>, <math.h>, <stdio.h>, <stdlib.h>, <wcharh>
CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.
Issue 6
The description of the operations with floating-point values is updated for alignment with the
ISO/IEC 9899: 1999 standard.
Issue 7
ISO C TC2 #4 (SD5-XBD-ERN-50) and ISO C TC2 #5 (SD5-XBD-ERN-51) are applied.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 233

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8113
8114

8115
8116

8117
8118
8119

8120

8121

8122

8123

8124

8125

8126

8127

8128

8129

8130

8131

8132

8133

8134

8135
8136
8137

8138

8139
8140
8141
8142
8143
8144

8145
8146

8147

8148

8149
8150

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<fmtmsg.h> Headers
NAME
fmtmsg.h — message display structures
SYNOPSIS
XSl #include <fmtmsg.h>
DESCRIPTION
The <fmtmsg.h> header shall define the following macros, which expand to constant integer
expressions:
MM_HARD Source of the condition is hardware.
MM_SOFT Source of the condition is software.
MM_FIRM Source of the condition is firmware.
MM_APPL Condition detected by application.
MM_UTIL Condition detected by utility.
MM_OPSYS Condition detected by operating system.
MM_RECOVER Recoverable error.
MM_NRECOV Non-recoverable error.
MM_HALT Error causing application to halt.
MM_ERROR Application has encountered a non-fatal fault.
MM_WARNING Application has detected unusual non-error condition.
MM_INFO Informative message.
MM_NOSEV No severity level provided for the message.
MM_PRINT Display message on standard error.

MM_CONSOLE

Display message on system console.

The table below indicates the null values and identifiers for fmtmsg() arguments. The
<fmtmsg.h> header shall define the macros in the Identifier column, which expand to constant
expressions that expand to expressions of the type indicated in the Type column:

Argument | Type | Null-Value Identifier
label char* | (char*)0 MM_NULLLBL
severity int 0 MM_NULLSEV
class long oL MM_NULLMC
text char* | (char*)0 MM_NULLTXT
action char* | (char*)0 MM_NULLACT
tag char* | (char*)0 MM_NULLTAG

The <fmtmsg.h> header shall also define the following macros for use as return values for

fmtmsg():
MM_OK

MM_NOTOK
MM_NOMSG

234

The function succeeded.
The function failed completely.

The function was unable to generate a message on standard error, but
otherwise succeeded.

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [

This is an Unapproved Standards Draft, Subject to Change

8151
8152

8153
8154

8155
8156

8157
8158

8159
8160

8161
8162

8163
8164

8165
8166

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <fmtmsg.h>

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int fmtmsg(long, const char *, int,
const char *, const char *, const char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The System Interfaces volume of IEEE Std 1003.1-200x, fmtmsg ()

CHANGE HISTORY
First released in Issue 4, Version 2.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 235

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<fnmatch.h> Headers
8167 NAME
8168 fnmatch.h — filename-matching types
8169 SYNOPSIS
8170 #include <fnmatch.h>
8171 DESCRIPTION
8172 The <fnmatch.h> header shall define the following constants:
8173 FNM_NOMATCH The string does not match the specified pattern.
8174 FNM_PATHNAME Slash in string only matches slash in pattern.
8175 FNM_PERIOD Leading period in string must be exactly matched by period in pattern.
8176 FNM_NOESCAPE Disable backslash escaping.
8177 The following shall be declared as a function and may also be defined as a macro. A function
8178 prototype shall be provided.
8179 int fnmatch(const char *, const char *, int);
8180 APPLICATION USAGE
8181 None.
8182 RATIONALE
8183 None.
8184 FUTURE DIRECTIONS
8185 None.
8186 SEE ALSO
8187 The System Interfaces volume of IEEE Std 1003.1-200x, fumatch(), the Shell and Utilities volume
8188 of IEEE Std 1003.1-200x
8189 CHANGE HISTORY
8190 First released in Issue 4. Derived from the ISO POSIX-2 standard.
8191 Issue 6
8192 The FNM_NOSYS constant is marked obsolescent.
8193 Issue 7
8194 The obsolescent FNM.NOSYS constant is removed.

236 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8195
8196

8197
8198

8199
8200

8201
8202

8203
8204

8205

8206

8207

8208

8209

8210

8211

8212

8213
8214

8215

8216

8217

8218
8219

8220
8221
8222
8223

8224
8225

8226

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <ftw.h>
NAME
ftw.h — file tree traversal
SYNOPSIS
XSI #include <ftw.h>

DESCRIPTION

OB

The <ftw.h> header shall define the FTW structure that includes at least the following members:

int base
int level

The <ftw.h> header shall define macros for use as values of the third argument to the
application-supplied function that is passed as the second argument to ftw() and nftw():

FIW_F File.

FITW_D Directory.

FTW_DNR Directory without read permission.
FTW_DP Directory with subdirectories visited.
FTW_NS Unknown type; stat () failed.

FTW_SL Symbolic link.

FTW_SLN Symbolic link that names a nonexistent file.

The <ftw.h> header shall define macros for use as values of the fourth argument to nftw():

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw() follows
links but does not walk down any path that crosses itself.

FTW_MOUNT The walk does not cross a mount point.
FITW_DEPTH All subdirectories are visited before the directory itself.
FTW_CHDIR The walk changes to each directory before reading it.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int ftw(const char *, int (*)(const char *, const struct stat *,
int), int);

int nftw(const char *, int (*)(const char *, const struct stat *,
int, struct FTW*), int, int);

The <ftw.h> header shall define the stat structure and the symbolic names for st_mode and the
file type test macros as described in <sys/stat.h>.

Inclusion of the <ftw.h> header may also make visible all symbols from <sys/stat.h>.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 237

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8227
8228

8229
8230

8231
8232

8233
8234

8235
8236

8237
8238

8239
8240

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<ftw.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

Headers

<sys/stat.h>, the System Interfaces volume of IEEE Std 1003.1-200x, ftw(), nftw()

CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5

A description of FTW_DP is added.

Issue 7

The ftw() function is marked obsolescent.

238

Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8241
8242

8243
8244

8245
8246
8247

8248

8249
8250
8251

8252

8253

8254

8255

8256

8257
8258

8259
8260

8261

8262

8263

8264
8265

8266
8267

8268

8269
8270

8271
8272
8273

8274
8275

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <glob.h>
NAME
glob.h — pathname pattern-matching types
SYNOPSIS
#include <glob.h>
DESCRIPTION

The <glob.h> header shall define the structures and symbolic constants used by the glob()

function.

The structure type glob_t shall contain at least the following members:

size_t gl_pathc Count of paths matched by pattern.
char **gl_pathv Pointer to a list of matched pathnames.
size_t gl_offs Slots to reserve at the beginning of gl_pathv.

The size_t type shall be defined as described in <sys/types.h>.
The following constants shall be provided as values for the flags argument:

GLOB_APPEND Append generated pathnames to those previously obtained.

GLOB_DOOFFS Specify how many null pointers to add to the beginning of gI_patho.

GLOB_ERR Cause glob() to return on error.
GLOB_MARK Each pathname that is'a directory that matches pattern has a slash
appended.

GLOB_NOCHECK If pattern does not match any pathname, then return a list consisting of

only pattern.
GLOB_NOESCAPE Disable backslash escaping.
GLOB_NOSORT Do not sort the pathnames returned.

The following constants shall be defined as error return values:

GLOB_ABORTED The scan “was stopped because GLOB_ERR was set or (*errfunc)()

returned non-zero.

GLOB_NOMATCH The pattern. does not” match any existing pathname,

GLOB_NOCHECK was not set in flags.
GLOB_NOSPACE An attempt to allocate memory failed.

and

The following shall be declared as functions and may also be defined as macros. Function

prototypes shall be provided.

int glob(const char *restrict, int, int (*)(const char *, int),
glob_t *restrict);
void globfree(glob_t *);

The implementation may define additional macros or constants using names beginning with

GLOB_.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

239

8276
8277

8278
8279

8280
8281

8282
8283
8284

8285
8286

8287
8288

8289

8290
8291

8292
8293

8294

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
<glob.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, glob(), the Shell and
Utilities volume of IEEE Std 1003.1-200x

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 6
The restrict keyword is added to the prototype for glob().
The GLOB_NOSYS constant is marked obsolescent.
IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/8 is applied, correcting the glob()
prototype definition by removing the restrict qualifier from the function pointer argument.
Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
The obsolescent GLOB_NOSYS constant is removed.
240 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8295
8296

8297
8298

8299
8300
8301

8302
8303
8304
8305

8306

8307
8308

8309
8310
8311
8312
8313
8314
8315
8316
8317

8318
8319

8320
8321

8322
8323

8324
8325
8326

8327
8328

8329
8330

8331
8332
8333

8334

8335
8336

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <grp.h>

NAME
grp.h — group structure

SYNOPSIS
#include <grp.h>

DESCRIPTION
The <grp.h> header shall declare the structure group which shall include the following
members:

char *gr_name The name of the group.

gid_t gr_gid Numerical group ID.

char **gr_mem Pointer to a null-terminated array of character
pointers to member names.

The gid_t and size_t types shall be defined as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

struct group *getgrgid(gid_t);
struct group *getgrnam(const char *);

int getgrgid_r(gid_t, struct group *, char *,
size_t, struct group **);
int getgrnam_r(const char *, struct group *, char *,
size .t struct group *¥);
XSI struct group *getgrent(void);
void endgrent(void);
void setgrent(void);
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
<sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, endgrent(), getgrgid(),
getgrnam()
CHANGE HISTORY
First released in Issue 1.
Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.
Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:
¢ The definition of gid_t is mandated.
e The getgrgid_r() and getgrnam_r() functions are marked as part of the Thread-Safe
Functions option.
Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 241

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<grp.h> Headers
8337 Issue 7
8338 SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.
242 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8339
8340

8341
8342

8343
8344

8345

8346

8347
8348

8349
8350
8351
8352

8353
8354

8355
8356

8357
8358

8359
8360
8361

8362
8363

8364
8365

8366
8367

8368

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <iconv.h>
NAME
iconv.h — codeset conversion facility
SYNOPSIS
#include <iconv.h>
DESCRIPTION
The <iconv.h> header shall define the following types:
iconv_t Identifies the conversion from one codeset to another.
size_t As described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

size t iconv(iconv_t, char **restrict, size_t *restrict,
char **restrict, size_t *restrict);
int iconv_close(iconv_t);
iconv_t iconv_open(const char *, const char *);
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO

<sys/types.h>, the System Interfaces volume of IEEE Std 1003.1-200x, iconv(), iconv_close(),
iconv_open()

CHANGE HISTORY
First released in Issue 4.

Issue 6
The restrict keyword is added to the prototype for iconv().

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

The <iconv.h> header is moved from the XSI option to the Base.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 243

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<inttypes.h> Headers
8369 NAME
8370 inttypes.h — fixed size integer types
8371 SYNOPSIS
8372 #include <inttypes.h>
8373 DESCRIPTION
8374 cx Some of the functionality described on this reference page extends the ISO C standard.
8375 Applications shall define the appropriate feature test macro (see the System Interfaces volume of
8376 IEEE Std 1003.1-200x, Section 2.2, The Compilation Environment) to enable the visibility of these
8377 symbols in this header.
8378 The <inttypes.h> header shall include the <stdint.h> header.
8379 The <inttypes.h> header shall include a definition of at least the following type:
8380 imaxdiv_t Structure type that is the type of the value returned by the imaxdiv() function.
8381 The following macros shall be defined. Each expands to a character string literal containing a
8382 conversion specifier, possibly modified by a length modifier, suitable for use within the format
8383 argument of a formatted input/output function when converting the corresponding integer
8384 type. These macros have the general form of PRI (character string literals for the fprintf() and
8385 fwprintf() family of functions) or SCN (character string literals for the fscanf() and fwscanf()
8386 family of functions), followed by the conversion specifier, followed by a name corresponding to
8387 a similar type name in <stdint.h>. In these names, N represents the width of the type as
8388 described in <stdint.h>. For example, PRIIFAST32 can be used in a format string to print the
8389 value of an integer of type int_fast32_t.
8390 The fprintf() macros for signed integers are:
8391 PRIAN PRIALEASTN PRIAFASTN PRIAMAX PRIAPTR
8392 PRIIN PRGELEASTN PRIIFASTN PRIIMAX PRIiPTR
8393 The fprintf() macros for unsigned integers are:
8394 PRIoN PRIOLEASTN PRIoFASTN PRIoMAX PRIoPTR
8395 PRIuN PRIULEASTN PRIuFASTN PRIuMAX PRIuPTR
8396 PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR
8397 PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR
8398 The fscanf() macros for signed integers are:
8399 SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
8400 SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR
8401 The fscanf() macros for unsigned integers are:
8402 SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
8403 SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
8404 SCNxN SCNXLEASTN SCNxFASTN SCNxMAX SCNxPTR
8405 For each type that the implementation provides in <stdint.h>, the corresponding fprintf() and
8406 fwprintf() macros shall be defined and the corresponding fscanf() and fwscanf() macros shall be
8407 defined unless the implementation does not have a suitable modifier for the type.
8408 The following shall be declared as functions and may also be defined as macros. Function
8409 prototypes shall be provided.

244 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8410
8411
8412
8413
8414
8415

8416
8417
8418
8419
8420
8421
8422
8423
8424
8425

8426
8427
8428
8429
8430
8431

8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442

8443
8444
8445

8446
8447

8448
8449

8450
8451

8452

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7
Headers <inttypes.h>

intmax_t imaxabs(intmax_t);

imaxdiv_t imaxdiv(intmax_t, intmax_t);

intmax_t strtoimax(const char *restrict, char **restrict, int);
uintmax_t strtoumax(const char *restrict, char **restrict, int);

intmax_t wcstoimax(const wchar_t *restrict, wchar_t **restrict, int);
uintmax_t wcstoumax(const wchar_t *restrict, wchar_t **restrict, int);

EXAMPLES
#include <inttypes.h>
#include <wchar.h>
int main(void)

{
uintmax_ti = UINTMAX_MAX; // This type always exists.
wprintf(L"The largest integer value is %020"
PRIXMAX "\n", i);
return O;
}
APPLICATION USAGE

The purpose of <inttypes.h> is to provide a set of integer types whose definitions are consistent
across machines and independent of operating systems and other implementation
idiosyncrasies. It defines, via typedef, integer types of various sizes. Implementations are free to
typedef them as ISO C standard integer types or extensions that they support. Consistent use of
this header will greatly increase the portability of applications across platforms.

RATIONALE

The ISO/IEC 9899:1990 standard specified that the language should support four signed and
unsigned integer data types—char, short, int, and long—but placed very little requirement on
their size other than that int and short be at least 16 bits and long be at least as long as int and
not smaller than 32 bits. For 16-bit systems, most implementations assigned 8, 16, 16, and 32 bits
to char, short, int, and long, respectively. For 32-bit systems, the common practice has been to
assign 8, 16, 32, and 32 bits to these types. This difference in int size can create some problems
for users who migrate from one system to another which assigns different sizes to integer types,
because the ISO C standard integer promotion rule can produce silent changes unexpectedly.
The need for defining an extended integer type increased with the introduction of 64-bit
systems.

FUTURE DIRECTIONS
Macro names beginning with PRI or SCN followed by any lowercase letter or X’ may be added
to the macros defined in the <inttypes.h> header.

SEE ALSO
The System Interfaces volume of IEEE Std 1003.1-200x, imaxdiv ()

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Base Resolution bwg97-006 is applied.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

Base Definitions, Issue 7 Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 245

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8453
8454

8455
8456

8457
8458
8459
8460

8461
8462

8463

8464

8465

8466

8467

8468

8469

8470

8471

8472

8473

8474
8475

8476
8477

8478
8479

8480
8481

8482
8483

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

<is0646.h> Headers
NAME
is0646.h — alternative spellings
SYNOPSIS
#include <iso646.h>
DESCRIPTION
cx The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The <is0646.h> header shall define the following eleven macros (on the left) that expand to the
corresponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl

not !
not_eq 1=
or I
or_eq |=
Xor

Xor_eq =

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/ Amendment 1: 1995 (E).

246 Base Definitions, Issue # Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved [
This is an Unapproved Standards Draft, Subject to Change

8484
8485

8486
8487

8488
8489
8490

8491
8492

8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Headers <langinfo.h>
NAME
langinfo.h — language information constants
SYNOPSIS
#include <langinfo.h>
DESCRIPTION

The <langinfo.h> header contains the constants used to identify items of langinfo data (see
nl_langinfo()). The type of the constant, nl_item, shall be defined as described in <nl_types.h>.

The following constants shall be defined. The entr